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Abstract

We prove that there is no power-counting renormalizable nonabelian generaliza-

tion of the abelian topological mass mechanism in four dimensions. The argument is

based on the technique of consistent deformations of the master equation developed

by G. Barnich and one of the authors. Recent attempts involving extra �elds are

also commented upon.
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I Introduction

One of the most intriguing issues of high energy physics is the understanding of the
mechanism which provides the masses for the gauge vector bosons. As it is well known
the Higgs mechanism, although consistent with the renormalizability and the unitarity
constraints of quantum �eld theory, relies on the existence of scalar particles, the Higgs
bosons, whose experimental evidence is still lacking.

Therefore any new alternative mechanism to generate masses is welcome, deserving
attention and careful analysis. In particular, the idea that the vector boson masses could
originate from a topological mechanism preserving exact gauge invariance is rather tempt-
ing and fascinating. The example provided by the topological nonabelian Chern-Simons
term in three space-time dimensions is certainly the most celebrated way to provide a
topological mass for the Yang-Mills �elds [1]. In four dimensions, an analogous mecha-
nism has been proposed in the abelian case [2]. It makes use of a two-form gauge �eld
B�� = �B�� suitably coupled to the one-form gauge connection A�. The action reads

Sab
m =

Z
d4x

 
�

1

4
F��F

��
�
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12
H���H

��� +
1

2
m"����F��B��

!
; (I.1)

with F�� = (@�A� � @�A�) and H��� the totally antisymmetric three-form

H��� = @�B�� + @�B�� + @�B�� ; (I.2)

The action (I.1) is invariant under two kinds of local transformations given by

�gA� = @�" ; �gB�� = 0 ; (I.3)

and
�tA� = 0 ; �tB�� = @�"� � @�"� : (I.4)

Equations (I.3) and (I.4) correspond respectively to ordinary gauge transformations and
to vector type transformations related to the tensorial character of the �eld B�� . The
parameterm of the topological term "����F��B�� in the expression (I.1) has the dimension
of a mass. It is easily veri�ed that this term gives a nonvanishing pole for the physical
two-point function, yielding thus a gauge-invariant topological mass [2]. The two-form
B�� is actually dual to the scalar �eld that is eaten up by the gauge �eld in the standard
Higgs mechanism. There is, however, no additional particle and the action (I.1) describes
a single massive vector �eld without Higgs boson.

The aim of this work is to discuss to what extent the abelian model (I.1) can be
generalized to the nonabelian case. The analysis will be performed by making use of the
method of the consistent deformations developed in [3]. We will end up, unfortunately,
with a no-go theorem stating that it is not possible to generalize the expression (I.1) to
a local, power counting renormalizable, nonabelian action while preserving the same �eld
content and the same number of local symmetries. In other words, possible nonabelian
generalizations of the action (I.1) will necessarely require non-renormalizable couplings,
as in [4], or the introduction of extra �elds [5].

The paper is organized as follows. In Sect.II we brie
y review the method of consistent
deformations. Sect.III will be devoted to the detailed proof of the aforementioned no-go
theorem. Sect. IV discusses the assumptions of the no-go theorem and comments on
possible ways out.
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II Consistent Deformations

The method that we shall follow is based on the anti�eld-BRST formalism and allows to
construct interaction terms by consistently deforming the master equation1. Following the
original work [3], the starting point is a given action Sinv[�a] with local gauge symmetries

�"�
a = Ra

�"
�; �"Sinv[�

a] = 0 : (II.1)

According to the well known anti�eld formalism (for a review appropriate to the subse-
quent cohomological considerations, see [8]), we introduce ghost �elds C� and a suitable
set of anti�elds ��A, so that the action

S0[�
A; ��A] = Sinv[�

a] +
Z
d4x��aR

a
�C

� + :::: ; (II.2)

is a solution of the master equation

(S0; S0) =
Z
d4x

�S0

��A
�S0

���A
= 0 ; (II.3)

where �A = (�a; C�) denote collectively all the �elds and ghosts. The BRST di�erential
s in the space of the �elds and anti�elds is de�ned through the antibraket

s�A =
�
�A; S0

�
=

�S0

���A
; s��A =

�
��A; S0

�
=

�S0

��A
: (II.4)

Let us suppose now that the action S0 refers to a free �eld theory which does not contain
any coupling constant or mass parameter and let us ask ourselves if it is possible to
introduce consistent interactions for S0, i.e.

