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ABSTRACT

The phase diagram and the correlation length exponents of the
% J D-Vector Spin~Glass model are studied in the framework of the
real space mean field renormalization group method. The boundary
between the spin-glass (SG) and the ferromagnetic (F) phases  is
obtained from the renormalization flow equationé and shows a  re-~
entrant behaviour over the SG region. This re-entrance increases
smoothly with the coordination number. Analytical expressions ﬁpr
the thermal and the correlation length exponents are calculated
straight forwardly for all fixed points and figures are presented and

compared with availables results from other methods and data.

Kev-words: Spin glass; D-vector model; Mean field renormalization
group; Critical exponents,
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1 INTRODUCTION

The phase diagram and the critical behavior of the short range
spin~-glass model are nowadays receiving great attention. The ran-
dom I3 Ising Spin-Glass model on the Bethe lattice has been studied
by Kwon and Thouless!, Carlson et al? and Thouless®. The phase dia
gram in an arbitrary lattice has been considered by Németh" and Ni-
shimori?®, Saphisticated numerical approaches like domain wall re-.
normalization group (DWRG) ¢, dynamic high - temperature series ex-
pansion’ and Monte Carlo simulations®’?® has been used to search for
the transition in the three-dimensional 1J Ising spin-glass. Fur;
thermore large-scale Monte Carlo simulations?” has been applied
to study the three—dimensionalf&J'Heisenberg spin-glass. The ran-
dom Heisenberg model in two apnd three dimensions has been iﬁvesti
gated within DWRG method' anl the zero-temperature critical behaviour
of the vector spin glasses has been studiedénumerically by the “de

fect energy"” approach and by the Migdal-Kadanoff-like renormaliza

tion group method!?,

In this work we investigate the 1J D-Vector Spin-Gltass model.
in the framework of the real space mean-field fenormalization me-~
thod (MFRG) introduced by Indekeu et al'’, We focus our attention
to the boundary transition from the spin-glass (SG) to the ferro-
magnetic (F) phase and to the critical exponent of the correlat.ion
lengths associated with the transitions. The boundaries lines from
thé paramagnetic (P) to the F and SG phases of this model with an
asymmétric competing bond disorder has been considered by the au-

thors within the same method'‘.
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Now we assume a =J bond disorder, but the generalization to the
J and -oJ (a>0) case can be done straighforwardly.

We consider the simplest choice of clusters with one and two-
particles (see figure 1) which gives in the MFRG approach the ex-
act ferromagnetic and spin-glass critical coupling of the present model
on the. Bethe lattice with the same coordination number. For instance
we recover the results of Matsubara and Sakata!® and the very
recent one of Carlson et al®, both for the Ising spié-glass
model (D=1} in the Bethe lattice, the latter obtained‘after rigo-
rous analysis._We believe that 6ur results can be improved to some
extend if large-size clusters'are considered but with the cost of
lengthy calcﬁlations. However, even for this choice of clusters

the frustration effects introduced by the effective field symmetry
boundary'conditions ¢can support the sPin-glass phase. It has been:
shown that the present solution is the correct one for the Ising

‘model on the Bethe lattice with uncorrelated boundary conditions?.

2 THE MODEL HAMILTONIAN AND THE MFRG METHOD

The reduced model Hamiltonian is given by

. =
-gH#=wu = J] K 5.3 +7 B.8. 1))
<i> 1117 i 1
where Kij=BJij is the disordered reduced coupling constant for the
nearest neighbour bonds in a hypercubic lattice, % is the vector
spins variables with continuous symmetry in the D-dimensional space

and B is the external uniform field in a particular direction of
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the D-space. The D-vector spins variables are constrained by the

. . . D . ~
normalizing condition ¥ (s, j2 = D which mcans the renormaliza-
r=1

tion of the coupling constants relative to the spin dimensionali—
ty.

