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Abstract

Considering a class of (2,0)-super Yang-Mills multiplets that accommodate a pair of

independent gauge potentials in connection with a single symmetry group, we present here

their coupling to ordinary matter and to non-linear �-models in (2,0)-superspace. The

dynamics and the coupling of the gauge potentials are discussed and the interesting fea-

ture that comes out is a sort of \chirality" for one of the gauge potentials once light-cone

coordinates are chosen.

Key-words: Supersymmetry; Yang-Mills; Sigma-Models.

1negrao@cat.cbpf.br

2guida@if.ufrj.br and guida@cat.cbpf.br
3, Address after May 1st: Universidade Estadual de Feira de Santana { UFES, Feira de Santana { BA

{Brazil.

4apennaf@cat.cbpf.br



{ 1 { CBPF-NF-040/99

The raise of interest on the investigation of geometrical aspects and quantum behaviour

of two-dimensional systems, such as Yang-Mills theories and non-linear �-models, espe-

cially if endowed with supersymmetry, has been broadly renewed in connection with the

analysis of superstring background con�gurations [1, 2] and the study of conformal �eld

theories and integrable models.

As for supersymmetries de�ned in two space-time dimensions, they may be generated

by p left-handed and q right-handed independent Majorana charges: these are the so-

called (p; q) supersymmetries [1, 3] and are of fundamental importance in the formulation

of the heterotic superstrings [4].

Motivated by the understanding of a number of features related to the dynamics of

world-sheet gauge �elds [5, 6, 7, 8, 9, 10] and the possibility of �nding new examples of

conformal �eld theories, was considered the superspace formulation of a (2; 0) Yang-Mills

model [11, 12] enlarged by the introduction of an extra gauge potential transforming under

the same simple gauge group as the ordinary Yang-Mills �eld of the theory.

In the works of refs.[11, 12] one has discussed the role of the further gauge poten-

tial on the basis of discussing constraints on �eld-strength super�elds in the algebra of

gauge-covariant derivatives in (2; 0)-superspace. The minimal coupling of this sort of less-

constrained Yang-Mills model to matter super�elds has been contemplated, and it has

been ascertained that the additional gauge potential corresponds to non-interacting de-

grees of freedom in the Abelian case. For non-Abelian symmetries, the extra Yang-Mills

�eld still decouples from matter, though it presents self-interactions with the gauge sector

[11].

It is therefore our purpose in this letter to �nd out a possible dynamical role for the

aditional gauge potential discussed in refs.[11, 12], by means of its coupling to matter

super�elds that describe the coordinates of the K�ahler manifold adopted as the target

space of a (2; 0) non-linear �-model [13]. To pursue such an investigation, we shall gauge

the isometry group of the �-model under consideration while working in (2; 0)-superspace;

then, all we are left with is the task of coupling the (2; 0) Yang-Mills extended supermul-

tiplets of ref.[11] to the super�elds that de�ne the (2; 0) �-model that is gauged.
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The coordinates we choose to parametrise the (2; 0)-superspace are given by

zA � (x++; x��; �; ��); (1)

where x++, x�� denote the usual light-cone coordinates, whereas �, �� stand for complex

right-handed Weyl spinors. The supersymmetry covariant derivatives are taken as:

D+ � @� + i��@++ (2)

and

�D+ � @�� + i�@++; (3)

where @++ (or @��) represents the derivative with respect to the space-time coordinate

x++ (or x��). They ful�ll the algebra:

D2
+ = �D2

+ = 0 fD+; �D+g = 2i@++; (4)

with this de�nition for D and �D, one can check that:

ei�
��@+D+e

�i���@+ = @� (5)

e�i�
��@+ �D+e

i���@+ = @�� (6)

The fundamental matter super�elds we shall deal with are \the chiral" scalar and

left-handed spinor super�eld, whose respective component-�eld expressions are given by:

�(x; �; ��) = ei�
��@++(�+ ��)

	(x; �; ��) = ei�
��@++( + ��) (7)

where � and � are scalars, whereas � and  respectively right and left-handed Weyl

spinors.

This sort of chirality constraints yields the following component-�eld expansions for

�i and 	i:

�i(x; �; ��) = �i(x) + ��i(x) + i���@++�
i(x);

	i(x; �; ��) =  i(x) + ��i(x) + i���@++ 
i(x): (8)
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The most general superspace action involving � and 	 with interactions governed by

dimensionless coupling parameters �1 and �2, reads

S =

Z
d2xd�d��[i(��@���� �@�� ��) + �		+

+ m(�	 + ��	) +

+ �1P (�; ��)(��@��� ��@�� ��) +

+ �2Q(�; ��)�		]; (9)

where m is a mass parameter, and P and Q denotes real polynomials in � and ��.