S0 ! S = S0 + giSi + gigjSij + ::: ; (II.5)

in such a way that the resulting action S still satis�es the deformed master equation

(S; S) = 0 : (II.6)

Of course, due to locality and power counting, we shall limit ourselves to interactions
Si which are integrated local polynomials in the �elds and anti�elds with dimensions
less or equal to four. Accordingly, the expansion parameters gi will be required to have
nonnegative mass dimension. Therefore they will have the meaning of coupling constants
and masses. As shown in ref. [3], the requirement of the validity of the master equation
(II.6) automatically implies the existence of a deformed action Sg

inv[�
A],

S
g
inv[�

A] = S[�A; ��A = 0] = Sinv[�
a] +O(gi) ; (II.7)

which is left invariant under a consistent deformed version of the original gauge symme-
tries, i.e.

�g"S
g
inv[�

A] = 0 ; (II.8)

1The usefulness of the deformation point of view (but not in the general framework of the anti�eld
formalism, which allows o�-shell open deformations of the algebra) has been advocated in [6]. For a
recent discussion emphasizing the homological aspects, see [7].
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with

�g"�
a =

�S

���a
[�A; ��A = 0] ; (C�

! "�) ;

�g"�
a = Ra

�"
� +O(gi) :

(II.9)

Equations (II.7)-(II.9) mean indeed that we have been able to add invariant interaction
terms to the original free action by suitable deforming the gauge symmetry, the construc-
tion being done order by order in the parameters gi. For instance, in the case in which as
the free action S0 one chooses the Maxwell lagrangian, the above construction naturally
leads to the nonabelian Yang-Mills action with the well known cubic and quartic interac-
tion terms. Moreover, the usefulness of working with the master equation lies in the fact
that the search of possible nontrivial2 interaction terms can be reduced to a cohomology
problem for the free BRST di�erential of eq.(II.4), whose cohomology classes are even-
tually known or amenable to tractable computations. For a better understanding of this
point, let us expand the master equation (II.6) in powers of the deformation parameters
gi:

(S0; S0) = 0 ;

(S0; Si) = 0 ;

2 (S0; Sij) + (Si; Sj) = 0 ;

:::::::

(II.10)

The �rst equation is nothing but the master equation for the free theory S0, and is
satis�ed by hypothesis. From the second condition we see that Si has to be invariant
under the action of the free BRST di�erential s � (:; S0). However, interactions of the
type Si = (Ti; S0), for some integrated local Ti, have to be neglected since they are seen to
correspond to pure �eld rede�nitions [3]. This means that the nontrivial interaction terms
which can be added to the free action S0 in the �rst order approximation in the parameters
gi have to belong to the cohomology of the BRST di�erential s. Concerning the third
equation, it is very easy to see that it can admit a solution only if the antibracket (Si; Sj)
can be written in the form of an exact cocycle, i.e. (Si; Sj) = (Tij; S0), for some local
Tij. Otherwise, if (Si; Sj) belongs to the cohomology of s we have an obstruction whose
e�ect is to generate constraints among the various parameters gi. The same conclusions
hold for the higher order levels of the expansion of the deformed master equation (II.6).
In other words, at each step, the parameters gi are required to ful�ll a certain number of
conditions. It may happen that the conditions met at a certain level can be ful�lled only
if some of the gi 's vanish. This means that the corresponding �rst-order deformation
is obstructed, so that the full deformation program can be achieved only for a restricted
susbset of the couplings. As we shall see in the next section, this will be the case of the
nonabelian generalization we are looking for. In fact, we shall be able to prove that the
abelian action (I.1) and the gauge symmetries of eqs. (I.3) and (I.4) can be consistently

2According to ref [3], an interaction term is called trivial if it can obtained through a �eld rede�nition.
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deformed only if mg = 0 (where g is the Yang-Mills coupling constant), implying that
there is no nonabelian, power-counting renormalizable generalization of the topological
mass term "����F��B��.

