# An application of supersymmetric quantum mechanics to a planar physical system 

R. de Lima Rodrigues ${ }^{(a) *}$, V. B. Bezerra ${ }^{(b)}$ and A. N. Vaidya ${ }^{(c)}$<br>${ }^{(a)}$ Centro Brasileiro de Pesquisas Físicas<br>Rua Dr. Xavier Sigaud, 150<br>CEP 22290-180, Rio de Janeiro-RJ, Brazil<br>${ }^{(b)}$ Departamento de Física, Universidade Federal da Paraíba João Pessoa - PB, 58.059-970, Brazil<br>(c) Instituto de Física, Universidade Federal do Rio de Janeiro Rio de Janeiro, RJ - 21.945-970 - Brazil

June 2001


#### Abstract

Supersymmetry (SUSY) in non-relativistic quantum mechanics (QM) is applied to a 2-dimensional physical system: a neutron in an external magnetic field. The superpotential and the two-component wave functions of the ground state are found out.


PACS numbers: 11.30.Pb, 03.65.Fd, 11.10.Ef
Key-words: Supersymmetry; Quantum mechanics; Magnetic field.

## Typeset using REVTEX

[^0]The algebraic technique of supersymmetry in quantum mechanics (SUSY QM) was first introduced by Witten [1]. The essential idea of this formulation is based on the Darboux procedure on second-order differential equations, which has been successfully utilized to achieve a supersymmetric generalization of the harmonic-oscillator raising and lowering operators for shape-invariant potentials [2,3]. The SUSY algebra has also been applied to construct a variety of new one-parameter families of isospectral supersymmetric partner potentials in quantum field theory [4]. The shape-invariance conditions in SUSY have been independently generalized for systems described by two-component wave functions [5]. Recently, we have found a two-by-two matrix superpotential associated to the linear classical stability from the static solutions for a system of two coupled real scalar fields in (1+1)-dimensions [6].

We also presented an integral representation for the momentum space Green's function for a neutron in interaction with a static magnetic field of a straight current carrying wire, which is also described by two-component wave functions [7]. The SUSY QM formalism was also applied to this planar physical system in the momentum [8] and coordinate [9] representations.

In this letter, we consider the notation of Ref. [8]. However, according to our developments, we can realize the supersymmetric algebra in coordinate representation, introducing some transformations in the original system corresponding to a neutron interacting with the magnetic field of a linear current carrying conductor, so that we are able to implement a comparasion with both superpotentials for the cases corresponding to currents located along $x$ and $z$ directions.

Now, let us consider an electrically neutral spin- $\frac{1}{2}$ particle of mass $M=1$ and magnetic moment $\mu \vec{\sigma}$ (a neutron) interacting with an infinite straight wire carrying a current $I$ and located along the $z$-axis. The magnetic field generated by the wire is given by (we use units with $c=\hbar=1$ )

$$
\begin{equation*}
\vec{B}=2 I \frac{(-y, x, 0)}{\left(x^{2}+y^{2}\right)}, \tag{1}
\end{equation*}
$$

where $x$ and $y$ are Cartesian coordinates of the plane perpendicular to the wire.
The Hamiltonian associated with the physical system is given by

$$
\begin{equation*}
H=\frac{\vec{p}^{2}}{2 M}+\mu \vec{\sigma} \cdot \vec{B}=\frac{\vec{p}^{2}}{2}+2 I \mu \frac{\left(-y \sigma_{1}+x \sigma_{2}\right)}{\left(x^{2}+y^{2}\right)}, \tag{2}
\end{equation*}
$$

where $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are Pauli matrices. The motion along the $z$-axis is free and will be ignored in what follows and in this way we get a two-dimensional problem.

Due to the translational symmetry in the $z$-direction, the two-component wave function $\psi(\rho, k)$ can be written as

$$
\begin{align*}
\psi^{\left(n_{\rho}\right)}(\rho, k)= & \frac{1}{\sqrt{4 \pi L}}\left\{\tilde{\psi}_{1}^{\left(n_{\rho}, m\right)}(\rho, k) e^{i m \phi}\binom{1}{0}+\tilde{\psi}_{2}^{\left(n_{\rho}, m\right)}(\rho, k) e^{i(m+1) \phi}\binom{0}{1}\right\} e^{i \frac{i \pi}{L} k z} \\
& \equiv\binom{\psi_{1}^{\left(n_{\rho}\right)}(\rho, k)}{\psi_{2}^{\left(n_{\rho}\right)}(\rho, k)} \tag{3}
\end{align*}
$$

where $n_{\rho}=0,1,2, \cdots$ is the radial quantum number; $k=0,1,2, \cdots ; m=0, \pm 1, \pm 2, \cdots$; $\rho, \phi, z$ are the usual cylindrical coordinates and the parameter $L$ is the macroscopic length of the conductor.