We now assume that � and 	 transform under an arbitrary compact and simple gauge

group, G, according to

�0 = R(�)�; 	0 = S(�)	 (10)

where R and S are matrices that respectively represent a gauge group element in the

representation under which � and 	 transform. Taking into account the constraint on �

and 	, and bearing in mind the exponencial representation of R and S, we �nd that the

gauge paramenter super�elds � satisfy the same sort of constraint. It can therefore be

expanded as follows:

�(x; �; ��) = ei�
��@++(�+ ��); (11)

where � is a scalar and � is a right-handed spinor.

The kinetic part of the action (9) can be made invariant under the local transforma-

tions (10) by minimally coupling gauge potential super�elds, ���(x; �; ��) and V (x; �; ��)

according to

Sinv =

Z
d2xd�d��fi[��ehV (r���)� �(r���)e

hV�] + �	ehV	g: (12)

The Yang-Mills supermultiplets are introduced by means of the gauge covariant deriva-

tives which, according to the discussion of ref. [11], are de�ned as below:

r+ � D+ + �+; �r+ � �D+; (13)

r++ � @++ + ig�++ and r�� � @�� � ig���; (14)
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where the gauge superconnections �+, �++ and ��� are all Lie-algebra-valued. The gauge

coupling g and h could in principle be taken di�erent. �+ and �++ can be both expressed

in terms of a real scalar super�eld, V (x; �; ��), according to:

�+ = e�gV (D+e
gV ) (15)

and

�++ = �
i

2
�D+[e

�gV (D+e
gV )]: (16)

Therefore, the gauging of the �-model isometry group shall be achieved by minimally

coupling the action of the (2; 0)-supersymmetric �-model to the gauge super�elds V and

���, as we shall see in the sequel.

To stablish contact with a component-�eld formulation and to actually identify the

presence of an aditional gauge potential, we write down the �-expansions for V and ���:

V (x; �; ��) = C + �� � ���� + ���v++ (17)

and

���(x; �; ��) =
1

2
(A�� + iB��) + i�(�+ i�) + i��(�+ i!) +

1

2
���(M + iN):

(18)

A��, B�� and v++ are the light-cone components of the gauge potential �elds; �; �; �

and ! are left-handed Majorana spinors; M;N and C are real scalars and � is a complex

right-handed spinor.

The gauge transformations of the component �elds above read

�C =
2

h
=m�

�� = �
i

h
�

�v++ =
2

h
@++<e�

�A�� =
2

g
@��<e�

�B�� =
2

g
@��=m�
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�� = �
1

g
@��<e�

�� =
1

g
@��=m�;

�M = �
2

g
@��@++=m�;

�N =
2

g
@��@++<e�;

�� = 0;

�! = 0 (19)

and they suggest that we can take h = g, so the component v++ should be identi�ed as

the light-cone partner of A��,

v++ � A++; (20)

and we end up with two component-�eld gauge potentials: A� � (A0; Ai) and B��(x).

At this point, we should set a non-trivial remark: the ���-component of ��� should be

identi�ed as bellow:

M + iN = i@++(A�� + iB��); (21)

so as to ensure that F�� � @�A� � @�A� appears as a component accomodated in the

�eld-strength super�eld de�ned by:

[r+;r��] � X = �igD+��� � @���+: (22)

This does not break supersymmetry, for � and ! are non-dynamical degrees of freedom

and drop out from the �eld-strength super�eld X. In practice, after the identi�cation

given in equation (21), ��� carries two bosonic and two fermionic degrees of freedom.

Using the �eld-strength de�ned in (22), we can build up the gauge invariant kinetic

Lagrangian:

Skin = �
1

8g2

Z
d2xd�d�� �XX: (23)

This action leads to the component Lagrangian as below:

Lkin = Lkin(�; �; �) + Lkin(A) + Lkin(B��; C) (24)
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where

Lkin(�; �; �) =
i

8
(��� i�� � @�� ��)$ @++(�+ i� � @���); (25)

where A$ @B = (@A)B �A(@B).

Lkin(A) =
1

2
A�(2��� � @�@�)A

� =
1

2
A�R��A

�; (26)

and

Lkin(B��; C) =
1

8
(@++B�� � @++@��C)

2 =
1

8
(B�� C)K(B�� C)t: (27)

Notice that, as already mentioned above, � and ! are not present in the kinetic Lagrangian

(25).

