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Abstract

In this work, we discuss the interaction between anti-symmetric rank-two tensor matter and
topological Yang-Mills fields. The matter field considered here is the rank-2 Avdeev-Chizhov‘s
tensor matter field in a suitably extended N7 = 2 SUSY. We start off from the Ny =2, D =4
superspace formulation and we go over to Riemannian manifolds. The matter field is coupled
to the topological Yang-Mills field. We show that the two actions are obtained as a QQ—exact
forms and which allow us to write the energy-momentum stress tensor as ()—exact observables.
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1 Introduction

Topological field theories such as Chern-Simons theory and BF-models in gauge theories, probe
space-time in its global structure, and this aspect has a significative relevance in quantum field
theories. On the other hand there is several reserch in term of antisymmetric rank-2 tensor fields
that can be put into two categories: gauge fields or matter fields. In recent years, Avdeev Chizhov
[1, 2, 3] proposed a model where the antisymmetric tensor field is a matter.

In a recent work [4], Geyer-Miilsch presented a formulation until then unknown in the literature,
which is a construction of the Avdeev-Chizhov action described in the topological formalism [5].
This was built for Ny = 1 and generalized for Ny = 2. Known the properties of the anti-symmetric
rank-two tensor matter field theory, also called Avdeev-Chizhov’s field [6], the supersymmetric
properties and characteristics presented also in [7]; following this formalism we shall write this
action in the superfield formalism, presented by Horne [8] in topological theories as a Donaldson-
Witten topological theories [9, 5].

Our goal in this work is to discuss the interaction between matter and topological Yang-Mills
fields as presented by Geyer-Miilsch [4] for Ny = 1 and N7 = 2. The matter field considered
here is the rank-2 tensor matter field as a complex self-duality condition [6]. Thus, we write
this field now as an anti-symmetric rank-two tensor matter superfield in Ny = 2 SUSY in the
superspace formalism, founded also in [7]. The matter field is coupled to the topological Yang-Mills
connection by means of the Blau-Thompson action. We write the Yang-Mills superconnection as a
2—superform in a superspace with four bosonic dimensions spacetime described by Grassmann-odd
coordinates and two fermionic dimensions described by Grassmann-even coordinates and construct
the action in a superfield formalism following the definitions by Horne [8]. Then, we go over to
Riemannian manifolds duely described in terms of the vierbein and the spin connection, where we
taking the gravitation as background. We introduce and discuss the Wess-Zumino gauge condition
induced by the shift supersymmetry better detailed in [10]. Then, we arrive at a topological
invariant action as the sum of the Avdeev-Chizhov‘s action coupled to the topological super-Yang-
Mills action; both actions are obtained as Q—exact forms, and of the energy-momentum stress
tensor ()—exactness as a observables.

2 The Ny = 2 Super-conection, Super-curvature and Shift
Algebra

Let us now consider the Donaldson-Witten theory, whose space of solutions is the space of self-dual
instantons, F' = %F. To follow our superfield formulation, we shall proceed with the definition of
the action of Horne [8] and Blau-Thompson [12, 13]. The Ny = 2 superfield conventions are the
ones of [10]. The superfields superconnection and its associated superghosts are given as below:

A= AT, C=CT, (2.1)
whose the generators belonging the Lie algebra:
[Ta, To] = ifap Te. (2.2)
Expliciting the superforms (2.1) in components superfields, we have
A= A(x,,,6r) + Er(x,,0r)d6", C = C(x,,6r), (2.3)

with I = 1,2; in components, we have:

A6 = al@)+ 67 (@) + (), (24)
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Bi(n,0) = Xf(w)+9[¢1J(w)+%92m(m), (2.5)

C(z,0) c(x) + 0% cr(x) + %9201:(3:). (2.6)

The associated supercurvature is defined as
=dA + A% = (dA+ A%) + (01A+ DAEy) do” + - (a[EJ +8,E; + [Er, E;))do"de?  (2.7)

which also can be expressed as: F=F+0;d0 +&,, df'dh’, whose components read as below:

F = f—0"D.yr+ 92(0 a+ s T, 4.), (2.8)
Uy = ¢r+Daxs +6’ (sua —67 Dmu + 607y, x1])
(5 Danr — 5 e, 1a] + glon i), (29
oy = %{@J +dar + [xr,xs] + 0% (exrns + erenr + [x1, o] + (b1, X))
450 (xrma) + bl = X grw 6}, (210)

where f = da + a® and the covariant derivatives in a being given by D,(-) = d(-) + [a, ()]; (%)
represents any field which the derivative act upon.

