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RESUMO

A quantizacido de sistemas classicos sujeitos a vincu-
los nao-holonomos é proposta e exemplos sao apresentados em de-
talhes. Mostra-se que existem classes de hamiltonianos que des-
crevem por imersao no espaco de fase o mesmo sistema nao-holono
mo. Mostra-se ainda que os vinculos nao-holonomos devem ser tra
tados quanticamente no sentido fraco em que sua restricao ao mo
vimento seja obedecida somente em media sobre o estado do siste

ma.

ABSTRACT

The quantization of classical non-holonomic systems 1is
proposed and examples are presented in detail. It is shown that
there exist classes of hamiltonians which describe by immersion
in their phase space the same non-holonomic system. It is further
shown that the constraints should be treated quantically in the
weak sense, i.e., their restriction to the motion is obeyed only

as an average over the state of the system.



1. INTRODUCTION

In this paper we will extend the method for quanti-
zation of classical systems to non-holonomic systems. The
quantization of classical systems proceeds straighforwardly 1if
the system under consideration is hamiltonian. The determination
of the corresponding quantum system is not unique but it can be
made precise by postulating a well defined procedure proposed by
Weyi[l] and generally accepted as the standard procedure for
quantization.

If the system is not manifestly hamiltonian one has to
define a procedure to put it into the hamiltonian formalism from
where its quantized version is obtained. This 1s the case of

[2]

Dirac's generalized dynamics where systems described by
singular lagrangians are transformed into hamiltonian systems
which take into account the constraints originated from the
singular nature of the lagrangian (primary constraints) and those
required for the consistency of the equations of motion (secondary
constraints). It sometimes happens that some of these constraints
are first-class constraints. In such case somewhat arbitrary
conditions are imposed upon the system (gauge conditions) in
order to produce a well defined hamiltonian system equivalent to
the original one; resulted from thé singular lagrangian. In |
both cases; it is the quantization of the resulting well defined
hamiltonian system that is assumed as the quantization of the
original system.

The only procedure known to us in the literature for

the quantization of non-holonomic systems was put forward by



Eden[é]; In the Appendix we will analyse Eden's results and we
will show that 1its quantization;is equivalent to adopt for the
hamiltonian of the non-holonomic system the same hamiltonian as
if the system was holonomic. This hamiltonian unfortunately
gives wrong equations of motion when the constraint is not
holonomic[i].

Let us consider the simplest non-holonomic system, a

particle of unit mass moving in a three dimensional euclidean

space subject to the constraint

xdy +dz =0

X, Y and'z'being the cartesian coordinates of the particle. This

system has the following equations of motion:

X = u
)‘7.=V
Z = -XV
u=20
\-r__"xu\z
= I"_Z
1+x

and we observe that its phase space is of odd dimension. The

only way to give to this system a hamiltonian formalism is by
imbedding it in a larger system. In what follows, we

will show among other results that there exists a hamiltonian
system in a six-dimensional phase space; in which the subsystem
characterized by aconstraint x = 0 (x = {X,H} = 0) is equivalent
to the non-holonomic system under consideration. It is this

hamiltonian extension together with the constraint that gives,



by correspondence, the quantization of the non-holonomic system.
In section 2 we will construct the hamiltonian formalism
for the above mentioned system and for the well-known system of

51

a disc pivoting and rolling on a horizontal plane In section
3 we quantize these systems and exhibit their eigenvalues and
eigenfunctions. In section 4, the propagator for the former
system 1is obtalined and the propagation of wavé packets is
exhibited in the semiclassical approximation, showing that the
guantum description gives back the classical laws of motion for
the non;holonomic system. Section 5 contains a discussion of our

results and a proposal of a general procedure for quantizing

non-holonomic systems.