III The No-Go Theorem

Let us now apply the previous construction to the analysis of a possible nonabelian ex-
tension of the action (I.1). We shall start therefore with the following free gauge invariant
action

�0 =
Z
d4x

 
�

1

4
F a

��F
a��
�

1

12
Ha

���H
a���

!
; (III.1)

where F a
�� and Ha��� are the abelian curvatures (I.2) for a set of n (a = 1; ::; n) gauge

and tensor �elds Aa
� and Ba

�� . It is worth recalling here that, within the consistent
deformation set up, the mass parameter m of eq.(I.1) is considered, as any other coupling,
as a deformation parameter. Accordingly, the topological mass term "����F��B�� will in
fact appear as a �rst order consistent deformation.

Of course, the free action (III.1) is invariant under the gauge transformations

�Aa
� = @�"

a ; �Ba
�� = @�"

a
� � @�"

a
� : (III.2)

Taking into account that the trasnformation of Ba
�� is reducible, due to the existence

of the zero modes �"a� = @�!
a, we introduce a set of ghosts (ca; �a�; �a), where ca and

�a� stand for the ghost corresponding to the gauge transformations (III.2) and �a is a
ghost for ghost accounting for the reducibility. Moreover, introducing also the anti�elds
(A��

a ; B���
a ; c�a; �

��
a ; ��a) and the corresponding action �ant

�ant =
Z
d4x

 
A��
a @�c

a +B���
a @��

a
� + ���a @��

a

!
; (III.3)

one �nds that the complete free action

S0 = �0 + �ant ; (III.4)

satis�es the master equation
(S0; S0) = 0 ; (III.5)

with

(S0; S0) =
Z
d4x

 
�S0

�Aa�

�S0

�A�

a�

+
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�S0
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a��

+
�S0

�ca
�S0

�c�a
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�S0

��a�
�S0

���a�
+
�S0

��a
�S0

���a

!
: (III.6)



{ 5 { CBPF-NF-041/97

According to Eq.(II.4), the nilpotent BRST transformation is

sAa
� = @�c

a ; sA��
a = @�F

a�� ;

sBa
�� = @��

a
� � @��

a
� ; sB���

a = @�H
���
a ;

s�a� = @��
a ; s���a = �@�B���

a ;

sca = 0 ; sc�a = �@�A
��
a ;

s�a = 0 ; s��a = @��
��
a :

(III.7)

We should remark that the anti�elds (c�a; �
�

a) conjugate to the ghosts (ca; �a), although
not explicitely appearing in the expression (III.3) due to the fact that ca and �a do
not transform under s in the free abelian limit, are needed to allow a priori for general
deformations deforming also the gauge algebra or the reducibility functions [3]. Let us
display, for further use, the quantum numbers of all the �elds and anti�elds.

Aa
� Ba

�� ca �a� �a A�a
� B�a

�� c�a ��a� ��a

Ng 0 0 1 1 2 -1 -1 -2 -2 -3
dim 1 1 0 0 -1 3 3 4 4 5

Table 1: Ghost numbers and dimensions.

We face now the problem of characterizing the possible interactions terms Si that can
be added to the action (III.4) while preserving the master equation (III.5). Following
the algebraic set up of the previous Section, the consistent interactions which can be
introduced to the �rst order in the deformation parameters are nontrivial solutions of the
consistency condition

(S0; Si) = 0 ; (III.8)

with Si local integrated polynomials of ghost number zero and dimension bounded by
four.

The solutions of (III.8) for free p-form gauge �elds have been studied in [9] and fall
into three categories: (i) those that do not deform the gauge symmetry; (ii) those that
deform the gauge transformations but not the gauge algebra; and (iii) those that deform
both the gauge transformations and the gauge algebra.

The �rst category contains the gauge-invariant functions (= functions of the curvature
components and their derivatives) as well as the Chern-Simons terms. The only candidates
allowed by Lorentz invariance and power-counting are the kinetic terms � F 2, H2 - which
are already present in the Lagrangian - and the Chern-Simons term "����Ba

��F
a
�� (the

Chern-Simons term "����Ha
���A

a
� di�ers from "����Ba

��F
a
�� by a total derivative and hence

is not independent from it). Consequently, there is only one independent new vertex in



{ 6 { CBPF-NF-041/97

the �rst category, which we denote by S2,

S2 = mab

Z
d4x

�
"����Ba

��F
b
��

�
: (III.9)

Here, mab is a mass matrix which may have zero eigenvalues, re
ecting the possibility
that some gauge bosons may remain massless.