The susy number, s, is defined by attributing —1 to 6. Thus, the supersymmetry generators,
@, have SUSY number 1 The BRST tranformation of the superconnection (2.3) is sA = —dC —
[A,C] = —D C and component superfields, is given by

sA=—dC —[A,C] = —D4C,
SE[ = —610 — [E[,C] = —D[C, (211)
sC = -C?,

which in components take the form:

sa = —dc — [a,c] = —D,c

sthr = —[c,¥1] — Dqcr,

sa = —[c,a] — Dycr + el [er, 4],

SX1 = _[chI] —Cr,

s¢ry; = —lc,¢15] —erser + [x1,¢4] (2.12)
snr = ~[e,nt] = [er, x1] + e’ ¥es, drxc),

sc = —c?,

ser = —[¢, eq],

scr = —[c,cp] + 3! [er, ¢g]

and the super-covariant derivative is decomposed in: D i=Da+ dd'Dy.
The supersymmetry transformations or shift symmetry transformations, are defined as:
QrA=01A, QiE; =01E;, QiC =0;C,
in components, they read as follows:

Qra=vr, Qrpj=—crja, Qra =0,
Qixs =01, Qroge =—crxns, Qms =0, (2.13)
Qic=cy, Qrer = —€rjer, Qrecr = 0.
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Next, we believe it is interesting to introduce and discuss a sort of Wess-Zumino gauge choice
associated to the shift symmetry above, which is the topological BRST transformation. The Wess-
Zumino 2 gauge seen in [11, 10], is here defined by the condition

X1 = 0 and ¢[1J] =0. (2.14)

due to the linear shift in the transformations (2.12) for scalar fields x; and ¢ respectively, with
parameters given by the ghost fields ¢; and cp. There exists now, only the symmetric field ¢z7),
that we write from now on, simply as ¢;;. This condition is not susy-invariant under @y, and it
can be defined in terms of the infinitesimal fermionic parameter e’ as

Q=¢Qr.

This operator leaves the conditions invariant, and it is built up by the combinations of ) with the
BRST transformations in the Wess-Zumino gauge, such that

Q = (S+Q)|01=5J¢11,CF=%5J77]' (215)
The results in terms of component fields are displayed below:

Qa = —D,c + €'y,

@’QZJ] = — [C, ’QZJ]] - GJDQ¢]J +€ra,

Qa = —[c,a] + "X [prx,95] — 5" Dani,
Qory = —le,d15] + 5 (emy + egnr)

Qnr = —le,ni] + "X eMprur, drk],

@C =—c + EIE'](b[J.

(2.16)

in agreement with the transformation found in the works of [14, 13] and the nilpotence is

(@)2 & 6¢IJ (2-17)

that is a infinitesimal transformation of ¢r;. With the result of the previous section, we are
ready to write down the Blau-Thompson action, which is the invariant Yang-Mills action, for the
topological theory.

3 The Blau-Thompson action

The associated action for Np = 2, D = 4 is the Witten action [8, 14, 15], described in Ny = 2 by
the Blau-Thompson action [12, 13], with gauge completely fixed in terms of the superfield. For the
construction of this action, we wish a Lagrange multiplier that couples to the topological super-
Yang-Mills so as to manifest its self-duality: F = xF. We then define a 2-form-superfield Lagrange
multiplier, with the property of anti-self-duality and super-gauge covariant: sK = —[C, K], such
that

1
K(z,0) = k(z) + 0" kr(z) + 502#6(:6).
We still wish a quadratic term in the last component field of K. Still, we need a 0-form-superfield
to complete the gauge-fixing for ¥y, which is defined as:

Hi(2,60) = hi(z) + 67 hyr(z) + 392,),(9;). (3.1)

To fix the super-Yang-Mills gauge, we define a anti-ghost superfield of C', being a 0-form-superfield
of fermionic nature

Cl2,60) = o(x) + 0'%1(z) + %o?ep (@), (3.2)

2This name was given due to likeness of we treat of a linear gauge for ghost scalar fields.
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associated to it; we define a 0-form-superfield Lagrange mulptiplier
1
B(z,6) = b(z) + 0'br(x) + 59%(3:). (3.3)