The MFRG method is based on phenomenologlcal scaling relations
between the order parameters and between the associated effective
symmetry breaklng boundary flelds of the clusters to be renormaliz
ed., The renormalization recursion equations are formally obtained
by considering two finite clusters with N' and N spins (N'<N} and
by imposing a finite size scaling relation between the order para-
meters of both cilusters. The order parameters are calculated by as-
eumlng a symmetry breaking effective field at the edges in the spi
rit of the mean field approximation. The same scaling relation is
self consistently imposed between the fields. For second order tran
sitions one lead to a recursion relation for each order parameter

given by'?

of . : af
._Ji_‘ . XN (2)
=0

b’ T ob

b=0

where fN(fN.) and b(b') are the order parameter and the effective
field of the N(N') cluster. Note that eq.(2) is independent of the
scaling factor, The critical couplinq'Kc for each trensition is
given by the fixed point solutions of eq.(2).

For the present model we consider the guenched average magneti
zation as the order parameter for the ferromagnetic transition and
the Edwards-Anderson order parametex'® for the spin-glass transi-

tion.
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3 RENORMALIZATION FLOW EQUATIONS AND PHASE DIAGRAM

The renormalization recursion equations for the ferromagnetic
and the spin glass order parameters for the clusters with N'=1

and N=2 spins shown in figure 1 are given respectively by!'’

2<8'1> _ 3<8!> (3)
1 .
LA %0 | pao
a<sti>? . 3<s?>? (4)
ah' hl-o ah h“o
where
<s'd> = % K} b" (5)
i=1
1 - q 1 ES q 1
<> .21 K, s b1j + thDIz(DK12)j§1§KZj sz (6)

where Ki(ng) and biv(sz)(£=1,2) are the temperature reduced coup
ling constant and the v-éomponent of the boundary effective field
of the N'=1 (N 2) cell respectively, gq={(z2-1), 2z=2d being the co-
ordination number of the d-dimensional hypercubic lattice. thD /2 (DK )
is the generalized hyperbolic tangent given by In(y)/In_Jy),Inhn
being the modified Bessel function of first kind of order n=D/2

and y=DK In egqs. (3} and (4) <++-> means the thermal average

12°
while the bar represcnts the configurational quenched average,

s 1 W | | - 1142 - 1 2
H 'b'bej'h -(bi) and h-(btj) .

bt =

To get (5) and (6) we have assumed second order ferromagnetic and
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spin-glass phase transitions. Furthermore, for each transition the
effective fields are subjected to appropriated.boundary conditions
fo simulate the efféct of the éurrounding-SPins of the infinite sys
tem with the symmetry of the corresponding order parameter,.

To perfdrm the configurational quenched average we assume that
the k's and b's are independent rahdom variables according ¢to a
probability distribution. Moreover we force the.bohd distribution
to be the Same for both clusters leaving a disorder parameter (the
concentration of positive bonds, for instance) to be renormalized.

From egs. (3-6) we get

P-F:. z KV = g K(1+t) (7)

P-SG:  z K'? = g K?(L+t}) (8)

for the ferromagnetic-paramagnetic (P-F) and spin-glass-~paramagnet
ic (P=-5G) transifions, whefe tn=thn(DK12)} {n=D/2).

For simplicity we assuﬁe for the bond disorder the binary inde
pendent distribution with probability p for the +J and (l-p) for

the ~J bonds. Therefore from (7) and (8) we get

P-F: z x'K!

gxK(l+xt ) {9)

P-SG: z K2t = qK2(1+t;) '(lﬂ)

where x=(2p-~-1) and K=3J. Clearly the ﬁaramagnetic trivial solution
K=0 is a fixed point of bdth recursion relations (9) and (10) for
. all values of x (or'p). As the temperature is lowered, the paramag
netic solution beéomes unstablé and a phase transition occurs. The

phase boundaries from the paramagnetic to the ferromagnetic and to
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the spin-glass phases are given by the non-trivial solutions of

eqgs. (9) and (10) respectively, that is

P-F: l=qxt {11)

P-5G: 1=q t; (12)

