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I. INTRODUCTION

The study of classical vortex solutions in gauge theories, extensively developed in the

seventies, has motivated many works in the last few years. Actually, their existence has

been claimed much earlier in connection to the Ginzburg-Landau model of superconduc-

tivity, in the pioneering work of Abrikosov [1]; later on, such topological con�gurations

were experimentally observed in type-II superconductors [2].

In a relativistic framework, the issue of soliton solutions has been generalized to �eld

theories such as the Abelian Higgs model in which vortices exhibit nonzero magnetic

uxes, but are electrically neutral [3]. By adding a Chern-Simons term, interesting fea-

tures arise. In particular, vortex solutions gain an electric charge in the so-called topo-

logically massive electrodynamics [4,5].

Self-duality, which allows the reduction of the second order equations of motion to a

set of �rst order ones, is an interesting tool from the physical point of view since it is

related to the minimization of the energy together with the action of the system [6].

Gauge �elds whose dynamics exclusively depend on the Chern-Simons term and are

minimally coupled to the scalar �elds, have been thoroughly studied by Jackiw et al. in

recent years [7,8]. Such models present topological and nontopological solitons and the

Bogomol'nyi equations are obtained for speci�c sixth-order Higgs potentials.

On the other hand, when gauge �eld dynamics are also controlled by a Maxwell term,

it seems necessary to introduce a neutral scalar �eld in order to ensure self-dual solutions

to the model [10]. In fact, this can be avoided by appealing to an extra nonminimal con-

tribution to the covariant derivative, which can be interpreted as an anomalous magnetic

moment [11]. It is worth noting however that this analysis has been generally limited to

nontopological potentials presenting just a symmetric phase [12,13].

The purpose of this paper is twofold. In a �rst part we review some well-known gauge

theories presenting vortices and self-dual solutions. Though, in contrast to preceding

authors, we work along the lines given in ref. [14] where self-duality conditions supply



CBPF-NF-040/97 2

the well-known Higgs potentials for the Abelian Higgs and Chern-Simons Higgs models.

Our aim at this point is to compare this procedure to the standard one and extract the

Bogomol'nyi equations from the energy functional rather than imposing them together

with the equations of motion as in [14].

In a second part, we go a step further and apply this idea to set the proper Bogomol'nyi

conditions and obtain the resulting Higgs potential in a Maxwell-Chern-Simons Higgs

model coupled nonminimally as above mentioned. This kind of coupling has been typically

con�ned to a critical value that provides the model fractionary statistic solutions proper

of pure CS theory. In this respect, let us stress that we work without any speci�c choice of

the anomalous magnetic moment coupling, its value being only conditioned by the basic

assumption of positive energy solutions. Neither we impose rotational symmetry before

taking the Bogomol'nyi limit, which could hide true minimal energy solutions (see e.g.

[13]). This freedom allows a tuning between Maxwell and Chern-Simons contributions,

as will be shown later in the series expansion analysis of the potential. In this way we

are able to �nd a topological potential for this model, without restricting us to a critical

nonminimal coupling (c.f. [12] where only a nontopological sector is found in such a critical

regime)). Finally, we perform a numerical calculation of the solutions to this theory for a

convenient ansatz.

Our results put forward certain relations among the parameters of the model which,

in particular, exclude the usual choice for the topological mass constants, see refs. [13,12].

II. MINIMAL MODELS

Abelian Higgs Model

Let us start with a Higgs model Lagrangian

L = �1

4
F ��F�� +

1

2
D��D��

� � U (�) (1)
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in 1 + 2 dimensions with a Minkowski space-time signature ��� = (+;�;�). Here, � is a

complex scalar minimally coupled to an Abelian gauge �eld, U is an unknown potential

and the covariant derivative is de�ned as

D�� = (@� � ieA�)� (2)

The equation of motion for A� is given by

@�F
�� = J� (3)

where J� is the N�oether's (conserved) current

J� = �ie
2
(��D��� �D��) (4)

The energy momentum tensor obtained from (1) is

T�� =
1

2
(F��F

�
� + F��F

�
�) +

1

2
(D��

�D��+Dv�
�D��)� ���L (5)

and integration of the T00 component yields

E =
Z
d2x

�
1

2
(B2 +E

2) +
1

2
jD0�j2 + 1

2
jDi�j2 + U

�
(6)

In order to �x the self-duality conditions, we will focus on static topologically nontrivial

solutions. Such classical con�gurations have been shown to exist in this theory and are

known as the Nielsen-Olesen vortices [3]. By choosing the radiation gauge A0 = 0 it

can be easily seen that these are electrically neutral solutions. This implies a zero J0

component and a vanishing electric �eld in the whole space.