The second category involves interactions of the Noether formAa
�j

�
a and Ba

��k
��
a , where

j�a are gauge-invariant conserved currents, while k��a are gauge-invariant conserved anti-
symmetric tensors (@�k

��
a = 0). There are only two types of non-trivial gauge-invariant

conserved antisymmetric tensors, which are F ��
a and �����H

a

�H
b

� [9]. Here, H
a
denotes

the one-form dual to Ha. The conserved tensors �����H
a

�H
b

�, which lead to the Freedman-
Townsend coupling [4], are excluded by power-counting renormalizability since they re-
quire coupling constants with dimensions of an inverse mass. This leaves us with Ba

��F
b��

only. Similary, even though there is an in�nite number of gauge invariant conserved cur-
rents ja�, Lorentz invariance and power-counting renormalizability exclude all couplings
of the form Aa

�j
�
a except tabAa

�"
����Hb

��� and tabA
a
�@�F

b��. But tabAa
�"

����Hb
��� is equiv-

alent to the above Chern-Simons term, while tabA
a
�@�F

b�� vanishes on-shell and can be
absorbed by rede�nitions. To summarize, there is accordingly only one novel coupling in
the second category, namely �abBa

��F
b��, with matrix � having the dimensions of a mass.

This coupling is of the Chapline-Manton type [10] and has the following BRST invariant
extension,

S3 = �ab

Z
d4x

�
1

2
Ba
��F

b�� +A�a��b� + c�a�b
�
: (III.10)

It is rather interesting to remark that the expression (III.10) allows, at least in the abelian
case, for a further nontopological mass mechanism. It is indeed immediate to check that
the following abelian action

Sab
� =

Z
d4x

�
�

1

4
(F�� � �B��)

2 +
1

12
H���H

���

�

=
Z
d4x

�
�

1

4
F��F

�� +
1

12
H���H

��� +
�

2
B��F�� �

�2

4
B��B

��

�
;

(III.11)

is left invariant by the transformations

�A� = @�"+ �"� ; �B�� = @�"� � @�"� : (III.12)

The new terms in (III.11) provide a nontopological mass for the two-form �eld B�� . The
action (III.11) was actually already considered in [11]. Note that the transformation of
the gauge connection gets modi�ed by an extra �-dependent term which enables one to
gauge it away. Recall also that a massive two-form in four dimensions describes massive
spin-one particles, just as a massive one-form.

Finally, the third category contains only the familiar Yang-Mills cubic interaction
vertex with dimensionless parameter g [9] (second reference),

S1 = g

Z
d4x fabc

�
�

1

2
F a
��A

b�Ac� +A�a
� A

b�cc +
1

2
c�acbcc

�
: (III.13)
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It should be stressed, in particular, that (III.13) cannot be accompanied by a deformation
of the type Aa

�B
b
��H

c���fabc. Such an interaction vertex is the minimal coupling to the
Yang-Mills �eld of a charged B-�eld transforming in the adjoint. It has the Noether
form Aa

�j
�
a where the current j�a = Bb

��H
c���fabc is, however, not gauge invariant under

the gauge transformations of the two-forms. For this reason, Aa
�B

b
��H

c���fabc is also not
gauge-invariant, even up to a total derivative, and does not de�ne an observable. Thus,
it does not lead to a consistent deformation. The two-forms Ba

�� are uncharged [12] and
can only couple to the connection A through Chern-Simons or Chapline-Manton terms
(to �rst order).