Therefore, the Schrödinger equation splits up into a system of two coupled second order differential equations as follows

$$
\begin{align*}
& \frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d}{d \rho} \tilde{\psi}_{1}^{\left(n_{\rho}, m\right)}\right)-\frac{m^{2}}{\rho^{2}} \tilde{\psi}_{1}^{\left(n_{\rho}, m\right)}+2 \tilde{E} \tilde{\psi}_{1}^{\left(n_{\rho}, m\right)}+\frac{2 F}{\rho} \tilde{\psi}_{2}^{\left(n_{\rho}, m\right)}=0 \\
& \frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d}{d \rho} \tilde{\psi}_{2}^{\left(n_{\rho}, m\right)}\right)-\frac{(m+1)^{2}}{\rho^{2}} \tilde{\psi}_{2}^{\left(n_{\rho}, m\right)}+2 \tilde{E} \tilde{\psi}_{2}^{\left(n_{\rho}, m\right)}+\frac{2 F}{\rho} \tilde{\psi}_{1}^{\left(n_{\rho}, m\right)}=0 \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
F=-\frac{\mu_{0} \mu I}{2 \pi} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{E}=E-\frac{2 \pi k^{2}}{L^{2}} . \tag{6}
\end{equation*}
$$

Note that Eq. (4) is exactly Eq. (2.8) given in [8]. Now, using the relation

$$
\begin{equation*}
\tilde{\psi}_{i}^{\left(n_{\rho}, m\right)}=\rho^{-\frac{1}{2}} \phi_{i}^{\left(n_{\rho}, m\right)} \quad(i=1,2), \tag{7}
\end{equation*}
$$

we can write the system in (4) in the matrix form as

$$
\left(\begin{array}{lc}
-\frac{d^{2}}{d \rho^{2}}+\frac{m^{2}-\frac{1}{4}}{\rho^{2}}-2 \tilde{E} & \frac{-2 F}{\rho}  \tag{8}\\
\frac{-2 F}{\rho} & -\frac{d^{2}}{d \rho^{2}}+\frac{(m+1)^{2}-\frac{1}{4}}{\rho^{2}}-2 \tilde{E}
\end{array}\right)\binom{\phi_{1}^{\left(n_{\rho}, m\right)}}{\phi_{2}^{\left(n_{\rho}, m\right)}}=0,
$$

which corresponds to a one-dimensional Schrödinger-like equation associated with the two-component wave function. Therefore, we get the eigenvalue equations

$$
\begin{equation*}
\mathbf{H}_{1} \boldsymbol{\Phi}_{1}^{\left(n_{\rho}, m\right)}=\tilde{E}_{1}^{\left(n_{\rho}, m\right)} \boldsymbol{\Phi}_{1}^{\left(n_{\rho}, m\right)}, \quad E_{1}^{\left(n_{\rho}, m\right)}=2 \tilde{E}^{\left(n_{\rho}, m\right)}, \tag{9}
\end{equation*}
$$

where

$$
\boldsymbol{\Phi}_{1}^{\left(n_{\rho}, m\right)}=\boldsymbol{\Phi}_{1}^{\left(n_{\rho}, m\right)}(\rho, k)=\binom{\phi_{1}^{\left(n_{\rho}, m\right)}(\rho, k)}{\phi_{2}^{\left(n_{\rho}, m\right)}(\rho, k)}, \quad \mathbf{H}_{1}=-\mathbf{1} \frac{d^{2}}{d \rho^{2}}+\left(\begin{array}{ll}
\frac{m^{2}-\frac{1}{4}}{\rho^{2}} & \frac{-2 F}{\rho}  \tag{10}\\
\frac{-2 F}{\rho} & \frac{(m+1)^{2}-\frac{1}{4}}{\rho^{2}}
\end{array}\right) .
$$