2. EXAMPLES

Let us consider a particle of unit mass moving in a
three dimensional euclidean space, with coordinates (x,y,z),

subject to the constraint
x dy + dz = 0

This is a non-holonomic constraint as can be easily

verified and the equations of motion are

x =0 !
y o= - __ZXXy (2.1)
1+x

These equations can be integrated and we obtained



X = (Xlt + Bl
Yy = a5 log(x +\/14x2) + 62 (2.2)
z = -0, 1+x + 83

where Bl; B, and B; are constants of integration related to the
initial values of (x;y,z) while ag and a, are related to the
initial values of the velocity.

The essential point of our procedure for obtaining the
hamiltonian formalism for non-holonomic systems is to recognize
that the above equations for the trajectories can be obtained in
the Hamilton-Jacobi formalism by introducing a new constant g

and setting

X = oy + 0z = 0

s
-a—&-I = X - O,lt
(2.3)
gg— ='y-oc2 log(x +\/1%x: )
2
-g—-i— = .Z‘-OLS 1+x
3 ;

One immediately observes that the introduction of the

new constant o; was such as to guarahtee that

This shows that the function S exists and it is given by

S = X - % oclzt + Uy - %— oc,zz log(x+ V1+x™ ) + agZ - 0L32 1+X

We intgrpret S(x,y,z,al;az,as;t) as the solution of



Hamilton-Jacobi equation for the extended system we are looking
for. Under this hypothesis we define the canonical momenta by the

following equations:

2 o2

_8s _ . .22 173 x

Px T TN T T YT T T Vi
3S _

= —— = 2.

Py 5y = %2 (2.4)
23S

pz=§zza3

From the above eqs. we can obtain ap, 0y, Gz aS functions”
of E and T
We also have

az
1

Q
n

(2.5)

|

1
)

[o %)
-+

From eqs. (2.4) and (2.5) we finally obtain the hamilto-

nian for the system:

2

H=32 [p, 2, xpzz)] (2.6)

S S

2V1xZ Y
together with the constraint condition obtained from eqs. (2.3)
and (2.4).

E p, =0 (2.7)

Before we proceed, let us show how the hamiltonian given
by eq. (2.6) together with the constraint given by eq. (2.7)
describes the motion given by eqs. (2.1). We first observe that H
is independent of y and z and therefore bothlpy and p, are constants
of motion as well as the constraint eq. (2.7). The eqé. for the

velocities are given by:

*
- . - - . .
r is the position vector of the particle.



. 1 2
x = {x,H} = p, + —— (p + Xp_ ") = v2H'
vy, -
. Xp
y = {y,H} = —L (z.8)
V1+x2
. o XXPp
z = {z,H} = z

One observes from the above equations that x is a

constant of motion and that

X& + 2 = XX (p

V1+x2

by the constraint eq. (2.7). The integration of eqs. (2.8) 1is

y+pz) = 0

easily performed and leads to the solutions of d'Alembert's
equa&ions given by eqs. (2.2).

We will now consider another example, the well-known
system of a vertical disc pivoting and rolling on a horizontal
plane. We will assume the mass, the moments of inertia and the
radius of the disc are all equal to unity. Thus the kinetic

energy of the system is given by

T = % (iz + &2 + é2‘+ éz)

where 0 is the coordinate associated to rolling, ¢ to pivoting,
x and y to the point of contact of the disc with the horizontal
plane.

The system has the two following constraints

i
o

dx - d6 cosé
(2.9)

]
[aw]

dy - d6 sing

The eqs. of motion are



X = 6 cosd
y = 6 sing¢
6 =0
6 = 0

which can be easily integrated

6—0¢t=81

1
¢ - azt = 82
ay (2.10)
X - az sin¢ = 53
%
y+—d—£COS¢=B4

Let us now introduce two new parameters by the relations

X1=

X2 = G0, - a; = 0

(2.11)

