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Abstract

We show that the dynamics of Einstein Gravitation Theory may be understood as an

e�ective theory of a quantum theory for a 
uctuating space-time implemented as a Bosonic

string path-integral and interacting with a non-dynamics Einstein space-time metric �eld

(the quantum gravitation vacuum). Additionally, we show how to deduce SU(N) Yang-

Mills Gauge theories from a stringy SO(D) space-time with an intrinsic SU(N) fermionic

structure at large N .
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Introduction

At present times, the most important idea to understand the Physical world is the

Einstein's view that all basic laws of physics comes from a single one. Presently, it has been

proposed the use of Kaluza-Klein supersymmetric strings theories with imposed super

conformal invariance [1], [3], [4] to describe the full spectrum of known elementary particles

as string excitations. Although its \end of physics as we know" purpose, these super-string

theories have not achieved yet an unambigous status of a complete and predictive physical

theory.

In this letter, we propose a new and more modest \theory of everything" by considering

the basic physical assumption that the space-time has a dynamical (
uctuating) string

structure depending on the physical phenomena dynamics at large. In section of this

letter, we deduce the Einstein quantum path integral from a space-time modelled as a

Bosonic String. In section 2, we present our ideas to the case of Yang-Mills quantum

�elds.

1 Einstein Quantum Gravity from a Bosonic Stringy

Space-Time

Let us start our analyze in this section 1 by considering as dynamical �elds of our

proposed theory, the non-dynamical Einstein gravitational metric G��(X�) at large and

the microscopic space-time vector position X�(�), considered as the world-sheet of a

closed Bosonic string. The quantum combined system path-integral will proposed to be

given by the following �-model covariant path-integral which may be regarded as the
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four-dimensional analogous of similar Path-Integral studied by Polyakov in ref. [1].
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Let us show that at the large string scale �0 ! 0 (a (small) quantum piece of our

classically observed space-time manifold M), the string path-integral in eq. (1) leads to

an e�ective (dynamical) Path-Integral for metric �elds G��( �X) weighted by the Einstein

action.

In order to show this we take a (classical) �xed point �X� and consider the string vector

position geodesic expansion around it, but de�ned by the quantum string vector position

until the (�0)2 order, namelly:
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As a consequence of the above made remarks we thus, should consider the following

string path-integral at the space-time (quantum) chart of Hausdorf dimension four
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Following closelly ref.[2], let us introduce composite �elds to write eq. (4) as a gaus-

sian path-integral over the string vector position Y �(�) describing the stringy space-time


uctuations
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At this point, we propose to replace the functional integral constraint over the �(�)

scalar �eld variable by the usual (non-functional) saddle-point limit
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Additionally, we consider the condensate approximation for the Lagrange multiplier

�eld ���(�) (see ref. [2] for details)

���(�) = h�i���( �X�) +O(�0) (6)

Substituting eq. (5)-eq.(6) into eq.(4) we get a Y�(�) gaussian functional integral with

the following result
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In order to compute the above written functional determinant at the limit of large

<�>, we regulate this determinant by the proper-time method and evaluate the

<�>!1 limit as in ref. [6], namelly:
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After using the usual Secley-De Witt expansion for the 2D di�erential operator inside

eq. (10) we, thus, obtain the Einstein-Kilbert action with a cosmological constant in the

(Euclidean) space-time quantum chart V ( �X), namelly

ZV ( �X)[G��( �X
�)] =

lim
h�i!1
�0!0

exp

(
�
q
G( �X�)

(
4A

Z 1

0

dt

t2
e�th�i

)

�
q
G( �X�)R( �X�)

(
4Ah�ih�i�0

3

Z 1

0

dt

t
e�th�i

)

� exp

�
� 1

GNewton
(R(G�� ( �X�))

q
G( �X�))� �cm

q
G( �X�)

�
(10.a)

It is worth point out that the Newton gravitational and the cosmological constants in

our approach are not fundamental in our theory and are de�ned in terms of the microscopic

string constants as follows from eq. (11)

1
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where A =
R
d2� denotes the internal string area .

The complete path-integral eq. (1) at large is �nally given by sum of eq. (10) over all
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space-time charts Vf �Xg with �X 2 R4
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At this point we remark that the Quantum Field Theory Path Integral eq. (11) must be

well-de�ned (quantized) independent of possessing an e�ective nature ([7]).

2 Yang-Mills from a Fermionic Stringy Space-Time

In this section we present the same procedure exposed in previous section to deduce

the Yang-Mills quantum �eld path integral from a string theory, modelling space-time


uctuations.

Let us, thus, consider the following combined path integral of a Yang-Mills �eld and a

Bosonic string moving on a sphere of radius R = 1 in the Euclidean space-time, RD with

a fermionic SU(N) structure ([7]).
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In order to implement our previous studies of section 1 to this case, we consider

the \Harmonic gauge" �xing in the Haar-Yang-Mills path integral in eq. (13), namelly

�X� �A�( �X) = 0 which allow us by its turn to rewrite the interaction term in eq. (13) in
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terms of the Yang-Mills strenght �eld in the chart V ( �X) at large
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At this point we evaluate the X�(�)-Gaussian functional integral with the exact result
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where h ; i � ; denotes the functional integral over the SU(N) string intrinsic Dirac �elds

and jia(�) is the conserved fermion SU(N) current on the string world-sheet.

At h�i ! 1, we obtain the following result for eq. (15)
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which at large N , give us the �nal result
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The complete path-integral eq. (13) is, thus, exactly the SU(1) Yang-Mills quan-

tum �eld path integral for the space-time at large (after integrating out the space-time

microscopic stringy 
uctuations Y �(�))
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Note that the .Q.C.DNc=+1 coupling constant is expressed in terms of the microscopic

string parameters
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Finally we remark that the supersymmetric versions of our proposed string structure

for the space-time leads to the super-gravity and super Yang-Mills theories.
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