Making use of the relation

1

2
Di�

�Di� =
1

2
j(D1 � iD2)�j2 � 1

2e
"ij@iJj � e

2
Bj�j2 (7)

in eq.(6), we obtain after some algebra

E =
ev2

2
j�Bj � 1

2e

I
r!1

J:dl�
Z
d2x

�
1

2

�
B �

p
2U
�
2

�
�
e

2

�
v2 � j�j2

�
�
p
2U
�
B +

1

2
j(D1 � iD2)�j2

�
(8)
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where the upper (lower) sign corresponds to positive (negative) values of the magnetic

ux �B � � R d2xB. Let us remind that �B yields topological nontrivial classes for a

potential allowing asymmetric vacuum phases.

Written in this form, the duality conditions to be imposed become apparent,

D1� = �iD2�

B = �e
2

�
j�j2 � v2

�
(9)

Note that since we are considering only �nite energy con�gurations, the line integral of

the vector current vanishes because the spatial components of covariant derivatives have

to be zero at spatial in�nity.

In the Bogomol'nyi limit, given by eq.(8), it can be seen that a lower bound for the

energy exists; namely E � ev2j�Bj=2, where the equal sign is saturated for

U(j�j2) = e2

8

�
j�j2 � v2

�
2

; (10)

which is a well-known result.

Chern-Simons-Higgs Model

Bogomol'nyi-type vortex solutions are also encountered in the CSH model, whereas in

this case vortices are electrically charged and the Higgs potential is of sixth-order [7{9].

On the other side, nontopological soliton solutions are also supported but in this case

their magnetic uxes are not quantized [8].

In order to explicitly obtain this potential let us de�ne the Lagrangian density

L =
�

4
"���A�F�� +

1

2
D��D��

� � U(�): (11)

Now, the equation of motion for the gauge �eld is a �rst order one, being given by

�F � = J� (12)
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where F � � 1

2
"���F�� and J� is the same as in (4). The energy momentum tensor is

derived as usual

T�� =
1

2
(D��

�D��+Dv�
�D��) + ���(

1

2
jD��j2 + U) (13)

so that the energy follows. Note however that the CS term is absent, thus, the energy

functional simply reads

E =
Z
d2x

�
1

2
D0�

�D0�+ U +
1

2
Di�

�Di�
�

(14)

Following similar steps as in the previous section, it can be written as

E =
ev2

2
j�Bj �

Z
d2x

(
1

2 j�j2
������D0�� i

q
2U j�j2

����2 �
p
2U

e

J0
j�j

+
1

2
j(D1 � iD2)�j2 � e

2
B(j�j2 � v2)

�
(15)

Notice that the second term in the equation above forces the magnetic �eld B (= �J0=�)
to vanish wherever � does, so that the vortex becomes closed and the �eld lies within a

toroidal region. This term, causing this kind of ring vortex con�gurations is physically

relevant in order to stabilize nontopological soliton solutions. Compare it to �2B2=4e2j�j2,
obtained in ref. [8] for a particular sixth order Higgs potential (actually, this expression

is reobtained when a lowest energy con�guration is considered (see below)).

By imposing the following self-duality conditions

��D0� = �i
q
2j�j2U

D1� = �iD2� (16)

and using the time component of eq.(12) one has

E =
e

2
v2j�Bj �

Z
d2x

 
e

2
(v2 � j�j2)�

s
2U

j�j2�
!
B: (17)

Again, for

U(j�j2) = e4

8�2
j�j2

�
j�j2 � v2

�
2

: (18)
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the lower bound is reached. Now, equation (16) can be manipulated so as to produce a

self-duality condition in terms of J0

J0 = �e
q
2j�j2U (19)

Hence, using once more eq.(12), eq.(18) implies

B = � e3

2�2
j�j2

�
j�j2 � v2

�
(20)

in agreement with the literature [7,8]. Notice that in this (minimal) model a constraint

on the gauge �eld arise; namely, A0 is related to the magnetic �eld by means of the time

component of eq. (12), i.e.,

A0 =
e

�2
B

j�j2 : (21)

This implies of course that the radiation gauge choice is prohibited in this case.