Following the same steps as in the preceding example

we set:
%g; = 0 - alt
%2; = ¢ - azt
%%g = X - Oz sing¢
%gz =Y + 0y cos¢,

The principal Hamilton function S(x,y,6,¢,a1,a2,a3,u4,t)

can be found from the above equations and we have

1

2
7 (o

S = ale + a2¢ + 0gX 4 oy - % (a12+a22)t - sin¢—a42 cosd),

The hamiltonian is found by setting



_ 88 _
Py =3y =% >
and
23S 1 2
H=-5?=7(0L1*0(.2)
Thus we obtain
2 2

P P
H = % [pe2 + (py + —%— cos¢ + —%— Sin¢)2], (2.12)

while the constraint eqs. (2.9) take the form

X]. px"p=0

Y
D 2 b 2 (2.13)
(p¢ + § cos¢ + —%— sin¢) py,-pg = O~

X

2

It is easy to show that the canonical equations of motion,
as derived from H given by eq. (2.12), lead to the solutions given
by eqs. (2.10) when the constraint eqs. (2.11) are imposed upon.

It can also be shown that X1 and X2 are constants of motion:

{xq,H} = {X;,H} = 0.

One can extend these two systems by adding potential
functions to the hamiltonians already found. In doing so, one has
to be careful not to destroy the constancy of the constraint
equations.

To illustrate this procedure, in the first example one
has to introduce a potential function V(x,y,z) such as to satisfy

the following equation



{py+p2’V} =0

This eq. can easily be solved and we observe that in
this case V must have the general form V = V(x,y-z).
In the second example it is not so easy to find the

general form of V(x,y,6,¢) but in any case we must impose

{xl,v} = {X,,V} =0

in order to preserve the constancy of the constraints.

3. THE QUANTIZATION

Once the hamiltonian is found the quantization of the
system may proceed by the standard procedure. We substitute, in
coordinate representation, the momenta by their corresponding

*
derivative operators

Py * -1 9%
-1
Py > -1 9y

pz » -1 3; .

Thus for the first example of the preceding section we

have+
. 2 2
= 1 .3 1 0 0 2
H = - =% [——— ( + X )] (3'1)
2 '9 2 273
X V1exZ 9y 32

One observes that H is the square of a hermitian operator
and 1s therefore itself hermitian.

The Schrddinger equation takes the form

*
We set h = 1.

+ . . . .
The symbol ~ over the classical variable indicates the corresponding quantum
operator.
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. 2 2
1 2 1 9 P 2 . 9
- 5 [xz - ( + X )17 ¥ =1 = V. (3.2)
2 "3 /”——2 ay2 aZ2 ot

The eigenfunctions of H are easily found and we obtained

3/2

w¥ﬁ’pzﬂﬁ(X»“Z’t) = (2m) exp[1(p1x+p2y+p32) -
- i 1og(x+\/ ) -3 p 1+x” - 5 P t]
2 %3 2 1
for the solution of the Schr8dinger equation with eigenvalues
given by
1 2
E=7p1b

We have normalized the eigenfunctions in the continuum using the

condition

3

[ vieey, 2,00 00y, 2, axdydz = 88 G-0).

p

We must observe that among the set of eigenfunctions we
have those that obey as well as those that do not obey the cons-
traint equation (ﬁy+ﬁz = 0). If we had restricted the eigenfunction:
only to those that obey the constraint equation we would not have
ob;ained completeness and in particular it would be impossible to
set as- initial condition the localization of the particle in the
neighbourhood of a given point of the configuration space.

As we will show in next section, in order to get back
the classical non-holonomic behaviour of the particle one needs to
impose the constraint equation only as an average over the initial
state of the particle.

Let us now consider the second example. In this case
the quantization can also proceed in a straightforward manner.

The hamiltonian opérator
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2 2

[3S)

~ 1,9 3 i .3 3 . 2
H=-={ + [— - 5 ( cos¢ + sing)]”™ 1,
2 %92 T30 T 7 2 ay?

being the sum of the squares of two hermitian operators is there-

fore hermitian.

The Schrbdinger equation takes the form

2 . 2 2
1,09 P i ,9 ) . 2 . 9
- =1 + [ - 5 ( cosd + sing)]“t v = 1 ==V
Y LI L ot

and the eigenfunctions of H can as well be easily obtained. We got

_2 . )
wpl’pz’m’n(x,y,e,¢) = (27m) exp[lplx + ip,y +

+ 1imb6 + 1in¢ + % (plzsin¢-p22cos¢)]

o 1 2 2
with eigenvalues Em,n =5 (m“+n"7).