Their BRST tranformations are sC = B, sB = 0, and in components reads

sc=b, sér=br, scp=20,

sb=0, sbr=0, sB=0. (3.4)

Therefore the complete Blau-Thompson action on superspace, takes the form

Spr = /d26{K « F+ (K« DK +e""HiDs U+ s(Cdx A)}, (3.5)
with ¢ being constant. In components, we have
Spr = /{%n s f 4+ Crx k4 Cel (kx[nr ks + [kr,nr) x k) — Co" pryk x k
—%s”k, x Dathy + %k * Dyo + ik w el [apr,s]
+8U(%p1Da * 1y + %hJIDa * o — %5KLhKIDa *Doggr

1 1
+§hIDa ¥ Dang — eXPhiDy x YK, d1] — §[h1,¢J] * o

1 1
—iﬁKLWK, hi]l * Do, + §8KL[¢K, hrr) g+ [o, hy] % 4y)
1 1 1 1
+=bd* B+ =e!?brd« 1y + =fd*a — =¢d x Dycp
2 2 2 2
1 1 1
—55U6d* [Vy,cs] — §Ed* [B,c] + §5UE[d* D,cy
1 1
+55U61d # [, ] = Serdx Dac}. (3.6)

In the next section, we shall see, the Avdeev-Chizhov action in general Riemannian Manifold
with the background metric.

4 Tensorial Matter in a General Riemannian Manifold

To couple the theory above to the Avdeev-Chizhov model, we start describing the Avdeev-Chizhov
action through the complex self-dual field ¢ [6], initially written in the four-dimensional Minkowskian
manifold, whose index are: m,n, ... . We write this action, according to the work of [6]

Smatter = /d4l'{(Dm<Pmn)T(Dp<Ppn) + q(‘pinnsopncpfmqsopq)} (41)

here ¢ is a coupling constant of self-interaction, and the covariant derivative D}*¢yn = 0" @mn —
[a™, ©mn]; @™ is the Lie-algebra-valued gauge potential and we assume ¢,,, to belong a given
representating of the gauge group G. This action is invariant under the folowing transformations

dq(W)am = Dpw, 06(W)Pmn = @mnw, 5G(w)30;rnn = —WSOInna (4.2)

with ¢ given by _
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which exhibit the properties ©mn = i{@mn, émn = —@mn, Where the duality is defined by @, =
%SmanSOpq-

For treat this theory, in the general Riemannian Manifold as a topological theory, Geyer-
Miilsch [4] rewriting the configurate field in a four-dimensional Riemannian manifold, endowed of

the vierbein e,™ and a spin-connection wy'", i.e., the tensorial matter read as ¢, = e€,™e, " Omn,
where the action (4.1) is given by

Smatter = [ A/F{Tup™) (T6,) + alolus o o0)} (44)
In this 4-dimesional Riemannian manifold, we find the folowing properties:
Veupe™™ = e[i:nevneppez\i]’ (4.5)

eumeyngul/ = nmn, eumeynnmn = Guv- (46)

The covariant derivative in the Riemannian Manifold is now written in terms of the spin-connection:
V=D, +w,, (4.7)

where w, = w0 mn, being oy, the generator of the holonomy Euclidian group SO(4) [?], alson

we have: D, = (D,),.

5 Supersimetrization of the Avdeev-Chizhov Action

¢From now on, we can write the action (4.4) in terms of superfields, mentioning the conventions
of the works [10, 8]. The superfield that accommodates the rank-two anti-symmetric tensorial
matter field, is similar to the one defined in [7], being now expressed as a linear fermionic. This is
defined as a rank two anti-symmetric tensor in the 4-dimensional Riemannian manifold, and with
the topological fermionic index I, referring to the topological SUSY index:

B, (2,0) = Moy () + 07 gy (@) + 50°CL (2), (1)

where ¢, () is the Avdeev-Chizhov field. The super-manifold is composed by Riemannian mani-
fold and the Ny = 2 topological manifold, because it, is not need to define the super-vierbein and
super-spin-connection.