Defining

$$
\begin{equation*}
\mathbf{H}_{1} \equiv \mathbf{A}^{+} \mathbf{A}^{-}+\mathbf{1} \tilde{E}_{1}^{(0)}, \quad \mathbf{A}^{ \pm}= \pm \frac{d}{d \rho}+\mathbf{W}(\rho), \tag{11}
\end{equation*}
$$

we obtain the following Riccati equation in matrix form

$$
\mathbf{W}^{\prime}(\rho)+\mathbf{W}^{2}(\rho)+\mathbf{1} \tilde{E}_{1}^{(0)}=\left(\begin{array}{cc}
\frac{m^{2}-\frac{1}{4}}{2 \rho^{2}} & \frac{-2 F}{\rho}  \tag{12}\\
\frac{-2 F}{\rho} & \frac{(m+1)^{2}-\frac{1}{4}}{2 \rho^{2}}
\end{array}\right),
$$

where $\mathbf{W}(\rho)$ is a two-by-two superpotential matrix. The hermiticity condition allows us to write

$$
\mathbf{W}=\mathbf{W}^{\dagger}=\left(\begin{array}{ll}
f(\rho) & g(\rho)  \tag{13}\\
g(\rho) & h(\rho)
\end{array}\right)
$$

where $f, g$ and $h$ are real functions and satisfy the nonlinear system of differential equations

$$
\left\{\begin{align*}
f^{\prime}+f^{2}+g^{2}+E_{1}^{(0)} & =\frac{m^{2}-\frac{1}{4}}{\rho^{2}}  \tag{14}\\
f g+h g+g^{\prime} & =\frac{-2 F}{\rho} \\
h^{\prime}+h^{2}+g^{2}+E_{1}^{(0)} & =\frac{(m+1)^{2}-\frac{1}{4}}{\rho^{2}} .
\end{align*}\right.
$$

Now, let us try a solution for equation (14) assuming that $g$ is constant. Then, we have

$$
\begin{equation*}
f+h=-\frac{2 F}{g \rho} \tag{15}
\end{equation*}
$$

which gives

$$
\begin{equation*}
f^{\prime}-h^{\prime}-\frac{2 F}{g \rho}(f-h)+\frac{2 m+1}{\rho^{2}}=0 . \tag{16}
\end{equation*}
$$

Solving the last equation and imposing finiteness condition on the solutions, we get

$$
\begin{align*}
& f(\rho)=\frac{b}{\rho}, \\
& h(\rho)=\frac{c}{\rho}, \tag{17}
\end{align*}
$$

where $b$ and $c$ are arbitrary constants. Substituting these solutions into the system (14), we find that a consistent solution is possible only if

$$
\begin{equation*}
g=-\frac{F}{m+1} \tag{18}
\end{equation*}
$$

where $F$ is defined in Eq. (5). Then, turning to Eq. (16) and substituting Eqs. (17) and (18) we find constants $b$ and $c$. Putting these results back into Eq. (17), we have that

$$
\begin{align*}
& f(\rho)=\frac{m+\frac{1}{2}}{\rho} \\
& h(\rho)=\frac{m+\frac{3}{2}}{\rho} . \tag{19}
\end{align*}
$$

In this case, the two almost isospectral Hamiltonians are given by

$$
\begin{align*}
& \mathbf{H}_{1}=\mathbf{A}^{+} \mathbf{A}^{-}-\frac{F^{2}}{2(m+1)^{2}} \mathbf{1}  \tag{20}\\
& \mathbf{H}_{2}=\mathbf{A}^{-} \mathbf{A}^{+}-\frac{F^{2}}{2(m+1)^{2}} \mathbf{1} . \tag{21}
\end{align*}
$$

Since $\mathbf{A}^{+} \mathbf{A}^{-}$is positive semidefinite, according to (11) and (20) the energy eigenvalue of the ground state is

$$
\begin{equation*}
\tilde{E}^{(0)}=-\frac{F^{2}}{2(m+1)^{2}}, \tag{22}
\end{equation*}
$$

with the annihilation conditions

$$
\begin{equation*}
A^{-} \Phi_{1}^{(0)}=0 \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{+} \Phi_{2}^{(0)}=0 \tag{24}
\end{equation*}
$$

and the new superpotential

$$
\mathbf{W}_{m}=\left(\begin{array}{cc}
\frac{m+\frac{1}{2}}{\rho} & -\frac{F}{m+1}  \tag{25}\\
-\frac{F}{m+1} & \frac{m+\frac{3}{2}}{\rho}
\end{array}\right) .
$$

The energy eigenvalues of magnetically bound excitated states in terms of the radial quantum number $n_{\rho}$, for $m \geq m_{0}$ becomes

$$
\begin{equation*}
\tilde{E}^{\left(n_{\rho}\right)}=-\frac{F^{2}}{2\left(n_{\rho}+m_{0}+1\right)^{2}} . \tag{26}
\end{equation*}
$$