We have imposed the normalization

J wgl,Pz,m,n wpi,pé,m',n' dxdyd8d¢ = d(pl_pi)é(pz—pé)émm'énn"

It is important to observe that the configuration space
of this system is the cartesian product of a bidimensional euclidear
space described by the coordinates x and y times the bidimensional
torus described by the angular coordinates 6 and ¢ . Therefore, the
wave function must be cyclic in the coordinates 6 and ¢ what
imposes that the angular momentum for rolling and pivoting must
be integer numbers (m and n respectively). The momenta associated
to x and y coordinates of the contact point take the continuous
values Pq and P, respectively. Integration over © and ¢ are res-

tricted to the interval [-m,7].
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4. THE MOTION OF WAVE PACKETS

We will now discuss in some detail how to obtain back
the motion of the classical constrained particle from the quantum
description. We will exhibit the procedure making use of the
first example.

Let us obtain the propagator G(?,?',t) for the particle.

G must satisfy the equation
3 | O . 3 > >
(5f + 1 H)G = 6(t)87(r-1r") (4.1)

with the boundary condition of being zero for t < 0. Making use
of the eigenfunctions of ﬁ, we formally have
-iE t

> R >k n
G(r,r',t) = E Y (DY (7)) e , t > 0 (4.2)

Applying this formal solution to the system described by

the hamiltonian given by eq. (3.1) we have:

e 3 > > i 3
G(r,r',t) = d explip.(r-r') - 1 pZt _ 1 (pZB + sz)]
2 1 2 2 3

(27) (4.3)
where
B = log(x ¥\/1+x ) - log(x' +V1+x'" ) (4.4)
and
y =V 1+ x - 1+ x!' . (4.5)

The integrand in eq. (4.3) is gaussian and thus the

integration can be performed analytically. We have:

. ,2, 12» '2
-1/2 Ipx=xD® 0 Gr=y7 (2227 (46

G = [(271)> tBy] exp{3 T B Y

One observes that
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. > > 3 > >
lim G(r,r',t) = 6 (r-1r')
t>07
The quantum description for the initial conditions
relative to the motion of the constrained particle is given by
the wave function

2

3% exp { - $lx-x) P+ (y-y)? +

WO(X,y,z} =

+ (z-zo)z] + i pgx + ipg(y+z) } (4.7)

where we 1mposed wo(x,y,z) to satisfy the constraint equation in

the mean, 1.e.:

<wolpy+pzlwo> = 0 (4.8)

We therefore observe that ¥y depends only on five initial para-
meters: the initial mean position of the particle (xo,yo,zo) and
two initialrmean momenta pf) and p;) corresponding to the
contrained initial velocity = components of the particle.

It is important to stress that one should not impose

the constraint in the strong sense, i.e.:

(py+pz)[w0> = 0

because, if we had imposed the above equation, ¥y would only be

a function of x and (y-z) and then it would be impossible to set
as initial condition the localization of the particle in a certain
neighbourhood of a given point (xo,yo,zo). The consequence from
the fact that the constraint equation is imposed only as an

average over the initial state, is that the value of x = py+pZ

fluctuates along the motion of the packet. We actually have

1.2
Yolx"¥g> = @ > 0
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The evolution of the wave packet 1s given by:

VT, t) = J G(F,Fr,thy, (F1) a’r

The integration in y' and z' can be performed analyti-
cally. The integration in x' is done approximately making use of
the stationary phase method. This consists essentially in
substituting x' by X in the expressions for B and y given by

eqs. (4.4) and (4.5). Thus we obtained after some tedious calcul-

‘ations:

b, t) = (93 [Qsiat) Qricsy) Qriayy)1 1% expo
where
Bo(x) = log (x +V1+x") - log(x0 +\/1+x02 )

