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Abstract

Within a recently generalized statistical mechanics, we have calculated the speci�c heat of
a classical and quantum anisotropic rigid rotator. In addition to this, we extend Hilhorst's
formula to the grand-canonical ensemble.

Key-words: Generalized Statistics; Rigid Rotator; Speci�c Heat; Nonextensive Systems.

PACS Index: 05.20-y; 02.50+s; 05.70Ce; 05.90+m



{ 1 { CBPF-NF-040/94

1.- Introduction

There are few quantum systems whose energy spectrum is exactly known. Among
them we have the anisotropic (oblate and prolate) rigid rotator. Its speci�c heat within
standard Boltzmann-Gibbs statistics was numerically studied in [1]. A generalization of
the Boltzmann-Gibbs statistics has been recently proposed for nonextensive systems [2-4],
and its connection with thermodynamics is now established [5]. This generalization relies
on an entropy Sq � k(1 �

P
i p

q
i )=(q � 1), (q 2 <; k is a conventional positive constant)

which recovers, in the limit q ! 1, the standard one �kB
P

i pi ln pi. Various properties of
the generalized entropy have been proved, such as positivity, equiprobability, expansibility,
concavity and H-theorem [6-8]. This generalized statistics has been shown to satisfy
appropriate forms of the Ehrenfest theorem [9], von Neumann equation [10], Bogolyubov
inequality [11], Langevin and Fokker-Planck equations [12], Callen's identity (used to
calculate the critical temperature of the Ising ferromagnet) [13], Fluctuation-dissipation
and Onsager reciprocity theorems [14] and quantum statistics [15]. This generalization
was applied to calculate the thermal dependence of the speci�c heat associated with the
d = 1 Ising ferromagnet [16], a con�ned free particle (square well) [17], two-level system
and harmonic oscillator [18].

Finally, this formalism has already received physical and mathematical applications.
Among them we have the following situations: (i) Plastino and Plastino [19], for the poly-
tropic model for self-gravitating stellar systems, and Aly [19], on more general grounds,
have shown that, if q su�ciently di�ers from unity, it is possible to have simultaneously
�nite mass, energy and entropy, thus solving a classical di�culty of Boltzmann-Gibbs
statistical mechanics; (ii) Alemany and Zanette [20] have shown that, by appropriately
choosing q, it is possible to variationally obtain ( with simple auxiliary conditions) L�evy
distributions, even when the q = 1 formalism fails, i.e., when the displacement second mo-
ment diverges (which is indeed the case for CTAB micelles in salted water [21], heartbeat
histograms [22], among others); (iii) Landsberg [23] considers the possibility of having ap-
plications in self-organizing biological systems; (iv) the well known Student t-distribution
and r-distribution can be variationally obtained from an entropic principle [24]; (v) The
Simulated Annealing optimization algorithms can be generalized [25] in such a way as to
become much quicker.

In the present paper, we will study, for arbitrary q, the thermal behavior of the speci�c
heat of a large class of anisotropic rigid rotators . In Section 2, the quantum results are
presented for typical values of the momenta of inertia. In Section 3, the classical case
is studied, and the quantum and classical behaviors are compared. In both Sections, it
is veri�ed that the traditional results of the Boltzmann-Gibbs statistics are recovered as
the q = 1 particular case of the generalized statistics. In Section 4 we extend Hilhorst
formula to the grand canonical ensemble.
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2.- Quantum Case

We address here the generalized speci�c heat Cq of the most general anisotropic rigid
rotator with axial symmetry (oblate, spherical, prolate). The spectrum of energy of this
rotator is given [26] by

El;m =
�h2

2Ixy

�
l(l + 1) + (

Ixy
Iz
� 1)m2 + �o

�
; (1)

where l = 0; 1; 2; 3; ::: represents the eigenvalues of the angular momentum operator,
m = �l;�l+ 1; :::; l its possible projections on the intrinsic rotation axis of the rotator,
each state has a degeneracy (2l+ 1), Ix = Iy � Ixy and Iz are the associated momenta of
inertia, and �o is an arbitrary additive constant. The generalized partition function can
be written

Zq(�) =
1X
l=0

(2l + 1)
lX

m=�l

[1 � �(1� q)El;m]
1

1�q ;

where � � 1=kT , T being the temperature. Now, if we de�ne Zq in terms of the reduced
quantities b � �h2�=2Ixy and �l;m � 2IxyEl;m=�h