Maxwell-Chern-Simons Higgs Model

In the present section we would like to recover the well known Higgs potential for

the spontaneously broken Maxwell-Chern-Simons model [10]. The (minimally coupled)

Lagrangian density reads

L = �1

4
F ��F�� +

�

4
"���A�F�� +

1

2
D��D��

�

+
1

2
@�N@

�N � V � j�j2W (22)

where for convenience, the potential has been written as U = V + j�j2W and N is a

neutral scalar �eld.

The equation of motion for the gauge �eld now reads

@�F
�� + �F � = J� (23)

implying the following \Gauss Law"
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@iEi + �B + J0 = 0 (24)

On the other side, for a static N �eld the energy functional of the model is given by

E =
Z
d2x

�
1

2
(B2 +E

2) +
1

2
D0�

�D0�+
1

2
Di�

�Di�

+
1

2
@iN@iN + V (j�j2) + j�j2W

�
(25)

which after some algebra reads

E =
Z
d2x

(
1

2
(B �

p
2V )2 �B

p
2V �

p
2W

e
J0

+
1

2

���D0�� i
p
2W�

���2 + 1

2
j(D1 � iD2)�j2 (26)

�e
2
Bj�j2 + 1

2
(Ei � @iN)2 � Ei@iN

�

By imposing the following self-duality conditions

B = �
p
2V

D0� = �i
p
2W�

D1� = �iD2� (27)

Ei = �@iN ;

eliminating J0 (eq. 24), and integrating Ei@iN by parts we have

E =
ev2

2
j�Bj+

Z
d2x

(
�B

"
e

2
(v2 � j�j2)�

p
2V �

p
2W

e
�

#

�
 
N �

p
2W

e

!
@iEi

)
(28)

It is clear that the system will lie on its lower bound limit provided that

p
2V =

e

2
(v2 � j�j2)�

p
2W

e
�

p
2W

e
= N (29)

From eqs.(27) and (29) above, one can read out the relation between the magnetic and

the scalar �elds
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B = �e
2
(j�j2 � v2 +

2�

e
N) (30)

bringing about the explicit form of the Higgs potential

U(N; j�j2) = e2

2
N2j�j2 + e2

8
(j�j2 � v2 +

2�

e
N)2 (31)

which coincides with the potential used in [10].

III. NONMINIMAL MODELS

In three space-time dimensions Pauli type coupling is known to give a meaningful con-

tribution to the magnetic moment of �elds, without any reference to their spin statistics.

Namely, even scalar �elds can present a nonzero magnetic moment. The interest on such

`nonminimal' coupling was recently renewed [11] since, using some critical value for this

kind of coupling in a MCSH model, one recovers the ideal anyon behavior proper of pure

CS theory. Later on further investigation was performed including a nontopological Higgs

potential [12,13,15] where axially symmetric self-dual solutions were encountered for a

critical value of the anomalous coupling.

Here we analyze the MCSH model in the topological sector and we relax the condition

on the nonminimal coupling out of its critical value. Further, we do not impose rotational

symmetry before setting the Bogomolnyi limit in order to ensure minimal energy solutions.

Maxwell-Chern-Simons-Higgs model with anomalous magnetic moment

Let us consider a MCSH Lagrangian with the anomalous magnetic moment term

characterized by the coupling constant g

L = �1

4
F ��F�� +

�

4
"���A�F�� +

1

2
r��r��

� � U(�) (32)

with r� de�ned as

r�� � (@� � ieA� � igF�)�
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The equation of motion for A� is

@�F
�� + �F � = J � +

g

e
"���@�J� (33)

where J� is de�ned by

J� � �ie
2
(��r�� � �r��)

The time component of eq.(33) de�nes the modi�ed \Gauss Law"

@iEi + �B +
g

e
"ij@iJj + J0 = 0 (34)

The gauge invariant modes are now short-range due the mass term resulting from the

modi�ed equation of motion. Hence, the �rst term in eq.(34) has a vanishing integral.