The superfield is defined under the SUSY transformations

QrEuvs =018, (5.2)

and in components:
QIAMVJ = Er17Puv
QISO;W = _Cw/[ (5-3)
QIC;u/J =0

Based on the work of [6], we rewrite the BRST transformations, referring the non-Abelian
Avdeev-Chizhov model, in terms of the transformations:

$omn = (1) Pl
S(p%n = —’L.Ca(pigm (Ta)]z’
S(VmQOmn)Z = ica(Ta)” (vaOmn)j:

S(Vmwmn)fi = _ica(vmsomn)fj (Ta)jia



CBPF-NF-040/03 6

where (2.2) is the Lie algebra. We wish to write the BRST —transformation for a supergauge
transformation, generalizing the transformations for the Avdeev-Chizhov fields, according to

s(2L )y =402 ),
Ne it 0 G54

in components, we get:
I _ ;I
SNy = 1€,

s)\;ffl, = —ic/\L{,,

8Quy = 1CPu + icI/\,wI,

5Ph icpl, =i AL

SCZJ/ = iCCI{V - 7:0180,“/ —+ ’L.CFA,I“,,
sC;L{, = —icCLI, + iclcp;fw — icF/\L{,.

The super-derivative of the (5.1) is covariant under the BRST—transformation, where now, the
covariant super-derivative is

Dy() = (Da)u() +wu() = V() + 0, ()] + %92[%, )],
acoording to (4.7), then gives

s(D,%;,) = C(D.Z],),
s(Disl,) = C(Drsh,),

where we chose here, sw, = 0.

By now performing BRST—transformations on the components that survive in the Np = 2
Wess-Zumino gauge (2.15), we find:

@)\w,] = 6‘]8,]](,0”1, + 'L'CAM,],

Cg)\:rw[ = ejsncp;fw — ic/\:rwl,

Qe = icpuy + i€ICuvl + i€I¢IJ>\;{w
@(le/ = _,L.CQOLV - 'L.GICZV[ - i€I¢IJ>‘L.1]/7
QC’;VI = iCCI“,T[ — ingﬁ][ng, + ieJnJ/\MVTI’
QC[I,UI = _iccuul + i€J¢JI(pLU - ieJnJAqu‘

(5.6)

in agreement to (2.17).
We build up rank two anti-symmetric tensorial matter field on superspace formulation, leaving

the superfield with the same properties as shown in [7], this is invariant under gauge transformations
(5.6) and SUSY transformations. The kinetic term is proposed as

sMn=/d%u%v@¥%a%E?ﬂa%E%ﬁ}
In components, we get:
1 ) 1 ,
Sun = [ dVFG T (Vo) + 535 (TN, )
1 v v
+§€”(VMGL )T(Vp)‘pyJ) + (Vi )ijia/\pul]

+[u J:‘PTHU](vp‘Ppu) + EU(VMA?V)T ([evp, ApVJ] + [o7,9"])
e (o AT+ [0, 9™7) (VoA )} (5.7)
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The interaction term, it has a small contribution of having second derivative, in the Grassmann
coordinates, it should also be invariant front the gauge transformations (5.6) and supersymmetry.
We defined this as

Sint = / d'ed®0/g{e” "M (S, 1) DX (S5) (S D (Spane) } (5-8)

where Dk () = Ok (+) + [EKk, (*)], in components

1 14 174 12

St = 3 / d*z/g{el, 0" 0" pon — " (AL, 17 + L, AT )0 0
—ol, @ AP Cox g + A D] + R E N, 1 Goa + CE N )
0l AT O G+ G 1) + AL A I, Nl (5.9)
_ALU 195 A Apn + ol NP mNE N L — AL,,,A?"nLA}é‘A%A (5.10)
_)\:rw AT Aoa L+ )\LU 1/\§V¢MN¢MN/\J}?)‘>\M ]} (5.11)

The total action is being determinad for: Skin + ¢Sy, such that
Sac = _/dQ&ﬁ{EIJ(DuE?")T(DpzpuJ)JrqE”ELM(Euu D DK (E) (SN D (Soa )} (5.12)

where ¢ is a quartic coupling constant self-duality. In components we have the Avdeev-Chizhov
action more coming terms of the supersimetrization of the model

1 1 v
Sic = [ daviG T (Ta) + 52 (TN )

+%gIJ(quw)T(Vp/\pVJ) + (VM‘PW)TWJ,I,, zo

o, "NV o0?, ) + e (VN (ln, X 5+ o 1, 0%,))

+e'” ([am MY+ [, sO”“’]) (VN )

