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The algebraic technique of supersymmetry in quantum mechanics (SUSY QM) was

�rst introduced by Witten [1]. The essential idea of this formulation is based on the

Darboux procedure on second-order di�erential equations, which has been successfully

utilized to achieve a supersymmetric generalization of the harmonic-oscillator raising and

lowering operators for shape-invariant potentials [2,3]. The SUSY algebra has also been

applied to construct a variety of new one-parameter families of isospectral supersymmetric

partner potentials in quantum �eld theory [4]. The shape-invariance conditions in SUSY

have been independently generalized for systems described by two-component wave func-

tions [5]. Recently, we have found a two-by-two matrix superpotential associated to the

linear classical stability from the static solutions for a system of two coupled real scalar

�elds in (1+1)-dimensions [6].

We also presented an integral representation for the momentum space Green's function

for a neutron in interaction with a static magnetic �eld of a straight current carrying wire,

which is also described by two-component wave functions [7]. The SUSY QM formalism

was also applied to this planar physical system in the momentum [8] and coordinate [9]

representations.

In this letter, we consider the notation of Ref. [8]. However, according to our develop-

ments, we can realize the supersymmetric algebra in coordinate representation, introduc-

ing some transformations in the original system corresponding to a neutron interacting

with the magnetic �eld of a linear current carrying conductor, so that we are able to im-

plement a comparasion with both superpotentials for the cases corresponding to currents

located along x and z directions.

Now, let us consider an electrically neutral spin-1
2 particle of massM = 1 and magnetic

moment �~� (a neutron) interacting with an in�nite straight wire carrying a current I and

located along the z-axis. The magnetic �eld generated by the wire is given by (we use

units with c = �h = 1)

~B = 2I
(�y; x; 0)
(x2 + y2)

; (1)

where x and y are Cartesian coordinates of the plane perpendicular to the wire.

The Hamiltonian associated with the physical system is given by
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H =
~p 2

2M
+ �~�: ~B =

~p 2

2
+ 2I�

(�y�1 + x�2)

(x2 + y2)
; (2)

where ~� = (�1; �2; �3) are Pauli matrices. The motion along the z-axis is free and will be

ignored in what follows and in this way we get a two-dimensional problem.

Due to the translational symmetry in the z-direction, the two-component wave function

 (�; k) can be written as

 (n�)(�; k) =
1p
4�L
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where n� = 0; 1; 2; � � � is the radial quantum number; k = 0; 1; 2; � � �; m = 0;�1;�2; � � �;
�; �; z are the usual cylindrical coordinates and the parameter L is the macroscopic length

of the conductor.

Therefore, the Schr�odinger equation splits up into a system of two coupled second

order di�erential equations as follows

1
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2 +

2F

�
~ 
(n�;m)
1 = 0 (4)

where

F = ��0�I
2�

(5)

and

~E = E � 2�k2

L2
: (6)

Note that Eq. (4) is exactly Eq. (2.8) given in [8]. Now, using the relation

~ 
(n�;m)
i = ��

1

2�
(n�;m)
i (i = 1; 2); (7)

we can write the system in (4) in the matrix form as0
B@ � d2

d�2
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CA = 0; (8)



CBPF-NF-040/01 3

which corresponds to a one-dimensional Schr�odinger-like equation associated with the

two-component wave function. Therefore, we get the eigenvalue equations

H1�
(n�;m)
1 = ~E

(n�;m)
1 �

(n�;m)
1 ; E

(n�;m)
1 = 2 ~E(n�;m); (9)

where

�
(n�;m)
1 = �

(n�;m)
1 (�; k) =

0
B@ �

(n�;m)
1 (�; k)

�
(n�;m)
2 (�; k)

1
CA ; H1 = �1

d2

d�2
+

0
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m2� 1

4

�2
�2F
�

�2F
�

(m+1)2� 1

4

�2

1
CA : (10)

De�ning

H1 � A+A� + 1 ~E
(0)
1 ; A� = � d

d�
+W(�); (11)

we obtain the following Riccati equation in matrix form

W0(�) +W2(�) + 1 ~E(0)
1 =

0
B@

m2� 1

4

2�2
�2F
�

�2F
�

(m+1)2� 1

4

2�2

1
CA ; (12)

where W(�) is a two-by-two superpotential matrix. The hermiticity condition allows us

to write

W =Wy =

0
B@ f(�) g(�)

g(�) h(�)

1
CA (13)

where f; g and h are real functions and satisfy the nonlinear system of di�erential equations8>>>>><
>>>>>:

f 0 + f2 + g2 + E
(0)
1 =

m2� 1

4

�2

fg + hg + g0 = �2F
�

h0 + h2 + g2 + E
(0)
1 =

(m+1)2� 1

4

�2
:

(14)

Now, let us try a solution for equation (14) assuming that g is constant. Then, we

have

f + h = �2F

g�
; (15)

which gives

f 0 � h0 � 2F

g�
(f � h) +

2m+ 1

�2
= 0: (16)
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Solving the last equation and imposing �niteness condition on the solutions, we get

f(�) =
b

�
;

h(�) =
c

�
; (17)

where b and c are arbitrary constants. Substituting these solutions into the system (14),

we �nd that a consistent solution is possible only if

g = � F

m+ 1
(18)

where F is de�ned in Eq. (5). Then, turning to Eq. (16) and substituting Eqs. (17) and

