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The algebraic technique of supersymmetry in quantum mechanics (SUSY QM) was
first introduced by Witten [1]. The essential idea of this formulation is based on the
Darboux procedure on second-order differential equations, which has been successfully
utilized to achieve a supersymmetric generalization of the harmonic-oscillator raising and
lowering operators for shape-invariant potentials [2,3]. The SUSY algebra has also been
applied to construct a variety of new one-parameter families of isospectral supersymmetric
partner potentials in quantum field theory [4]. The shape-invariance conditions in SUSY
have been independently generalized for systems described by two-component wave func-
tions [5]. Recently, we have found a two-by-two matrix superpotential associated to the
linear classical stability from the static solutions for a system of two coupled real scalar
fields in (141)-dimensions [6].

We also presented an integral representation for the momentum space Green’s function
for a neutron in interaction with a static magnetic field of a straight current carrying wire,
which is also described by two-component wave functions [7]. The SUSY QM formalism
was also applied to this planar physical system in the momentum [8] and coordinate [9]
representations.

In this letter, we consider the notation of Ref. [8]. However, according to our develop-
ments, we can realize the supersymmetric algebra in coordinate representation, introduc-
ing some transformations in the original system corresponding to a neutron interacting
with the magnetic field of a linear current carrying conductor, so that we are able to im-
plement a comparasion with both superpotentials for the cases corresponding to currents
located along x and z directions.

Now, let us consider an electrically neutral spin—% particle of mass M = 1 and magnetic
moment 1 (a neutron) interacting with an infinite straight wire carrying a current [ and
located along the z-axis. The magnetic field generated by the wire is given by (we use

units with e =h = 1)

F =200

(22 +y2)’ @

where = and y are Cartesian coordinates of the plane perpendicular to the wire.

The Hamiltonian associated with the physical system is given by
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where & = (01,02, 03) are Pauli matrices. The motion along the z-axis is free and will be
ignored in what follows and in this way we get a two-dimensional problem.
Due to the translational symmetry in the z-direction, the two-component wave function

Y (p, k) can be written as

n 1 T (np,m m 1 T (npm i(m ;
V0N k) = = (ke |+ e | e

" (o, k)
" (p, k)
where n, = 0,1,2,--- is the radial quantum number; £ = 0,1,2,---; m = 0,+1,£2, -
p, &, z are the usual cylindrical coordinates and the parameter L is the macroscopic length
of the conductor.
Therefore, the Schrodinger equation splits up into a system of two coupled second

order differential equations as follows

1d d~nm m2~nm NNnm FNTLT)’L
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where
propd
F=_ 5
5 (5)
and
~ O ke
FE=I— T2 (6)

Note that Eq. (4) is exactly Eq. (2.8) given in [8]. Now, using the relation

@Z)z(npm P %qﬁ(nF)M) (l = 172)7 (7)

K3

we can write the system in (4) in the matrix form as

_E L _op 2 o -
—2F 2 (mt1)’-F 3 (pm) |
T rra o 2k %2
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which corresponds to a one-dimensional Schrodinger-like equation associated with the

two-component wave function. Therefore, we get the eigenvalue equations

Hlignmm) — E{nmm)ignmm) E{nmm) — 2E~1(np,m)

Y

where
B\ = ™ (p, k) A o) = -1 A (10)
17 =R (s k) = - ) 1=—17=+1 _ m+1)?-1 |-
o) (o, k) R
Defining
. d
H =ATA + 159, A* = £+ W(p), (11)
P

we obtain the following Riccati equation in matrix form

2_1

— 1 —2F
' 2 -(0) _ 2p2 T
P 2p?

where W(p) is a two-by-two superpotential matrix. The hermiticity condition allows us

to write

W=w'= (13)

PAP+d+B9 ="
fo+hg+d = =2 (14)
Wbt g4 B = U

Now, let us try a solution for equation (14) assuming that ¢ is constant. Then, we

have

2F

which gives

2F 2 1
Fe =2y 2
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Solving the last equation and imposing finiteness condition on the solutions, we get

(17)

where b and ¢ are arbitrary constants. Substituting these solutions into the system (14),

we find that a consistent solution is possible only if

F

- 18
q m——1 (18)

where F is defined in Eq. (5). Then, turning to Eq. (16) and substituting Eqs. (17) and
(18) we find constants b and ¢. Putting these results back into Eq. (17), we have that

fp) = mty
p
_m+3
h(p) = - (19)