+a(ph, e e oo — e[, 1CF7 + ¢ AT )™ opn

_QDL”QDPV(A;MCP*J + N )] + EIngL[)‘LuI A AL + CEM A L)
+<Z,1/ YO+ N 1) + )\;f“/ BRI

_A;r“’ st”nLA%‘AAPA + ‘p:rw AgunIA%tAApAL — ALVIA?I”]L)\}?A()OPA

A, A AN L+ AL AT SN Gy A A L))} (5.13)

that is conformal invariant. Therefore the total gauge invariant action, is write as: Sac + Spr-

The @ —exactness of the total action above is also contempled for N7 = 2 SUSY as in [4], this
because the fermionic volume element Q? o Q1@Q> , that means the exactness in the charge Q1,
Q- of this action. This proof for Ny = 1 and N7 any, is given in the works [10]. Acoording to
Blau-Thompson in their review [16], the energy-momentum stress tensor 0, is also (Q—exact,

2 0
V9 ogh”

guaranteeing the topological nature of the theory, where we shall just use the Avdeev-Chizhov
kinetic term, because the interaction term carries the coupling constant ¢, which is irrelevant in
the obtaining of the theory’s observables [4].

O =(0[0,,|0) = (0] (Spr + S540)10) = (0]Q Y1, [0) (5.14)
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Concluding Remarks

The main goal of this paper is the settlement of a topological superspace formulation for the
investigation of the coupling between the rank-2 Avdeev-Chizhov matter field and Yang-Mills
fields, given us a Q—exact Energy-momentum observables, reminding that a lot of observables
class, and it is what we are trying to do in the moment, classify them [18].

It is worthwhile to draw the attention here to the shift symmetry to which we detect the ghost
caracter of the Avdeev-Chizhov field. This seems to be a non-trivial remark. On the other hand, it
is known that there appears a ghost mode in the spectrum of excitations of our tensor matter field.
The connection between these two observations remain to be clarified. The fact that the Avdeec-
Chizhov field manifest itself as a ghost guide future developments in the guest of a consistent
mechanism to systematically decouple the unphysical mode mentioned above.

We are also trying to embed the tensor field in the framework of gauge theory with Lorentz
symmetry breaking [17]. We expect that this breaking may select the right ghost mode present
among the two spin 1 components of the Avdeev-Chizhov field.

Acknowledgments. We thank Alvaro Nogueira, Clisthenis P. Constantinidis, José.L. Boldo,
Daniel H.T. Franco for many useful discussions and the Prof. Olivier Piguet for the the great help
and encouragement,.

Appendix

A Conventions

The topological fermionic index: I = 1,2, is lowered and rised by the anti-symmetric Levi-Civita
tensor: €17, €1, with 2 = —g;5 = 1. The §—coordinates definitions: 87 = e’78;, 0; = e;;07, the
quadratic form are:

1 1
0> =0"0; = —6,0", 0707 = —55”92, 06, = §5U02,

with erxe®’ = §,/. The derivatives in the 8! coordinates, are defined by

0 i_ 0

Or = 3g1 50,

and 907 " 57, (A1)

alf('ra 0) = E[]BJf(l', 9)7
with f(z,0) a any superfunction. Deriving the #—coordinates, gives

810'] = —&‘IJ, 8[9] = —€1J (AQ)

A superfield is expanded of the following form

F(x,0) = f(z) + 6" fr(z) + %92fp, (A.3)

obeying the transformation Q;F(z, 6) = O0rF(z,0). In components is waited that
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Qif =fr; Qifr=—errfr; Qifr =0.

Caracteristics table of the superconnection fields:

Charge\Geometric fields | € [ a [T [a|xT [ [ nf |l clc|ecr
s —1]10]| 1 ]2]1 2 3]0 1] 2

g 170|101/ 0]O0 0 Ooj1]1]1

p O (11|10 0 00|00

Pyrs + + |- -1 + + | -

where have s: susy number, g: ghost number, p: degree form, Py,,: Grassmann parity.

B Topological Grassmannian integration

The definition of integration in this topological SUSY representation is
/ o' = ;.

This result is applied to a superfunction f(z,#), so that the volume element is

[ #65(.6) " 110104 12.6),

therefore the square of the supersymmetric charge operator (shift operator), is definide by:
@ =q'a=0'0, =1 [ &,

which is a volume element too.
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