Both egs. (11} and (12) are 1ines of fixed points. They also give
the exact bounda;ies of the paramagnetic phase for the model hamil
tonian on the Bethe lattice of coordination number z=(q+l)} as menl-
‘tioned before, Furthermore the renormalization flow in the (t#,x)-—-

space, obtained by egs.(9) and (10), that is

" =_Cl x(l+xtn) i _ (13}
(gz (1+t;) 1 i

Ras
g -
I}

' o ¥ U § _ i '
th [[g(l+t]) /2] th (t )] (14)

gives the critical line of the phase_'boundary between the ferro-
magnetic and spin-glass phases in the vinicity of the multicritical
point xc=tc=1//c] which is the common solution of eqgs.(11) and (12)
as expected. In the neighbornood of (xc,tc) the F-SG boundary is given by flux
line which can be well aporoximated by the non-trivial solution of eq.(8) that

is

X = Ei:-l- [tz (ee2) /@) /2 2y (15)

The renormalization flow egs.(13) and (14) have a zero temperature

2

unstable fixed point given by x°=2[z/2q] 1, to=1 which is ob-

viously a sclution of eq. {(15).

In figure (2} we ‘show the squematic phase diagram (1-t_,x)
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which is.similar to the one obtained by Carlson et al 1987 for the
Ising case (D=1). Atiﬁgh'uaqxxaugns the system is paramagnetic (P).
At low temperatures and high concentrations of +J bonds G<=1) we
find the ferromagnetic (F) phase, but for concentrations lower than
xc=1//E (of P, =% (1+1/7/3) the SG-phase is stable. Note that the
antiferromagnetic phase should appears for low concentrations

p=0(x =-1}. The phase diagram for x <0 can be obtained by reflec
tion of figure (1)} across the line x=0. Therefore the SG-phase is
stable between %(l—l//ﬁ) <$ <-%{1+1//§) and.t_>t_=1//3. However,
at zero temperature'(tn=1) the transition between the SG and the
F phases occurs,for the approximation considered here,at the con-
centrétion po=(z/2q)1?z: Since p_> p,_ the F-phase is reentrant in

the SG-phase. The width of this reentrance is given by &q=4pd-pk)/pc

which increases with q from Az =0.0146 to A _=0.4142.

The SG-F boundary given by eq.{15) should be the same 1line
found by Carlsoﬁ et al.* for the'béundary between the 8G
phase and a MSG-phase (magﬁetized spin glass phase). For instance,
eq. (15) has the same behavior near_the multicritical point tc=xc=

1/Yq, that is

J

|-t | = 2—;1‘-‘-— = (16)
and end at the point xo=0.732, t°=1 which is ﬁery close to the ac
curate value 0.739 obtained by Xwon and Thouless®. We did not suc
ceed to find in the framework of the MFRG method the MSG-phase, a
mixed phase between the spin-glass and the ferromagnetic phases'’?.
Moreover we believe that the exact phase bound&ry between the spin-
glass and the magnetized phases (F or MSG)} should shows the re-en

trant behaviour in contrast with the conclusions of Németh" and
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Nishimorif for the 1J Ising model who argue that a vertical phase
boundary should occurs'as_fa manifestation of a singularity in the

entropy of distribution of frustration!.

4 CORRELATION LENGTH CRITICAL EXPONENTS

The critical exponent of the thermal correlation length Vo
can be also extracted from egs.(9) and (10) as usual, that is
/v

T dK'

c
where £ is the scaling factor. The critical exponent Vo at the fix

ed points A,C and O of figure (1), can be evaluated analitically as

a function of the coordination number and the spin dimensionality.

Actually from eqs.(j7)' (9) and (10) we get A
Vix - zniz Ln :l ‘--g{-% + 9;—1 -%,2%)] (18)
Vic = T I ‘“_;1 _‘%% gﬁ 7%"-“9;2 (7-)] (19)
B - e 0[]

for finite D, where th;b(".)isthe inverse of the generalized hy-

1/2

perbolic tangent function, and £=[9(q+1l)/{9g9-1}] is the new de-

finition of the scaling factor for the MFRG proposed by Slotle!®

for the one and two-particles clusters in:a d-dimensional hypercubic

lattice of coordination number qg+l. Note that v;E is D independent.