2, we obtain

Zq(b) =
1X
l=0

(2l + 1)
lX

m=�l

[1 � b(1� q)�l;m]
1

1�q : (2)

Let us also de�ne

Vq(b) �
1X
l=0

(2l + 1)
lX

m=�l

[1� b(1� q)�l;m]
q

1�q�1 �2l;m; (3)

and

Wq(b) �
1X
l=0

(2l + 1)
lX

m=�l

[1 � b(1� q)�l;m]
q

1�q �l;m: (4)

The generalized internal energy Uq is given [5] by Uq = � @
@�

Z1�q
q (�)�1

1�q . For convenience,

we introduce the reduced internal energy as uq � 2IxyUq=�h
2 which is given by

uq(b) =
Wq(b)

[Zq(b)]
q : (5)

Consequently, the speci�c heat Cq = @Uq=@T is given by

Cq(t)

k
=

q

t2

(
Vq(1=t)

[Zq(1=t)]
q �

[Wq(1=t)]
2

[Zq(1=t)]q+1

)
; (6)

where we have introduced the reduced temperature t � 1=b. This equation enables the
numerical calculation of Cq(t). In [1], it was solved the case of the anisotropic rigid rotator
within the Boltzmann-Gibbs statistics (q=1). Those results are exactly recovered in this
new formalism when q! 1 and for all values of �o (see Fig.1).
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Before going on, let us make a brief historical digression and mention that we can
see in Fig.1 the solution of the \paradox" that deeply disturbed J. W. Gibbs. Indeed, in
the introduction of his celebrated 1901 \Elementary Principles in Statistical Mechanics,
Developed with Especial Reference to the Rational Foundation of Thermodynamics" he
writes \It is well known that while theory would assign to the [diatomic] gas six degrees
of freedom per molecule, in our experiments on speci�c heat we cannot account for more
than �ve. Certanly, one is building on an insecure foundation, who rests his work on
hypothesis concerning the constitution of matter. Di�culties of this kind have deterred
the author from attempting to explain the mysteries of nature, and have forced him to
be contented with the more modest aim of deducing some of the more obvious proposi-
tions relating to the statistical branch of mechanics." The six degrees of freedom which
Gibbs refer to are, of course, three translational (which are trivial) and three rotational
(responsible for the \ paradox"). Fig.1 clearly exhibits what happens with the rotational
ones. If Ixy=Iz >> 1, the speci�c heat behaves like a two-degree system until very high
temperatures (experimentally inaccessible in the standard situations) are achieved, above
which the third degree of freedom becomes thermally active. As we shall exhibit later on,
the same type of nonuniform convergence remains for q 6= 1.

Let us now go back to our discussion. For q 6= 1 and �o = 0 the situation is well
illustrated through the study of three typical cases, namely Ixy=Iz = 1=2 (extremely
prolate), Ixy=Iz = 1 (spherical) and Ixy=Iz !1 (extremely oblate) :

(i) For q > 1, Cq � 0 and the high-temperature asymptotic behavior is modi�ed;
indeed, limt!1 Cq = 0, in constrat with the q = 1 statistics (C1=k ! 3=2 for all
�nite ratios Ixy=Iz). Our numerical results suggest that for q � 5=3, Cq(t) = 0
8 t > 0. For 1 < q < 5=3, both Cq(t) and dCq(t)=dt are continuous (the q = 4=3
case is depicted Fig.2a).

(ii) For 0 < q < 1, Cq � 0 and the high-temperature asymptotic behavior is once again
modi�ed limt!1 Cq = 1. We can distinguish three cases. Again, our numerical
results suggest that for 2=3 < q < 1, Cq(t) function is continuous, di�erentiable and
presents an in�nite number of extrema (the q = 5=6 case is despicted in Fig.2b);
for 1=2 < q < 2=3, Cq(t) is continuous, but dCq(t)=dt presents discontinuities at
the values tl;m = (1 � q)�l;m (the q = 7=12 case is despicted in Fig.2c); �nally, for
0 < q < 1=2, Cq(t) itself presents discontinuites at the values tl;m = (1� q)�l;m (the
q = 1=3 case is shown in Fig.2d). In all these cases, the 0 � t � (1 � q)[2 � (1 �
Ixy=Iz)�(1 � Ixy=Iz)] region (where �(x) is the step function), is thermally frozen
(i.e., only the ground state is polpulated).

(iii) For q < 0, Cq(t) � 0 8 t > 0 and presents discontinuities at the values tl;m =
(1 � q)�l;m.