We can see that R�� and K are non-invertible matrices, so it is necessary to write

down the gauge �xing Lagrangian which is given by:

Sgf = k

Z
d2xd�d�� �GG

= �
1

2�
(@�A

�)2 �
i

4�
(��� i�� � @�� ��)@++(�+ i� � @���) +

�
1

8�
(@++B�� + @��@++C) (28)

where G = D+@��V � iD+���. Using the gauge �xing, eq.(28), together with equations

(26) and (27), we can write down the propagators for A, B�� and C:

hAAi = �
2i

2

(��� + �!�� );

hBBi = �
8i

2
2
(� � 1)@2

��
;

hBCi = �hCBi =
8i

2
2
(�+ 1)@��;

hCCi =
8i

2
2
(� � 1) (29)

Expressing the action of equation 12 in terms of component-�elds, and adopting the

Wess-Zumino gauge, the Lagrangian reads as bellow:

Lcomp = 2�2�� � igA��[�@++�
� � c:c] + igA++[�@���

� � c:c] +

+ g���[@++A�� + gA++A��] + 2i��@��� � gA��
���+

+ ig[��(�+ ��+ i! � i��)�� c:c] (30)
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one immediately checks that the extra gauge �eld B�� does not decouple from the matter

vector. Our point of view of leaving the superconnection ��� as a complex super�eld

naturally introduced an extra gauge potential, B�� in addition to the usual gauge �eld

A�. B�� behaves as second gauge �eld. The fact that its massless pole is of order two

may harm the unitarity. However, the mixing with the C-component of V , which is a

compensating �eld, indicates us that we should couple them to external currents and

analyse the imaginary part of the current-current amplitude at the pole. In so doing, this

imaginary part turns out to be positive-de�nite, and so no ghosts are present. This insures

us to state that B�� behaves as a physical gauge �eld. It has dynamics and couples to

matter. The only peculiarity regards the presence of a single component in the light-cone

coordinates. The B-�eld plays rather the role of a \chiral gauge potential". Despite the

presence of the pair of gauge �elds, a gauge-invariant mass term cannot be introduced

since B does not present the B++-component, contrary to what happens with A�. Let

us now turn to the coupling of the two gauge potentials, A� and B��, to the non-linear

�-model.

It is our main purpose henceforth to carry out the coupling of a (2; 0) �-model to the

relaxed gauge super�elds of the ref. [11], and show that the extra degrees of freedom do

not decouple now from the matter �elds (that is the target space coordinates). The extra

gauge potential obtained upon relaxing constraints can therefore acquire a dynamical

signi�cance by means of the coupling between the �-model and the Yang-Mills �elds

of ref.[11]. Moreover, this system might provide another example of a gauge invariant

conformal �eld theory.

The (2; 0)-supersymmetric �-model action written in (2; 0)-superspace reads [13]:

S = �
i

2

Z
d2xd�d��

�
Ki(�; ��)@���

i � c:c:

�
; (31)

where the target space vector Ki(�; ��) can be expressed as the gradient of a real scalar

(K�ahler) potential, K(�; ��), whenever the Wess-Zumino term is absent (i.e., torsion-free

case) [1]:

Ki(�; ��) = @iK(�; ��) �
@

@�i
K(�; ��): (32)

We shall draw our attention to K�ahlerian target manifolds of the coset type, G=H.
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The generators of the isometry group, G, are denoted by Q�(� = 1; :::; dimG), whereas

the isotropy group, H, has its generators denoted by Q��(�� = 1; :::; dimH). The transfor-

mations of the isotropy group are linearly realised on the super�elds � and ��, and act as

matrix multiplication, just like for 
at target manifolds. The isometry transformations

instead are non-linear, and their in�nitesimal action on the points of G=H can be written

as:

��i = ��ki�(�) (33)

and

���i = ���k�i(�); (34)

where k�i and �k�i are respectively holomorphic and anti-holomorphic Killing vectors of

the target manifold. The �nite versions of the isometry transformations above read:

�0i = exp(L�:k)�
i (35)

and

�0i = exp(L�:�k)��
i (36)

with

L�:k�
i �

�
��ki�

@

@�j
;�i

�
= ��i: (37)

Though the K�ahler scalar potential can always be taken H-invariant, isometry trans-

formations induce on K a variation given by:

�K = ��[(@iK)k�i + (�@iK)�k�i] = ��[��(�) + ���(��)]; (38)

where the holomorphic and anti-holomorphic functions �� and ��� can be determined up

to a purely imaginary quantity as below:

(@iK)ki� � �� + iM�(�; ��) (39)

and

(�@iK)�k�i � �� � iM�(�; ��): (40)
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The real functionsM�, along with the holomorphic and anti-holomorphic functions ��

and ���, play a crucial role in discussing the gauging of the isometry group of the target

manifold [14, 15]. Therefore, by virtue of the transformation (38) and the constraints

imposed on � and ��, it can be readily checked that the superspace action (31) is invariant

under global isometry transformations.