Now let us to determine the eigenfunction associated with the ground state given by Eq.(23). To do this let us consider the transformations

$$
\begin{equation*}
\phi(\rho)=\chi^{(0)} \rho^{m+\frac{1}{2}}, \quad \rho=2(m+1) \eta, \quad F=-\frac{1}{2}, \tag{27}
\end{equation*}
$$

which implies that Eq. (23) turns into the following matrix diferential equation

$$
\mathbf{1} \frac{d}{d \eta} \chi(\eta)=\left(\begin{array}{cc}
0 & 1  \tag{28}\\
1 & \frac{1}{\eta}
\end{array}\right) \chi^{(0)}(\eta), \quad \chi^{(0)}(\eta)=\binom{\chi_{1}^{(0)}}{\chi_{2}^{(0)}}
$$

so that we obtain the following equations for the components $\chi_{1}^{(0)}$ and $\chi_{2}^{(0)}$ :

$$
\begin{align*}
& \frac{d}{d \eta} \chi_{1}^{(0)}(\eta)=\chi_{2}^{(0)}(\eta) \\
& \frac{d}{d \eta} \chi_{2}^{(0)}(\eta)=\chi_{1}^{(0)}(\eta)+\frac{1}{\eta} \chi_{2}^{(0)}(\eta) \tag{29}
\end{align*}
$$

which leads us a second-order differential equation for $\chi_{2}^{(0)}(\eta)$, viz.,

$$
\begin{equation*}
\frac{d^{2}}{d \eta^{2}} \chi_{2}^{(0)}(\eta)-\frac{1}{\eta} \frac{d}{d \eta} \chi_{2}^{(0)}(\eta)+\left(\frac{1}{\eta^{2}}-1\right) \chi_{2}^{(0)}(\eta)=0 . \tag{30}
\end{equation*}
$$

From equations (3), (29) and (30) we obtain the $m$-dependent normalizable ground state

$$
\begin{equation*}
\Psi^{(0)}(\rho)=C_{m} \rho^{m+1}\binom{e^{i m \phi} K_{1}\left(\frac{\rho}{2 m+2}\right)}{e^{i(m+1) \phi} K_{0}\left(\frac{\rho}{2 m+2}\right)} e^{i \frac{2 \pi}{L} k z} \tag{31}
\end{equation*}
$$

where $C_{m}$ is the normalization constant, and $K_{1}\left(\frac{p}{2 m+2}\right)$ and $K_{0}\left(\frac{p}{2 m+2}\right)$ are the modified Bessel functions. The eigenfunction $\Psi^{(0)}(\rho)$ is in according with the result found via momentum representation in Ref. [8]. Note that the complete solution of Eq. (30)

$$
\begin{equation*}
\chi_{2}^{(0)}(\eta)=\eta\left(c_{1} K_{0}(\eta)+c_{2} I_{0}(\eta)\right), \tag{32}
\end{equation*}
$$

where $c_{1}$ and $c_{2}$ are arbitrary constants, are non-normalizable. Therefore, in order to get a normalizable solution, we choose $c_{2}=0$ and in this way we drop $I_{0}(\eta)$ which is divergent when $\eta \rightarrow \infty$.

It is worthy noticing that under a unitary transformation, $\mathbf{U} \mathbf{W}_{m} \mathbf{U}^{-1}=\tilde{\mathbf{W}}_{m}$, this superpotential, together with the interchange of $m$ by $m+\frac{1}{2}$, and taking $F=-\frac{1}{2}$ becomes that superpotential matrix $\left(\mathbf{W}_{L J M}\right)$ shown in [9], viz., $\tilde{\mathbf{W}}_{m+\frac{1}{2}}=-\mathbf{W}_{L J M}$. This minus sign that connects $\tilde{\mathbf{W}}_{m+\frac{1}{2}}$ and $\mathbf{W}_{L J M}$ is associated to the fact that we have chosen the first-order differential operator $\mathbf{A}^{-}$with the opposite sign in the derivative term of the operator $A_{m}$ considered in Ref. [9].

Using the coordinate representation, we investigate the SUSY in non-relativistic quantum mechanics with two-component eigenfunctions and find a new realization of supersymmetry in a planar physical system of a neutron in interaction with a straight currentcarrying wire.