The D+« Iimit of vol anda v}

TA 1c 2re given respectively by
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-1 +1 B (. +1) 7]
(=) = gn | AI*20 (21)
Ts‘ 2£n2 _(q2+1) ]
1y . 9+ " g (g+3)] -
vTA( ) = s En Ji-ﬂww; (22)
L {q+1) o

The concentration correlation length equentxb can be defined

by analogy with the thermal one by

(23)

which can be calculated with help of eq.(13), For the fixed points

C and 0 we get

-1 _ ) _q+é

Vee T Tn &n _q+l:l 24)
11 . /4

Veo = Tn € %/ 2(q+1)] (25)

e

which are D independent.

In table I we show the pure ferromagnetic thermal correlation
length exponent v., given by egs.(18) and (21) as function of the
hypercublc lattice and spin dlmen51onalities in comparison with re¢
sults obtained from several methods and experimental data. The MFRG
correlation lencth exponents are very sensitive to the scaling fac-
tor which is somewhat arbitrary in the MFRG method for anisotropic
clusters. Slotle*® has propcsed a reasonable definition for the
scaling factor that has been adopted in thelpresent work, In table
II we show the spin-glass thermal correlation length exponent vTC

for several snin dimensionalities and hypercubic lattice dimensions.

The figures in Tables I and II should not be compared in accuracy:
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with the ones obtained by sophisticated approaches and data but
viewed as a qualitative description of’fhe dependence of the cor
relation lenght exponents with the hypercubic lattice and spin dimen~

sionalities. Even though the results for the pure ferramagnetic exponent

Vra (Table I) are in good position comparing with others = real

space renormalization group methods. We note that Via

smoothly with the increasing of the spin diménsionality and de-

increases

creases smoothly with the increasing of the lattice dimension,
This behavior is also followed By the availables figures obtained
by others methods and data. Moreover in the infinite coordination

number limit (4 -+ «) uTA-+5/6 =0.555... for all spins dimensiona-

lities which is close to the -%- mean field value, For the spin glass

c decrea?gs with the lattice dimensiona-

)
0.555... which is close to the 3

transition (Table II) vT

lity as expected. For d +« VTC%
mean field value.We also pointibut that the present results show
that Ve increases with the spin dimensionalify. However figures
given by Morris et al.lf__ (defect energy and real space renor-
malization group methods) for the XY model (D=2) and the ones given
by McMillan!!? (domain wall renormalization group) for the Hei
senberg model {(D=3) in &=2 and 3 dimensions show an opposite be-
havior, However regarding to other results listed in Table II the
picture is not conclusive since those sophisticated methods - do
not covers systematically the whole table. It is worth to men-
tion that for the present choice of clusters one is not able to pre-
dict a lower critical dimension. As we mentioned above our criti
cal temperatures follow-the Bethe~Peierls approximation. We be-

lieve that these difficulties can be overcome if large clusters

preserving the lattice symmetry are chosen to be renormalized.
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Finally in table III we present the figures for the thermal
correlation length exponent for the spin-glass-ferromagnetic tran
gition Vro and the concentration correlation length exponents v

. cc
and v, as function of the hypercubic lattice dimensionalities as

co
given by eqs.(20), (24) and (25) respectively. We note that both
Vro and Veo decrease with the lattice dimensionality toward to ze

ro while v, +0.555.,, as @ + o,

oC
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lian granting agencies}.



CBPF-NF-040/88
=t 2w

FIGURE CAPTIONS

Figure 1: Schematic representation of the simplest clusters with

(a}) N'=1 and i=1...z and (b} N=2 and j=1,..(z-1).