On the other hand, the third term results in a line integral taken at in�nity which also

vanishes for �nite energy con�gurations. Therefore, it can be seen from the remaining

piece that one has the charge of the vortex solutions related to nonzero magnetic uxes

as follows

Q = ��B (35)

Unlike the preceding models, the nonminimal coupling allows a temporal gauge choice

A0 = 0, which simpli�es the handling of the equations. For example, the electric charge

reads

Q =
Z
d2x J0 = e g

Z
d2x j�j2B (36)

Then, from eqs.(35,36) (assuming that �ge=� > 0) it follows that

�gev2=� > 1 (37)

where v gives the minimum value of the symmetry breaking potential. (Of course it is

true provided that v is the maximum value of the �eld �; it will be shown below.)

On the other hand, the energy functional is given by
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E =
Z
d2x

�
1

2
G(E2 +B2) +

1

2
D0�

�D0�+
1

2
Di�

�Di�+ U
�

(38)

with

G = 1 � g2j�j2

In order to ensure a positive de�nite energy one then needs

jgj < 1=v (39)

which together with eq.(37) implies

� < ev (40)

and therefore

jgj < e=� (41)

Actually, this relation excludes the constraint usually imposed on g in order to obtain

a set of equations of motion of the �rst order without imposing self-duality conditions

[12,13].

In the A0 = 0 gauge, and after some calculation, the energy functional can be written

as

E =
ev2

2
j�Bj+

Z
d2x

�
�
�
e

2
(v2 � j�j2)�

p
2GU

�
B

1

2
G
�
B �

p
2UG

�
2

+
1

2
j(D1 � iD2)�j2

�
(42)

By imposing the self-dual equations,

D1� = �iD2�

B = �G�1 e

2
(j�j2 � v2) (43)

the topological potential can be then determined in order to achieve the lower bound limit.

So we have,
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U(j�j2) = G�1 e
2

8
(j�j2 � v2)2: (44)

As already pointed out in the introduction, this potential leads to topologically stable

vortex solutions for the Maxwell-Chern-Simons Higgs model with no reference to scalar

�eld introduced ad-hoc [10].

Now, for small values of g we can perform a series expansion of the topological Higgs

potential just found, in order to obtain the non anomalous phase limit

U(j�j2) = e2

8
(j�j2 � v2)2 + g2

e2

8
j�j2(j�j2 � v2)2 + : : : (45)

Notice that in the g = 0 limit the sixth order term, characteristic of a CS contribution, is

absent. This is consistent with eqs.(35-37) which impose a vanishing � whenever g ! 0.

Let us write eq.(45) in the following way

U(j�j2) = e2

8
(j�j2 � v2)2 +m2

e4

8�2
j�j2(j�j2 � v2)2 + : : : (46)

with m < 1, de�ned by jgj = me=� [see eq.(41)] (notice that while eq.(37) imposes that

�=ev2 < jgj, m is assumed to be small enough to make the CS term above a second order

correction). Thus, for a small a.m.m one can see in eq.(46) the remaining of the more

elementary theories contained in the present model, namely, both a Maxwell (Nielsen-

Olesen) topological potential term and a typical sixth order CS one.

The theory possess two massive gauge propagating modes. The masses of these gauge

excitations read

mA� =
�I

2Gv

�
s
(
�I

2Gv

)2 +
e2v2

Gv

(47)

where I = 1 + 4egv2=� and Gv = 1� g2v2, and for g ! 0 one obtains the Nielsen-Olesen

model mass mNO = ev. On the other hand, the Higgs mass is easily seen to be

mH = ev=
q
Gv (48)

which of course approaches also mNO for a vanishing g.
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Solutions and numerical analysis

By means of proper gauge transformations, static rotationally symmetric con�gura-

tions can be written in polar coordinates as

�(r) = vR(r)ein� (49)

eA(r) = � �̂
r
[a(r)� n] (50)

where R and a are real functions of r, and n an integer indicating the topological charge

of the vortex. Now, under transformation r ! (
p
2=ev) r the self-duality equations (43)

become

R0 = �a
r
R (51)

a0

r
= � 1

1� 2R2
(R2 � 1) (52)

where  < 1 is de�ned by g = =v.