The presence of a nonvanishing zero-point (�o 6= 0) is, of course, irrelevant when q = 1.
This is not so when q 6= 1. We remark that:

(i) For 1 < q < 5=3 and �o > 0, Cq(t) is continuous and positive everywhere, excepting
at t = 0, where it vanishes. But if �o < 0, the 0 � t � (1� q)�o is a thermally frozen
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region (see Appendix A.1) hence Cq(t) vanishes; Cq(t) is positive and continuous for
t > (1� q)�o. (The case q = 4=3 and Ixy=Iz = 1 is depicted in Fig.3a for �o = -1, 0,
1).

(ii) For 0 < q < 1 and �o > 0, the region 0 � t � (1 � q)�o is thermally forbidden
(physically inaccessible); the region (1�q)�o � t � (1�q)[2+ �o� (1�Ixy=Iz)�(1�
Ixy=Iz)] is thermally frozen. When �2 < �o < 0, the region 0 < t < (1 � q)[2 �
j�oj � (1 � Ixy=Iz)�(1 � Ixy=Iz)] is thermally frozen, when �o < �2, Cq is positive
everywhere. All cases present the discontinuities before described for Cq and dCq=dt
respectively. (The q = 2=3 and Ixy=Iz = 1 case is shown in the Fig.3b for �o = -3,
-1, 0, 2).

3.- Classical Case

For q > 1, the classical expresion for the Eq.(2) can be obtained by using the well
known q = 1 partition function into Hilhorst formula [3] and the well known q = 1 speci�c
heat. So the �o = 0 generalized classical partition function is given by

Zclass
q (t) =

�1=2q
Ixy=Iz

�( 1
q�1 �

3
2)

(q � 1)3=2�( 1
q�1 )

t3=2; (7)

The classical internal energy is analogously obtained (see Appendix A.2) from Eq.(5) and
is given by

uclassq (t) =
3

2

0
@ �1=2q

Ixy=Iz

�( 1
q�1 �

3
2)

(q � 1)3=2�( 1
q�1

)

1
A
1�q

t1+
3
2 (1�q); (8)

hence, for q > 1 and �o = 0, we have

Cclass
q (t)

k
=

3

2

�
1 +

3

2
(1� q)

�0@ �1=2q
Ixy=Iz

�( 1
q�1 �

3
2)

(q � 1)3=2�( 1
q�1)

1
A
1�q

t
3
2 (1�q): (9)

For 1 < q < 5=3 the speci�c heat has nonnegative value, diverges in the t! 0 limit and
vanishes in the t ! 1 one; for q ! 1 we recover the well known result Cclass

1 =k = 3=2,
8t.

For q < 1 the classical expresion is obtained by replacing, in the Eqs.(2), (5) and (6),
the sums by integrals. We obtain, for �o = 0,

Zclass
q (t) =

�1=2q
Ixy=Iz

(1 + 3
2(1� q))�1�( 1

1�q )

(1� q)3=2�( 1
1�q +

3
2)

t3=2 (10)

for the partition function,

uclassq (t) =
3

2

0
@ �1=2q

Ixy=Iz

(1 + 3
2(1� q))�1�( 1

1�q )

(1� q)3=2�( 1
1�q +

3
2)

1
A
1�q

t1+
3
2 (1�q) (11)
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for the internal energy and

Cclass
q (t)

k
=

3

2

�
1 +

3

2
(1 � q)

�0@ �1=2q
Ixy=Iz

(1 + 3
2
(1� q))�1�( 1

1�q
)

(1� q)3=2�( 1
1�q

+ 3
2
)

1
A
1�q

t
3
2 (1�q) (12)

for the speci�c heat. For 0 < q < 1 the speci�c heat has nonnegative values, vanishes in
the t! 0 limit and diverges in the t!1 one; for q! 1 we recover once more the result
Cclass
1 =k = 3=2, 8t.
The classical and quantum speci�c heats asymptotically coincide for t >> 1, 8 �o,

8Ixy=Iz, and for q above a critical value (which seems to be q = 1=2; for q 2 (�1; 1=2)
the situation is more complex; in particular, for q < 0, Cq � 0 whereas Cclass

q � 0). This is
illustrated in Fig.4 for typical situations. Also, in what concerns the Ixy=Iz !1 limit, we
exhibit in Fig.5, for both q > 1 and q < 1 the same type of nonuniform convergence which
occurs within Boltzmann-Gibbs statistics (q = 1). Indeed, quantum and classical speci�c
heats merge into a single curve above a temperature which increases with increasing ratio
Ixy=Iz, and �nally diverges in the Ixy=Iz ! 1, thus yielding a degree of freedom which
remains frozen for ever.