Having characterized the possible nontrivial consistent interaction terms that can be
added to �rst order in the deformation parameters (g;m; �), let us turn to the study
of the higher order consistency conditions stemming from the requirement of validity of
the deformed master equation to all orders. As we have already seen, the second order
consistency condition, �.e. the third equation of the system (II.10), can be solved only if
the antibrackets (Si; Sj), with i; j = 1; 2; 3, can be written as exact BRST cocycles. The
antibracket (S2; S2) is automatically vanishing, due to the fact that S2 is independent
from the anti�elds. In addition, the constraints which follow from (S1; S1) are the usual
ones which lead to the pure Yang-Mills vertices and are satis�ed by identifying the fabc 's
in eq.(III.13) with the structure constant of a Lie group. Concerning now the antibrackets
(S2; S3) and (S3; S3), they are easily seen to be BRST trivial

(S2; S3) = �
2

3
m�

Z
d4x "����Ha

����
a
� = s

�
m�

2

Z
d4x "����Ba

��B
a
��

�
;

(S3; S3) = �2�2
Z
d4x@�Ba

���
a� = s

�
�2

2

Z
d4xBa��Ba

��

�
;

(III.14)

so that they do not bring any obstruction. It remains therefore to analyse the terms
(S1; S3) and (S1; S2), given respectively by

(S1; S3) = �g�
Z
d4x fabc

�
F a
��A

b��c� � @�(Ab
�A

c
�)�

a� + (@�Ba
��)A

b�cc

�A�a
� c

c�b� �A�a
� A

b��c � c�acb�c
�

(S1; S2) = �
2

3
mg

Z
d4x fabc"����Ha

���A
b
�c

c :

(III.15)

It is not di�cult to convince oneself that the above expressions are not BRST trivial,
representing thus a real obstruction to the deformation of the master equation. Concerning
the �rst expression, we indeed observe that the anti�eld dependent terms do not contain
any space-time derivative. On the other hand, from eqs.(III.7) we see that the BRST
transformations of the anti�elds always introduce a space-time derivative, implying thus
that (S1; S3) cannot be cast in the form of a pure s-variation. Similarly, by means of a
simple counting of the space-time derivatives appearing in the second term of eq.(III.15)
as well as in the BRST transformations (III.7), we can easily verify that the only possible
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candidate whose BRST variation could reproduce the second antibracket (S1; S2) is given
by Z

d4x fabc"����Ba
��A

b
�A

c
� : (III.16)

However, from

s

Z
d4x fabc"����Ba

��A
b
�A

c
� = 2

Z
d4x fabc"����

�
@��

a
�A

b
�A

c
� +Ba

��@�c
bAc

�

�
: (III.17)

we see that the variation of (III.16) unavoidably contains �a� , so that (S1; S2) is a nontrivial
element of the BRST cohomology.

It follows then that the only way to consistently implement the master equation to
second order in the deformation parameters is to let the coe�cients of the nontrivial
antibrackets (III.15) vanish, �.e.

g� = 0 ;

gm = 0 :

(III.18)

This means that, as long as we insist in adding the Yang-Mills coupling to the free action,
then necessarily � = 0 and m = 0. Otherwise, we can keep the massive terms � and m

but the Yang-Mills interaction is irremediably lost, and we are left with the two massive
abelian models of eqs.(I.1) and (III.11) for a set of n noninteracting �elds. [Both mass
terms can in fact be consistently considered simultaneously because both (S2; S3) and
(S3; S3) are BRST-exact].

Therefore, it is not possible to generalize the massive action (I.1) to a nonabelian local,
power counting renormalizable, interacting theory while preserving the same �eld content
and the same set of local symmetries. This concludes the proof of the no-go theorem on
the introduction of a topological mass in four dimensions for a non-abelian group. This
obstruction is in sharp contrast with the three-dimensional Chern-Simons construction
that allows any gauge group with an invariant metric3.

IV Comments

As any no-go theorem, our result is no stronger than the assumptions underlying it. These
are two-fold. First, we have excluded non power-counting renormalizable couplings since
the goal is to construct an alternative to the Higgs mechanism with the same good quan-
tum properties. If one relaxes this condition { and this is suggested by the more modern
approach to renormalization advocated in [14] {, one can construct a Lagrangian that in-
corporates both the topological mass term and the Yang-Mills coupling. This Lagrangian
contains also the non power-counting renormalizable Freedman-Townsend interaction and
has been written down explicitly in [4] (see also [15]). It contains two independent coupling