YO(X) V&+x l-& V1+x02

and
i 0 2
) 2 2 [ax, - = (x-p, t)]
2 2 2 0 t 1
b= X (5— + L 4 E—) -2 (Xn"+Yn 424 ) + : o+

. i 0, 1.2 i 0, 472
Loy, - gg(y-pz Bp)l [oz, - ;6(z—p2 Yool
+ +

2(a - = 2(a - )
Bo Yo

From this result, we finally arrive at the probability

of finding the particle at T after a time interval t:

P(F,t) = v(F, )0 (F,t)

2.2

5/2 2 2)_1/2(1+u 80)_1/2(1+QZW§)—1/2

(%) (1+a°t

exp {_ x-x ()15 [y-y(®)1%  [z-2(0)1° }
208x ()15 20ay(D1° 2[az(0)1°
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where

0
)(0+p1 t

Yo * p;)[log(x+ Viiex“ ) - 1og(x0+\/1+x0 )]

1
2(t) = z, - p, (V1ex? ' - Viex/ D

x(t)

y(t)

are the solutions for the classical trajectory of the particle
subject to the constraint xdy + dz = 0, with initial position

e s . 0 0.0 A/ 2! 0 0 AN L2
(xo,yo,zo) and initial velocity (pl Py Py //1+x0 »~XgP1 Py / l+ﬁ))'

The uncertainties in the position of the particle are

given by
[ax()1% = & + &t
[y (1% = 2+ & 18, x(t))17
[a2(0)1% = 5= + § [yg(x ()17

They have the usual interpretation. For example,
[Ay(t)] 1is composed of two terms: the first (1/2a) is the initial
uncertainty squared and V/gjeo(t) is the uncertainty in the y co-
ordinate of the particle due to the initial uncertainty vo/Z ' in

the y-component of the momentum. -

5. CONCLUSIONS

First we would 1like to point out that, though the
examples considered are simple cases of non-holonomy, the procedure
used is susceptible of generalizations.

Let us consider a particle of unit mass moving in a

three dimensional euclidean space subject to the constraint
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u(x,y)dy + dz = 0 (5.1)

that generalizes the constraint of the first example of section 2.

We will assume that

what guarantees that the constraint is non-holonomic. The first

integrals of motion are

X = 0(,1
a
y = —° (5.2)
1+u
Z = - uy

We have”

dy V 1+u - o, dx = 0 (5.3)

whose solution has the following form
W(X,Y,Oﬂz) = 82 . (5.4)
Solving the equation above for y, we have
y = £(x,0,,8,) . (5.5)

Using eqgs. (5.3) and (5.5) in eq. (5.2), we obtain:

X a, ulx,f(x,0,,8,))

=83

Visu®(x,£(x,0,,8,))

Calling

*

h defi .
we have redefined azlal as a,
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X o, u(x,f(x,a,,8,))

g(x,OLz,Bz) = * dX
7 I
Vﬁ+u (x,f(x,0,,85))

and using eqs. (5.4) we finally arrive at

Z+g(X,@2,¢(X,Y,d2)) = 83
We set

and we obtain

3S

BQI = Bl = X - ult

28

ad; =B, = w(x,y,az)

23S

36; = 63 = Z + g(x,as,w(st:ag))

From the equations above one finds S(x,y,z,al,az,as,t) and thus

T - 35 . - 35
Px = 3x ’ py -9y P, = 3z

and 35

from where one proceeds in a straightforward manner for the
determination of H and the constraint X = Gy-Og = 0 in terms of
T and 5 (*).

We think that the generalization of the procedure can
be made in the following way. Let us consider a particle moving
in a n-dimensional configuration space subject tom (m < n-1)
non-holonémic constraints. The equation for £he trajectory can
be written as

i i .
q- = q (t,al,...,an_m, 81,...,Bn) i=1,...,n

(*)

One should observe that among the possible constraints of the form (5.1)
there are non-liouvillian constraints as defined in [6].
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where ai's and Si's are 1nitial constants of motion respectively
related to the initial velocity and position of the particle.