4.- Extension of the Hilhorst Formula to the Grand Canonical
Ensemble

The equilibrium distribution for the grand-canonical ensemble is given by

p
(N)
j =

h
1� �(1� q)(E

(N)
j � �N)

i 1
1�q =�q(�; �); (13)

where the number of particles N = 0; 1; 2:::, and E
(N)
j represents the N-particle energy

spectrum (characterized by the quantum number or set of quantum numbers j).
The generalized grand partition function is given by

�q(�; �) =
1X

N=0

X
j

h
1� �(1� q)(E(N)

j � �N)
i 1
1�q : (14)

The associated constraints in the entropy optimization problem are as follows:

1X
N=0

X
j

p
(N)
j = 1 ; (15)

1X
N=0

X
j

�
p
(N)
j

�q
E

(N)
j = Uq ; (16)

and

1X
N=0

N
X
j

�
p
(N)
j

�q
= Nq : (17)
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It is convenient to remark that in general

p(N) �

2
4X

j

�
p
(N)
j

�q35
1=q

6=
X
j

p
(N)
j � pN (18)

where pN is the probability of having N particles (no matters the energy value) and p(N)

is the quantity wich enables the re-writting of Eq.(17) as
P
1

N=0N(p(N))q = Nq; unless
q = 1, pN generically di�ers from p(N) ( for instance,

P
1

N=o pN = 1 always, whereas in
general

P
1

N=0 p
(N) 6= 1 ).

From the standard representation of the Gamma function we have

��� =
1

�(�)

Z
1

0
dxx��1e��x: (19)

By using this in the generalized grand partition function (14) with the identi�cations

� = 1=(q � 1) and � = 1 + �(q� 1)(E
(N)
j � �N), we obtain

�q(�; �) =
1

�( 1
q�1

)

1X
N=0

X
j

Z
1

0
dxx

1
q�1�1 exp

�
�[1 + �(q� 1)(E

(N)
j � �N)]x

�
: (20)

Whenever

1X
N=0

X
j

Z
1

0
dx =

Z
1

0
dx

1X
N=0

X
j

; (21)

Eq.(20) becomes

�q(�; �) =
1

�( 1
q�1

)

Z
1

0
dxx

1
q�1�1e�x

1X
N=0

X
j

exp
�
��(q� 1)(E(N)

j � �N)x
�
: (22)

If we consider now � = �(q� 1)x, we obtain �nally

�q(�; �) =
1

�( 1
q�1)[�(q � 1)]

1
q�1

Z
1

0
d��

1
q�1�1e�

�
�(q�1)�1(�; �) (q > 1) ; (23)

which extends to the grand-canonical ensemble the Hilhorst formula. The analogous
expresion for the internal energy is given (see Appendix A.2) by

Uq(�; �) =
1

[�q(�; �)]
q�( q

q�1)[�(q� 1)]
q

q�1

Z
1

0
d��

q

q�1�1e
�

�
�(q�1) �1(�; �)U1(�; �)

(q > 1) (24)

5.- Conclusion
In any good Quantum Mechanics textbook we �nd �ve simple systems, namely, the

d = 1 con�ned free particle (square well), the d = 1 harmonic oscillator, the spin 1=2 (or
two level system), the Hydrogen atom and rigid rotator. It is in principle desirable to have
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the q 6= 1 basic statistical mechanics (e. g., speci�c heat) of them all. The free particle
has been discussed in [17], the harmonic oscillator in [18], the two-level system in [2, 4,
18], and the Hydrogen atom in [27] (notice, by the way, that its q = 1 statistics cannot
be calculated because of the long range interaction; e.g., the Boltzmann-Gibbs partition
function diverges). In the present paper, by discussing the rigid rotator, we essentially
close the study of the above mentioned set of elementary problems. Our main results for
the rigid rotator are:

(i) For all values of the index q, the momenta ratio Ixy=Iz (from extremely prolate,
Ixy=Iz = 1=2, to extremely oblate, Ixy=Iz ! 1, passing through the spherical
symmetry, Ixy=Iz = 1) and the aditive constant �o , the quantum speci�c heat
Cq asymptotically coincides with the classical one Cclass

q , which is proportional to

T
3
2 (1�q).