The natural boundary conditions at spatial in�nity result from the requirement of

�nite energy, namely, R(1) = 1 and a(1) = 0 for any nontrivial vorticity n. On the

other hand, at the origin one must expect nonsingular �elds, implying R(0) = 0 and

a(0) = n. Hence, the magnetic �eld reads

B = �ev
2

2

a0

r
(53)

and its ux is, as expected

�B =
2�

e
[a(0)� a(1)] =

2�

e
n: (54)

At large values of r it is easy to see that the n > 0 solutions behave like

R(r) ! 1� cK0(r) (55)

and

a(r)! d rK1(r) (56)
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where c and d are constants. The n < 0 con�gurations are related to these ones by the

transformation a! �a and R! R. The behavior of the solutions at small values of r is

power like, and without any loss of generality we can simply assume

R(r) � cnr;

a(r) � n (57)

Notice that cn is determined by the shape of the �elds at in�nity rather than their behavior

at the origin. Indeed, we have numerically solved the self-duality equations of motion by

means of an iterative procedure which involves a tentative value for cn which is corrected

each time by imposing that both R! 1 and a! 0 hold together at in�nity.

For n = 1; 2 and 3 we have found c1 = 8:891 � 10�1; c2 = 4:796 � 10�6 and c3 =

6:877 � 10�9 (see �g.1 for higher precision). In �g.1 we show the topologically nontrivial

solutions R(r) and a(r) and in �g.2 we plot the corresponding magnetic �elds. In �g.3

we plot the magnetic �eld for n = 1 vorticity at di�erent values of .

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10

� n = 1

+ n = 2

r

� n = 3

a(r)

R(r)

FIG. 1. The scalar R and the gauge �eld a as a function of r. The values of the cn con-

stants are �xed by the shape of the �elds at in�nity: ({) c1 = 8:891308075 � 10�1, (+)

c2 = 4:796825890� 10�6, (�) c3 = 6:877604870� 10�9.
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0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

2

ev
2B(r)

r

� n = 1

+ n = 2

� n = 3

FIG. 2. The magnetic �eld B as function of r for n = 1, 2, and 3 vorticities. Notice that the

�eld distributions are concentrated at the origin { like NO vortices.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

{  = 0:20

+  = 0:50

�  = 0:80

�  = 0:90

�  = 0:95

{  = 0:96

2

ev
2B(r)

r

FIG. 3. The magnetic �eld B as a function of r for various values of the anomalous magnetic

moment parameter  (= vg):
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IV. SUMMARY AND CONCLUSIONS

We have shown that a Higgs potential, necessary to get vortex solutions of minimal

energy in the Bogomol'nyi limit, can be obtained by imposing self-dual equations from

the very beginning, in contrast to the regular procedure found in the literature [3]- [12].

From this point of view, we have revisited the Abelian Higgs, Chern-Simons Higgs and

Maxwell-Chern-Simons Higgs models, and we have regained the standard outcomes.

Thereafter, guided by this outlook, we obtained a topological Higgs potential for a

generalized MCSH theory, modi�ed by the inclusion of a nonminimal coupling controlled

by a parameter g which is introduced in the covariant derivative. By means of a series

expansion in g, this potential has shown to contain traces of more elementary models,

namely, Abelian Higgs and Chern-Simons Higgs contributions, precisely in their usual

topological phase.

In order to get the topological potential, we worked in a temporal gauge which clari�es

the relations among the constants of the model e; �; v and g. This gauge choice also

prevents the choice of the critical value g = �e=� commonly adopted; this relation, in

fact, would lead to the already known nontopological solutions to the model [12].

The generalized MCSH model that we have analyzed, possess two massive propagating

modes. The masses are di�erent from the Higgs mass, even in the Bogomol'nyi limit, a

result which is produced by the anomalous magnetic moment. On the other hand, it

has been recently argued that bosonic theories in the Bogomol'nyi limit could be closely

connected to their N = 2 supersymmetric extension [16]. Thus, it is worth enquiring

at this point if the supersymmetric extension of this speci�c model requires di�erent

conditions on the coupling constants (in this direction, see [17]). We hope to report on

these issues in a future work.
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