We may rewrite the equations above as:

I})i(cxl,...,otn_m,q,t) = Bi

The central issue in the procedure is to assume the
existence of Hamilton's principal function from which the relations
above are obtained. Thus, we introduce m new parameters {a, . ;;

i=1,...,m} and m constraint equations of the form
Xi(al,...,an) =0 i=1,...,m

We claim that by a judicious choice of the new m para-

meters and functions Xi's , we can set

35 _— i=1,...,n

Bai {x}=0 1

From the equations above we can find S and from it the

momenta by:

We further have

ai = ui(q’p’t)

The hamiltonian is obtained by

wn

3

H= - 5

|

(ad

where we substitute a;'s by their expression in terms of p and q.

The constraint equation are similarly obtained as

X;(a (p,q)) = 0
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and we observe that
{Xi,H} = 0 i = 1,...,]11

because Xifs are functions only of the ai's.

We have only proven existence of S for the class of
systems exhibited in this paper. We have not been able so far to
prove this procedure for a general non-holonomic system.

Suppose that a hamiltonian H(q,p) together with the
constraints X.,(q,p), i =1,...,m are found. The system can be
generalized to include forces described by potential functions

V(q) that obey the equations

{Xi,V} = 0 s

without going through the procedure of actually solving for the
motion. Besides we observe that H is not unique. Any function

h(p,q) which satisfies the condition

H{xy=0 59" | {x} =0
can be added to the hamiltonian without changing the dynamics
of the non-holonomic system. We have not investigated whether
this arbitrariness in fixing H reflects in a substantial way on
the quantization of the non-holonomic system.

Let us now obéerve that; for a given configuration
space, the set of holonomic constraints is closed[i] what implies
the impossibility of reaching the dynamics of non-holonomic sys-
tems by continuation of the holonomic behaviour. The situation
is reversed if we start from the non-holonomic behaviour. In this

case every holonomic system can be reached continuously from the

non-holonomic set. For example, if we take the family of constraints
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xdy + edz = 0

labelled by the parameter €, we have for € = 1 the first example

of section 2 and for € = 0 the holonomic constraint
dy=0

Now, the hamiltonian given by eqs. (2.6) does not go continuous-
ly to the known hamiltonian for the holonomic case above, even
though the laws of motion are correctly obtained. We are not sure
whether this agreement is necessary for the correct quantization
of the non-holonomic system.

Finally we would 1like to point out that the relations
between p and d are not linear. This implies that the lagrangian
may have an unusual dependence on the velocity of the particle.

For the first example of section 2, we found

: . V 2 .
L(?,?) = % xz + % 1+§ (xy2 + ZZ)
XX ‘
while the constraint takes its usual form
X}.7 + i = 0 . (5.6)

One may verify that Euler's equations obtained from
the lagrangian above gives back d'Alembert's eqs. (2.1) when one
imposes eq. (5.6) which is itself a constant of motion.

In the Appendix we have commented on Eden's method
for quantization of non-holonomic systems as presented in
reference [3]. We will now draw the main disagreements with what

we have repported here. Eden bases his dynamics on the free
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hamiltonian while we actually found specific hamiltonians for

each constrained system, by intermediation of Hamilton's princi-
pal function. The hamiltonians we found are substancially

different from the free hamiltonians. It is an assumption 1n our
approach that Hamilton's principal function is a regular function
what is justified by the results we obtained. In reference [3],

due to the use of the free hamiltonian, Hamilton's principal
function comes out to be an indefinite function in the sense that
mixed second derivatives do not commute. The equivalent constraint
equations (Xi = 0) in our hamiltonian formalism are constants of
motion. In reference [3] this is not the case resulting to be the
main reason for the indefiniteness of Hamilton's principal function.
For.us, at the quantum level, the constraint equations have to
imposed only in the weak sense, i.e., as an average value over the
initial state of the system. Due to the constancy of the constraint
equations along the motion; it stays valid in average at every
subsequent instant of time. The opposite happens 1n Eden's
approach: hils constraint equations are imposed in the strong

sense, i.e.; the initial state has to be an eigenstate of the
constraint; what requires the development of the system be regarded
as a continuous adjustment of its apparent initial conditions.