(ii) For q � 5=3, Cq (possibly) vanishes for all temperatures; for 1 < q < 5=3, Cq

is continuous and di�erentiable almost everywhere (in all the thermally active re-
gion),vanishes at T = 0, and presents a frozen region (Cq = 0) if �o < 0 (otherwise,
i.e., for �o � 0, the entire T 6= 0 region is thermally active); for q! 1�0, we recover
the Boltzmann-Gibbs results [1], 8�o; for 2=3 < q < 1, Cq is continuous and di�er-
entiable in all the active region, it presents an in�nite number of extrema, and it
presents (if �o � 0) both forbidden and frozen regions; for 1=2 � q � 2=3, Cq is con-
tinuous but dCq=dT presents an in�nite number of discontinuities; for 0 < q < 1=2,
Cq itself presents an in�nite number of divergences; limq!+0Cq 6= limq!�0; for q < 0,
Cq is nonpositive, and presents an in�nite number of divergences.

(iii) The peculiar 2-to-3-degrees-of-freedom crossover which occurs in the Ixy=Iz ! 1
limit (and which worried Gibbs!) remains, for q 6= 1, essentially the same as within
Boltzmann-Gibbs statistics (q = 1).

(iv) By following, for q > 1, along the lines of Hilhorst formula for the partition function
Zq, we obtain the analogous expression for the internal energy (in the canonical
ensemble) as well as for both partition function and internal energy in the grand-
canonical ensemble.
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Appendix A.1

If q > 1 and �o < 0 it is convenient to stress that the canonical distribution will be given,
for t > (q � 1)j�oj, by
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pl;m = (1� b(1� q)�l;m)
1

1�q =Zq(b); (25)

but, if t � (q � 1)j�oj , then

pl;m =
�
1; if l = m = 0;
0; otherwise,

(26)

Consequently, if 0 � t � (q � 1)j�oj
uq = �0 (27)

and
Cq = 0 (28)

Appendix A.2

The Hilhorst formula is

Zq(�) =
1

�( 1
q�1

)[�(q� 1)]
1

q�1

Z
1

0
d��

1
q�1�1e

�
�

�(q�1)Z1(�) (q > 1) (1)

If in the general expression for the internal energy

Uq(�) =
X
j

(1� �(1� q)Ej)
q

1�q =[Zq(�)]
q; (2)

we identify � = q=(q� 1) and � = 1+�(q� 1)Ej in the de�nition of the Gamma function
(see Eq.(19)), we obtain

Uq(�) =
1

[Zq(�)]q�(
q

q�1)

X
j

Z
1

0
dxx

q
q�1�1e�(1+�(q�1)Ej)xEj: (3)

Whenever X
j

Z
1

0
dx =

Z
1

0
dx
X
j

; (4)

this equation becomes

Uq(�) =
1

[Zq(�)]q�(
q

q�1)

Z
1

0
dxx

q

q�1�1e�x
X
j

e��(q�1)EjxEj : (5)

If we consider now � = �(q� 1)x, we obtain �nally

Uq(�) =
1

[Zq(�)]q�(
q

q�1
)[�(q� 1)]

q
q�1

Z
1

0
d��

q
q�1�1e�

�
�(q�1)Z1(�)U1(�) (q > 1) (6)
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which extends to the internal energy the type of relationship Hilhorst established for the
partition function. Naturally, the treatment we have applied here to the Hamiltonian can
be applied to any other observable.

Figures

Fig.1 Speci�c heat C1=k as a function of the reduced temperature t = 2IxykT=�h
2 for

typical values of Ixy=Iz.

Fig.2 Speci�c heat Cq=k as a function of the reduced temperature t = 2IxykT=�h
2 for

�o = 0 and typical values of Ixy=Iz and for di�erent values of q, (a) q = 4=3 (b)
q = 5=6, (c) q = 7=12 and (d) q = 1=3.

Fig.3 Speci�c heat Cq=k for typical values of �o, Ixy=Iz = 1 and (a) q = 4=3, (b) q = 0:8.

Fig.4 Comparison, for q=1.2, 0.8 and �o = 0, of the classical (dashed lines) and quantum
(full lines) speci�c heats for typical values of Ixy=Iz.

Fig.5 Classical (dashed lines) and quantum (full lines) speci�c heats for �o = 0 and
Ixy=Iz >> 1: (a) q = 1:2; (b) q = 0:8.
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