Proceeding further with the study of the isometries, a relevant issue in the framework

of (2; 0)-supersymmetric �-models is the gauging of the isometry group G of the K�ahlerian

target manifold. This in turn means that one should contemplate the minimal coupling

of the (2; 0)-�-model to the Yang-Mills supermultiplets of (2; 0)-supersymmetry [16]. An

eventual motivation for pursuing such an analysis is related to the 2-dimensional conformal

�eld theories. It is known that 2-dimensional �-models de�ne conformal �eld theories

provided that suitable constraints are imposed upon the target space geometry [1, 2].

Now, the coupling of these models to the Yang-Mills sector might hopefully yield new

conformal �eld theories of interest.

The study of (2; 0)-supersymmetric Yang-Mills theories has been carried out in ref.[16]

and the gauging of �-model isometries in (2; 0)-superspace has been considered in ref.[17].

On the other hand an alternative less constrained version of (2; 0) gauge multiplets has

been proposed and discussed in refs.[11, 12]. It has been shown that the elimination of

some constraints on the gauge superconnections and on �eld-strength super�elds leads to

the appearence of an extra gauge potential that shares a common gauge �eld. Neverthe-

less, this extra potential is shown to decouple from the (2; 0)-matter super�elds whenever

they are minimally coupled to the Yang-Mills sector.

To write down the local version of the isometry transformations (33) and (34), we have

to replace the global parameter �� by a pair of chiral and antichiral super�elds, ��(x; �; ��)

and ���(x; �; ��), by virtues of the constraints satis�ed by � and ��. This can be realised

according to:

�
0i = exp(L�:k)�

i (41)

and

��
0i = exp(L��:�k)��

i: (42)
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In order to get closer to the case of global transformations, and to express all gauge

variations exclusively in terms of the super�eld parameters ��, we propose a �eld rede�-

nition that consist in replacing �� by a new super�eld, ~�, as it follows:

~�i � exp(iLv:�k)��i: (43)

>From the expression for the gauge transformation of the prepotential V , it can be shown

that:

exp(iLV 0:�k) = exp(L�:�k)exp(iLv:�k)exp(�L���k); (44)

and ~�i consequently transform with the gauge parameter ��:

~�0

i = exp(L��k)~�i; (45)

which in�nitesimally reads:

�~�i = ��(x; ���)�k�i(��): (46)

Now, an in�nitesimal isometry transformation induces on the modi�ed K�ahler poten-

tial, K(�; ~�), a variation given by:

�K(�; ~�) = ��(�� + ~��); (47)

where

~�� = (~@iK)�k�i(~�) + iM�(�; ~�); (48)

with ~@ denoting a partial derivative with respect to ~�. The isometry variation �K com-

puted above reads just like a K�ahler transformation and is a direct consequence of the

existence of the real scalar M�(�; ~�), as discussed in refs [14, 15].

The form of the isometry variation of K(�; ~�) suggest the introduction of a pair of

chiral and antichiral super�elds, �(�) and ��(��), whose respective gauge transformations

are �xed in such a way that they compensate the change of K under isometries. This can

be achieved by means of the Lagrangian de�ned as:

L� = @i[K(�; ~�)� �(�) � ~�(~�)]r���
i +

� ~@i[K(�; ~�)� �(�) � ~�(~�)]r��
~�i; (49)
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where the covariant derivativesr���i and r��
~�i are de�ned in perfect analogy to what

is done in the case of the bosonic �-model:

r���i � @���i � g��
��
ki� (50)

and

r��
~�i � @�� ~�i � g��

��

�k�i(~�): (51)

Finally, all we have to do in order that the Lagrangian L� given above be invariant

under local isometries is to �x the gauge variations of the auxiliary scalar super�elds �

and ~�. If the latter are so chosen that:

(@i�)k
i
�(�) = ��(�) (52)

and

(~@i~�)�k�i(~�) = ~��(~�); (53)

then it can be readily veri�ed that the K�ahler-transformed potential

[K(�; ��)� �(�) � ~�(~�)] (54)

is isometry-invariant, and the Lagrangian L� of eq. (49) is indeed symmetric under the

gauged isometry group.

The interesting point we would like to stress is that the extra gauge degrees of freedom

accommodated in the component-�eld B��(x) of the superconnection ��� behave as a

genuine gauge �eld that shares with A� the coupling to matter and to �-model [11]. This

result can be explicitly read o� from the component-�eld Lagrangian projected out of the

super�eld Lagrangian L�. We therefore conclude that our less constrained (2; 0)-gauge

theory yields a pair of gauge potentials that naturally transform under the action of a

single Abelian gauge group.
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