3Our analysis provides another instance where a duality transformation (here between the two-form B

and the scalar �eld of the Higgs mechanism) that can be de�ned in the abelian case cannot be implemented
in the non-abelian extension [13].
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constants, one, m, with the dimensions of a mass and the other, �, with the dimensions
of an inverse mass. It reads

L =
1

4
"����Ba

���
a
�� �

1

2
�a��a

� �
1

2
F a
��F

a
�� (IV.1)

where �a� is an auxiliary �eld equal on-shell to the dual of Ha in the free limit. In (IV.1),
F a
�� is the standard non-abelian �eld strength

F a
�� = @�A

a
� � @�A

a
� + gfabcA

b
�A

c
�; g = m�; (IV.2)

while �a
�� is given by a similar expression with �a

�+mAa
� in place of Aa

� and � in place of
g,

�a
�� = @��

a
� � @��

a
� +m(@�A

a
� � @�A

a
�) + �fabc(�

b
� +mAb

�)(�
c
� +mAc

�): (IV.3)

The �rst order deformations are here the topological mass term m"����Ba
��(@�A

a
�� @�A

a
�)

and the Freedman-Townsend vertex �fabc"
����Ba

���
b
��

c
�. The Yang-Mills coupling emerges

at second order, the Yang-Mills coupling constant g being related to the topological mass
m and the Freedman-Townsend coupling constant � through g = m�. The Lagrangian
(IV.1) contains terms of up to fourth order in the coupling constants. Of course, one
could equivalently include the mass term in the starting free lagrangian. In that case,
the expansion in the coupling constant stops at second order (see [16] for a �rst order
formulation along these lines).

The second assumption underlying our analysis is that the interacting theory possesses
the same �eld content and the same number of independent gauge symmetries as the free
theory. This requirement appears to be necessary in order for perturbation theory about
the quadratic piece of the action to be carried out. Now, one may also give up this second
assumption. This has been done in [5], where a non-abelian generalization of the abelian
action (I.1) has been proposed, in which the abelian �eld strengths F are replaced by the
non-abelian ones, and the derivatives of B are replaced by covariant derivatives (the two-
form B transforming in the adjoint). This generalization is invariant under the standard
Yang-Mills gauge transformations, but not under (I.4) or any generalization thereof since
it corresponds to introducing a minimal coupling of the two-form B to the Yang-Mills con-
nection A, and this was excluded above. The generalization does not provide a \consistent
deformation" of the abelian theory because it has less gauge symmetries. This does not
mean, however, that it is physically inconsistent, but that the free theory cannot be used
straightforwardly as a starting point for the standard perturbative expansion (obscuring
in particular the meaning of power-counting perturbative renormalizability). Actually,
the Hamiltonian analysis performed along the conventional Dirac lines { or any other
equivalent method { is rather direct and seems to indicate that the theory is acceptable,
although there are di�culties related to the fact that some Poisson bracket matrices have
varying ranks in phase space.

One may reinstate (a non-abelian version of) the gauge symmetry (I.4) by adding an
extra �eld transforming appropriately [5]. But even after this is done, the theory does
not have the same number of gauge symmetries as the abelian limit, since in that limit,
the extra �eld disappears from the Lagrangian: the abelian theory with the additional
�eld has the additional gauge freedom of shifting independently the extra �eld. Our no-go
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theorem on the absence of deformations preserving all the gauge symmetries of the free
theory applies in fact to any equivalent formulation of the abelian starting point that can
be obtained by adding extra auxiliary or pure gauge �elds, as the cohomological theorems
of [17] (section 15) indicate.

A construction similar to the above mass generation mechanism has been proposed
recently in three dimensions by Jackiw and Pi [18]. What plays there the role of the
two-form Ba

�� is a vector �eld Ba
�. An analog of the above no-go theorem for the non-

abelian case has been demonstrated long ago in [19]. The authors of [18] analyse the
non-abelian theory with less gauge symmetries that one obtains by minimally coupling
the additional vector �eldBa

� to A
a
�. The resulting theory su�ers from the same di�culties

as the theory of [5] since a standard perturbation expansion about the free limit cannot be
carried out. Whether this theory, or the four-dimensional version of [5], can be quantized
in a tractable and meaningful way is therefore still an open question. This point deserves
further investigation in view of the attractive features of the model exhibited in [18].
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