The $N=2-$ SUSY superalgebra has the following representation

$$
\mathbf{H}_{S U S Y}=\left[Q_{-}, Q_{+}\right]_{+}=\left(\begin{array}{cc}
\mathbf{A}^{+} \mathbf{A}^{-} & 0  \tag{33}\\
0 & \mathbf{A}^{-} \mathbf{A}^{+}
\end{array}\right)_{4 \mathrm{X} 4}=\left(\begin{array}{cc}
\mathbf{H}_{-}=\mathbf{H} & 0 \\
0 & \mathbf{H}_{+}
\end{array}\right)
$$

where the supersymmetric partners are given by $\mathbf{H}_{-}=\mathbf{H}_{1}-\mathbf{1} E_{1}^{(0)}, \quad \mathbf{H}_{+}=\mathbf{H}_{2}-\mathbf{1} E_{1}^{(0)}$ and the supercharges $Q_{ \pm}$are 4 by 4 matrix differential operators of first order and can be given by

$$
Q_{-}=\left(\begin{array}{cc}
0 & 0  \tag{34}\\
\mathbf{A}^{-} & 0
\end{array}\right)_{4 \times 4}, \quad Q_{+}=\left(\begin{array}{cc}
0 & \mathbf{A}^{+} \\
0 & 0
\end{array}\right)_{4 \times 4} .
$$

We have seen that, in non-relativistic quantum mechanics applied to two-component eigenfunctions, if $\Phi_{1}^{(0)}$ is a normalizable two-component eigenfunction, one cannot write $\Phi_{2}^{(0)}$ in terms of $\Phi_{1}^{(0)}$, as in the case of ordinary supersymmetric quantum mechanics. This may be shown in the system considered here of a neutron interacting with an external magnetic field with the current of the conductor in the $z$ direction. Only in the case of 1-component wave functions one may write the superpotential as $W(x)=\frac{d}{d x} \ln \left(\psi_{0}(x)\right)$.

The hermiticity condition satisfied by the superpotential, in the general case, leads us to a method that permits to solve the matrix Riccati equation. As a final remark, we would
like to draw the attention to the fact that our result, for a superpotential corresponding to a neutron in an external magnetic field in the coordinate representation, is related by the following unitary transformation, $\mathbf{U}=\frac{1}{\sqrt{2}}\left(\sigma_{1}+\sigma_{3}\right)$, where $\sigma_{1}$ and $\sigma_{3}$ are the Pauli matrix, with a new superpotential so that, after the substituition $m$ by $m+\frac{1}{2}$ (the total angular momentum along the wire direction) it reduces to the superpotential recently found in [9], where a current $I$ along the $x$ axis of a Cartesian system is considered.

## ACKNOWLEDGMENTS

This research was supported in part by CNPq (Brazilian Research Agency). RLR wish to thanks the staff of the CBPF and DCEN-CFP-UFPB for the facilities. Thanks are also due to J. A. Helayël Neto for hospitality of RLR at CBPF-MCT and for fruitful discussions on supersymmetric models.

## REFERENCES

[1] E. Witten, Nucl. Phys. B185, 513 (1981); D. L. Pursey, Phys. Rev. D33, 2267 (1986).
[2] L. E. Gendenshtein, JETP Lett. 38, 356 (1983); L. E. Gendenshtein and I. V. Krive, Sov. Phys. Usp. 28, 645 (1985); R. Adhikari, R. Dutt, A. Khare and U. P. Sukhatme, Phys. Rev. D38, 1679 (1988); A. Lahiri, P. K. Roy and B. Bagchi, Int. J. Mod. Phys. A5, 1383 (1990).
[3] F. Cooper, A. Khare and U.P. Sukhatme, Phys. Rep. 251, 267 (1995).
[4] P. B. da Silva Filho, R. de Lima Rodrigues and A. N. Vaidya, J. Phys. A: Math. Gen., 32, 2395 (1999).
[5] T. Fukui, Phys. Lett. A178, 1 (1993), X.-Y. Wang, B.-C. Xu and P. L. Taylor, Phys. Lett. A137, 30 (1993); T. K. Das and B. Chakrabari, J. Phys. A: Math. Gen. 32, 2387 (1999).
[6] R. de Lima Rodrigues, P. B. da Silva Filho and A. N. Vaidya, Phys. Rev. D58, 125023 (1998).
[7] R. de Lima Rodrigues and A. N. Vaidya, J. Phys. A: Math. Gen. Phys. 32, 2653 (1999).
[8] I. Voronin, Phys. Rev. A 43, 29 (1991).
[9] L. Vestergaard Hau, J. A. Golovchenko and Michael M. Burns, Phys. Rev. Lett. 74, 3138 (1995).


[^0]:    *Permanent address: Departamento de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Cajazeiras - PB, 58.900-000, Brazil, Email: rafael@cfp.ufpb.br