From the fact that we take the constraints only in the
weak sense; we are allowed to imagine;making use of the path in-
tegral formalism, the classical non-holonomic trajectory resulting
from the coherent interference of its neighbouring trajectories
that violates the constraint law but having carefully constructed
phases necessary to build up the classical motion.

We may therefore conclude in a loose sense that non-
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-holonomy disappears at the quantum level and only comes about

when one considers semi-classical limits.
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APPENDIX

Eden's paper[é] is the only one known to us to have
dealt with the problem of quantization of non-holonomic systems.
As his procedure to quantize non-holonomic systems is formal and
his conclusions are qualitative in nature, we will illustrate
his procedure by discussing one example. In doing so, we are
aware that some of the subtle points discussed by Eden may have been
overlooked by us.

To fix our ideas let us consider a particle of unit mass

moving in a three dimensional space subject to the constraint
a(r).dt = 0

The hamiltonian H for the unconstrained motion is called

by Eden the locally free hamiltonian and we have

1 =2
H=7p
with s N
T =P
and N
p=20

for the equations of the free motion.

The constrained variables are introduced as

> % >
r =71
503 o
where Q is the matrix whose elements are:
Qj = 855 - a. (T) aj(?) (A.2)

with
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The constrained variables (r*,p*) do not form canonical

pairs and their equations of motion are( )
oo FH) = 34 de
da .- da . >
3 >, > * % > J o da *
B* = {B*,H} = - 4 o3& PIPL -2 (3 gxx PyA * gxx PR

with § = 3.5.
If we set = 0 1in the above equations then T* and B*
obey the dynamics of the non-holonomic system as given by

d'Alembert's principle

oo B
(A.3)
R 0a.
e _ - Jj * %
. pe = 4 IXy PPy
and
a.t* =0

Calculating Q we obtain

da - da .
°_ _ * % . *
Q@ = {Q,H} = 5?% P3Py + 9 5;% P;ag

from which we see that for © to be a constant of motion one must have

i.e, the strength of the reaction force must be zero. This is

a rather trivial case and in general the reaction force does not

vanish. Eden suggests that at every instant of time we have to

reset © =0 in order that the system continue to obey eqs. (A.3).
The quantization is done by using a coordinate repre-

sentation and writing the Schr¥dinger equation as

NP >
{Xi}’ 1 =1,2,3 are the components of the vector r.
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2
. 3 _Z 19 >
X .
i
supplemented by the equation( )
> P2 ->
a; (1) 3% <r|¢ = 0 (A.5)

in analogy to the classical procedure. From eqs. (A.4) and (A.5)

one may conclude that in general we must have

82 <¥l¢ 4 __EE__ <¥l¢
Bxinj ijaxi
what shows that <?]¢ is an indefinite function of ?, i.e., the
difference of <r|¢ taken at two points depends on the path
connecting these two points.

In order to avoid the indefiniteness in the probability

itself, Eden assumes that

<Flo = B Ty (A.6)
where <%‘¢ is a regular function of T and B is a hermitian operator
found by Eden to be given by
= -2, (MHGEED . . (A.7)
From eqgs. (A.6) and (A.7) we obtain

P 3-3E.D1<F|v (A.8)

> >
p<T|¢
Thus we have

iB + > -
e B8

Q<T| ¢ a.[p-a@.p)i<rly = 0

what shows that eq. (A.5) is identically satisfied. We obtain the
equation for <?|w from eqs. (A.4) and (A.8):

(*)

Symmetrization to make dynamical variables hermitian will not be shown
explicitly.
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d 3 | >
; (Qij 5}‘3.‘)“”’ . (A.9)

N =

l%<;lw= -

This equation shows that the particle described by
<?[¢ has the same classical motion as that described by the

classical hamiltonian

which does not give eqs. (A.3) that are the correct equations of

[41

motion
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