Figure 2: General phase diagram for the D-vector model on the Bethe
lattice with coordination number (q+l), plotted as a func
tion of temperature (tn=thn(DJ/RT)) against the concen-
tration of ferromagnetic bonds (9=(x+l)/2). The:paramag—
netic (P), ferromagnetic (F) and spin—glas§ phases}mm.at
the multicritical point C (tc=xc=l//a). The transition
from the (SG)-to the (F) phases at T=0 (tnsl) occurs for

concentration p=[(q+1)/2q] /% >p =(1+1//q) /2.
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Table I: Ferromagnetic thermal correlation length exponent Vo, @8

function of the hypercubic lattice and spin dimensionali
ties. (d=(g+1)/2).

method a2 | d=3 - a=4 d=5
MFRG (a)  [0.7827 }o0.6813  |0.6431 | 0.6228
MKRG {b) 0.669 ' -
RSRG _ ] 1.1486 (c}| 0.8705 (A) 0:8426 (d)
e~expansion (€){0.99 +0.04] 0.6310+0.0015
D=1 |field theory (f) -10.630£0.0015
series (g) _0.64
data (h) 0.625:0,003 -
data (i) | 0.65£0.02 |
|exact - 1(3) a | 1/2 (k)
D=2 |MFRG(a) - }0.8125 | 0.6901 - 0.6473 | 0.6253
| field theory (f) - 0.669+0,002
series (2) 0.673:£0. 005
data (m) E 0.675:0. 001
D=3 |MFRG (a) lo.8307 | wv.6954 0.6498 | 0.6268
MKRG (n) | 1.40 - i
series (0) 0.7025+0.010
field theory (£) - 0.705x0,003
data (i) 10.70£0.002
D=4 |MFRG (a) 0.8425 | 0.6989 0.6515°| 0.6277
D=5 |MFRG (a) 0.8507 |0.7014 0.6527 | 0.6284
D=w |MFRG (a) 0.8924° | 0.7156 0.6597 | 0.6236
(a) present work (h) Chang et al.?2®
(b) Yeocmans and Stinchcombe?? (i) 1’5t1£l--'NiElSF-'nzg
() Tsallis and Lefvf3 (3) wu?
(d} Martin and Tsallis? (k) Pfeuty and Toulouss-
(e} Ie Guillon and ZJ.nn--C.Fust.U'p25 {£) Pfenty et al.??
(f) Le Guillon and Zimh:rustin“ (m) Mueller et al.
" (g) Fischer and Burford > (n) Stinchtombe?

(o) niudﬁmaanifisﬂem
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Table II: Spin-glass thermal correlation length exponent as func-
tion of hypercubic lattice and spin  dimensionalities

(d=(g+1)/2}).

. method - d=2 .3 | a-4 d=5
D=1{MFRG (a) ~ fo.9350 {0.7638  [0.7000}0.6228
Monte Carlo (b) 1.320.1 _
Monte Carlo (c) 1.08v.5 0,6
Monte Carlo (&)} [1.2:0.1
D=2 {MFRG (a) 1.0855 0.8249 ~ |[0.7374}0.6253
defect energy (e){1.09:0.05 |2.220.05
-|MKRG (e) 1.08 - |2.3
D=3 |MFRG (a) 1.1770 . |0.8622  |0.7602|0.7094
DWRG (£)  [0.714:0.015|1.54:0.019 |
Monte Carlo (g)} 1.4
D=4 [MFRG (a) 1.2309  lo.seso |0.7750|0.7201
D=5 |MFRG (a) {1.2642  |o.9019°  |0.7853|0.72%6
D==|MFRG (a) ~ [1.3814  [0.9718 . [0.8343[0.7652
defect energy (e)]0.65+0.02 1.01:0.03;  |

(a) present work (d) Ogielski and Morgenstern®®
(b) Ogielski® ** (e) Morris et al.®
(c) Wano and Swendsen?®’ (£) Mc#illan !’

(g) Olive et al.®?
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"Table III: Concentration correlation length exponent

Veg and Veo and thermal correlaticn length

Voo a8 function of the hypercqbic lattice
‘dimensionality (d=(g$l)/2).

* ;d 3 1 BER ;‘T T § . 1§ e

| voc | 0-7291 | 0.6642 | 0.6348 | 0.6179 | 0.6069]

| veo | 0.4969 | 0.3374 | 0.2564 | 0.2069 | 0.3735

| veo | 0-2006 | 0.1002 | 0.0668 | 0.0501 | 0.0401
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