In this case, the two almost isospectral Hamiltonians are given by

+ F2
H=ATA"— — 1 20
! 2m + 1)? (20)
+ F2
H, =A At — 1. 21
? 2m + 1) (21)

Since AT A~ is positive semidefinite, according to (11) and (20) the energy eigenvalue of

the ground state is

- 2
po - (22)
2(m +1)?
with the annihilation conditions
A0 =0 (23)
and
ATol) =0 (24)

and the new superpotential
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The energy eigenvalues of magnetically bound excitated states in terms of the radial
quantum number n,, for m > mg becomes
Jaz
2(n, + mo+1)2

o) — (26)

Now let us to determine the eigenfunction associated with the ground state given by

Eq.(23). To do this let us consider the transformations

. 1
é(p) = xOpm 2, p=20m+ 1)y, F=-c (27)

which implies that Eq. (23) turns into the following matrix diferential equation

d 01 X@

1-—x(n) = O O =1 | (28)

1
7 X2

(0 (0) .

so that we obtain the following equations for the components yj’ and y;

d
o= (),
n
d 1
%xéo)(n)z ) + Exéo)(n), (29)

(0)

which leads us a second-order differential equation for x5 (1), viz.,

L - L0+ (n— _ 1) ) = 0. (30)

From equations (3), (29) and (30) we obtain the m-dependent normalizable ground

state

e K, (Qmp-l-?) ELy (31)

et Ky (Qmp-l-?) e

\I}(O)(/}) = Cmpm+1

where (), is the normalization constant, and K4 (Zmp—I—Z) and Ky (Zmp—I—Z) are the modified
Bessel functions. The eigenfunction W(®(p) is in according with the result found via

momentum representation in Ref. [8]. Note that the complete solution of Eq. (30)

) = (erKo(n) + exlo(n)) (32)
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where ¢; and ¢y are arbitrary constants, are non-normalizable. Therefore, in order to get
a normalizable solution, we choose ¢; = 0 and in this way we drop Io(n) which is divergent
when n — oo.

It is worthy noticing that under a unitary transformation, UW,U™' = W, this

superpotential, together with the interchange of m by m+ %, and taking F' = —% becomes
that superpotential matrix (Wp ) shown in [9], viz., VNVm_I_; = —W, m. This minus
2

sign that connects VNVm_I_% and Wy 1s associated to the fact that we have chosen the
first-order differential operator A~ with the opposite sign in the derivative term of the
operator A, considered in Ref. [9].

Using the coordinate representation, we investigate the SUSY in non-relativistic quan-
tum mechanics with two-component eigenfunctions and find a new realization of super-
symmetry in a planar physical system of a neutron in interaction with a straight current-
carrying wire.

The N = 2—-SUSY superalgebra has the following representation

ATA™ 0 H.=H 0
Hsvsy = [@-, Q4]+ = = ; (33)
0 A A* 0 H,

4X4

where the supersymmetric partners are given by H_. = H; — lE{O), H, =H, - IE{O)
and the supercharges ()1 are 4 by 4 matrix differential operators of first order and can be

given by

0 0 0 At
Q— = 9 Q-I— = . (34)
A" 0 0 0

4X4 4X4

We have seen that, in non-relativistic quantum mechanics applied to two-component
eigenfunctions, if <I>§0) is a normalizable two-component eigenfunction, one cannot write
CI)(QO) in terms of <I>§0), as in the case of ordinary supersymmetric quantum mechanics. This
may be shown in the system considered here of a neutron interacting with an external
magnetic field with the current of the conductor in the z direction. Only in the case of
l-component wave functions one may write the superpotential as W(a) = %Kn (o(2)).

The hermiticity condition satisfied by the superpotential, in the general case, leads us

to a method that permits to solve the matrix Riccati equation. As a final remark, we would
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like to draw the attention to the fact that our result, for a superpotential corresponding
to a neutron in an external magnetic field in the coordinate representation, is related by
the following unitary transformation, U = % (01 4+ 03), where o7 and o3 are the Pauli
matrix, with a new superpotential so that, after the substituition m by m + % (the total
angular momentum along the wire direction) it reduces to the superpotential recently

found in [9], where a current [ along the  axis of a Cartesian system is considered.
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