(18) we �nd constants b and c. Putting these results back into Eq. (17), we have that

f(�) =
m+ 1

2

�

h(�) =
m+ 3

2

�
: (19)

In this case, the two almost isospectral Hamiltonians are given by

H1 = A+A� � F 2

2(m+ 1)2
1 (20)

H2 = A�A+ � F 2

2(m+ 1)2
1: (21)

Since A+A� is positive semide�nite, according to (11) and (20) the energy eigenvalue of

the ground state is

~E(0) = � F 2

2(m+ 1)2
; (22)

with the annihilation conditions

A��(0)
1 = 0 (23)

and

A+�
(0)
2 = 0 (24)

and the new superpotential
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Wm =

0
B@
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2

�

1
CA : (25)

The energy eigenvalues of magnetically bound excitated states in terms of the radial

quantum number n�, for m � m0 becomes

~E(n�) = � F 2

2(n� +m0 + 1)2
: (26)

Now let us to determine the eigenfunction associated with the ground state given by

Eq.(23). To do this let us consider the transformations

�(�) = �(0)�m+ 1

2 ; � = 2(m+ 1)�; F = �1

2
; (27)

which implies that Eq. (23) turns into the following matrix diferential equation

1
d
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0
B@ �

(0)
1

�
(0)
2

1
CA ; (28)

so that we obtain the following equations for the components �
(0)
1 and �

(0)
2 :

d

d�
�
(0)
1 (�)= �

(0)
2 (�);

d

d�
�
(0)
2 (�)= �

(0)
1 (�) +

1

�
�
(0)
2 (�); (29)

which leads us a second-order di�erential equation for �
(0)
2 (�); viz.,

d2

d�2
�
(0)
2 (�)� 1

�

d

d�
�
(0)
2 (�) +

 
1

�2
� 1

!
�
(0)
2 (�) = 0: (30)

From equations (3), (29) and (30) we obtain the m-dependent normalizable ground

state

	(0)(�) = Cm�
m+1

0
B@ eim�K1

�
�

2m+2

�
ei(m+1)�K0

�
�

2m+2

�
1
CA ei 2�L kz (31)

where Cm is the normalization constant, and K1

�
�

2m+2

�
and K0

�
�

2m+2

�
are the modi�ed

Bessel functions. The eigenfunction 	(0)(�) is in according with the result found via

momentum representation in Ref. [8]. Note that the complete solution of Eq. (30)

�
(0)
2 (�) = � (c1K0(�) + c2I0(�)) ; (32)
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where c1 and c2 are arbitrary constants, are non-normalizable. Therefore, in order to get

a normalizable solution, we choose c2 = 0 and in this way we drop I0(�) which is divergent

when �!1:

It is worthy noticing that under a unitary transformation, UWmU
�1 = ~Wm; this

superpotential, together with the interchange of m by m+ 1
2
; and taking F = �1

2
becomes

that superpotential matrix (WLJM ) shown in [9], viz., ~Wm+ 1

2

= �WLJM : This minus

sign that connects ~Wm+ 1

2

and WLJM is associated to the fact that we have chosen the

�rst-order di�erential operator A� with the opposite sign in the derivative term of the

operator Am considered in Ref. [9].

Using the coordinate representation, we investigate the SUSY in non-relativistic quan-

tum mechanics with two-component eigenfunctions and �nd a new realization of super-

symmetry in a planar physical system of a neutron in interaction with a straight current-

carrying wire.

The N = 2�SUSY superalgebra has the following representation

HSUSY = [Q�; Q+]+ =

0
B@A+A� 0

0 A�A+

1
CA
4x4

=

0
B@H� = H 0

0 H+

1
CA ; (33)

where the supersymmetric partners are given by H� = H1 � 1E
(0)
1 ; H+ = H2 � 1E

(0)
1

and the supercharges Q� are 4 by 4 matrix di�erential operators of �rst order and can be

given by

Q� =

0
B@ 0 0

A� 0

1
CA
4x4

; Q+ =

0
B@ 0 A+

0 0

1
CA
4x4

: (34)

We have seen that, in non-relativistic quantum mechanics applied to two-component

eigenfunctions, if �
(0)
1 is a normalizable two-component eigenfunction, one cannot write

�(0)
2 in terms of �(0)

1 ; as in the case of ordinary supersymmetric quantum mechanics. This

may be shown in the system considered here of a neutron interacting with an external

magnetic �eld with the current of the conductor in the z direction. Only in the case of

1-component wave functions one may write the superpotential as W (x) = d

dx
`n ( 0(x)).

The hermiticity condition satis�ed by the superpotential, in the general case, leads us

to a method that permits to solve the matrix Riccati equation. As a �nal remark, we would
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like to draw the attention to the fact that our result, for a superpotential corresponding

to a neutron in an external magnetic �eld in the coordinate representation, is related by

the following unitary transformation, U = 1p
2
(�1 + �3) ; where �1 and �3 are the Pauli

matrix, with a new superpotential so that, after the substituition m by m+ 1
2
(the total

angular momentum along the wire direction) it reduces to the superpotential recently

found in [9], where a current I along the x axis of a Cartesian system is considered.
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