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Abstract

Majorana-Weyl spacetimes o�er a rich algebraic setup and new types of space-time
dualities besides those discussed by Hull. The triality automorphisms of Spin(8) act non-
trivially on Majorana-Weyl representations and Majorana-Weyl spacetimes with di�erent
signatures. In particular relations exist among the (1+9) $ (5+5) $ (9+1) spacetimes,
as well as their transverse coordinates spacetimes (0 + 8) $ (4 + 4) $ (8 + 0). Larger
dimensional spacetimes such as (2+10)$ (6+6)$ (10+2) also show dualities induced
by triality. A precise three-languages dictionary is here given. It furnishes the exact
translations among, e.g., the three di�erent versions (one in each signature) of the ten-
dimensional N = 1 superstring and superYang-Mills theories. Their dualities close the
six-element permutation group S3. Bilinear and trilinear invariants allowing to formulate
theories with a manifest space-time symmetry are constructed.
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1 Introduction.

Physical theories formulated in di�erent-than-usual spacetimes signatures have recently
found increased attention. One of the reasons can be traced to the conjectured F -theory
[1] which supposedly lives in (2 + 10) dimensions [2]. The current interest in AdS theo-
ries motivated by the AdS/CFT correspondence furnishes another motivation. Two-time
physics e.g. has started been explored by Bars and collaborators in a series of papers [3].
For another motivation we can also recall that a fundamental theory is expected to explain
not only the spacetime dimensionality, but even its signature (see [4]). Quite recently Hull
and Hull-Khuri [5] pointed out the existence of dualities relating di�erent compacti�ca-
tions of theories formulated in di�erent signatures. Such a result provides new insights
to the whole question of spacetime signatures. Other papers (the most recent is [6]) have
remarked the existence of space-time dualities.

Majorana-Weyl spacetimes (i.e. those supporting Majorana-Weyl spinors) are at the
very core of the present knowledge of the uni�cation via supersymmetry, being at the
basis of ten-dimensional superstrings, superYang-Mills and supergravity theories (and
perhaps the already mentioned F -theory). A well-established feature of Majorana-Weyl
spacetimes is that they are endorsed of a rich structure. A legitimate question one can
ask oneself is whether they are a�ected, and how, by space-time dualities. The answer is
quite surprising (in fact it should not be so, with afterthought), the structure of dualities
is much richer than expected and potentially able to shed a complete new light on the
subject. Indeed all di�erent Majorana-Weyl spacetimes which are possibly present in any
given dimension are each-other related by duality transformations which are induced by
the Spin(8) triality automorphisms. The action of the triality automorphisms is quite non-
trivial and has far richer consequences than the Z2-duality (its most trivial representative)
associated to the space-time (s; t) $ (t; s) exchange discussed in [4]. It corresponds to
S3, the six-element group of permutations of three letters, identi�ed with the group of
congruences of the triangle and generated by two re
ections. The lowest-dimension in
which the triality action is non-trivial is 8 (not quite a coincidence), where the spacetimes
(8+0)�(4+4)�(0+8) are all interrelated. They correspond to the transverse coordinates
of the (9+1)� (5+5)� (1+9) spacetimes respectively, where the triality action can also
be lifted. Triality relates as well the 12-dimensional Majorana-Weyl spacetimes (10+2)�
(6 + 6)� (2 + 10), i.e. the potentially interesting cases for the F -theory, and so on.
As a consequence of triality, supersymmetric theories formulated with Majorana-Weyl
spinors in a given dimension but with di�erent signatures, are all dually mapped one
into another. A three-language dictionary is here furnished with the exact translations
among, e.g., the di�erent versions of the 10-dimensional MW supersymmetric theories,
formulated in the Majorana-Weyl representation.

The strategy here followed is based in three steps. At �rst it is shown that Majorana-
Weyl spacetimes in dimensions d > 8 can be recovered from the properties of the 8-
dimensional Majorana-Weyl spacetimes and �-matrices representations. Next, working
in d = 8, we construct, for each one of the three Majorana-Weyl spacetimes (8 + 0),
(4 + 4), (0 + 8), the \bridge transformations" relating the corresponding Majorana-Weyl
representations to the representations (called \VCA" in the text) which exhibit manifest
triality among vectors, chiral and antichiral spinors. As a �nal step new \bridge transfor-
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mations" of spacetime kind, relating among them the VCA representations constructed
in each one of the Majorana-Weyl spacetimes above, are given.

We emphasize that, contrary to Hull [5], the dualities here discussed are already present
for the uncompacti�ed theories and in this respect look more fundamental.

Moreover, bilinear and trilinear invariants under the S3 permutation group of the
three Majorana-Weyl spacetimes are constructed. They can be possibly used to formu-
late supersymmetric Majorana-Weyl theories in a manifestly triality-invariant form which
presents an explicit symmetry under exchange of space and time coordinates.

The present paper is intended to be an abridged version, suitable for a letter-size, of
a forthcoming extended version which presents in full detail the construction and where
extra results which are outside the scope of this letter are also furnished.

The scheme of this work is as follows. In the next section we recall, following [7]
and [8], the basic properties of �-matrices and Majorana conditions needed for our con-
struction. Majorana-type representations are analyzed in section 3. We show how to
relate the Majorana-Weyl representations in d > 8 to the 8-dimensional Majorana-Weyl
representations. In section 4 we introduce, for d = 8, the set of data necessary to de�ne
a supersymmetric Majorana-Weyl theory, i.e. the set of \words" of our three-languages
dictionary. The Cartan's [9] triality among vectors, chiral and antichiral spinors is pre-
sented in section 5. The main result is furnished in section 6, where spacetime triality is
discussed. In the Conclusions we furnish some comments and point out some perspectives.

2 Preliminary results.

Here we limit ourselves to introduce the basic ingredients needed for our constructions.
Further information is found in [7] and [8].

We denote as gmn the 
at (pseudo-)euclidean metric of a (t + s)-spacetime. Time
(space) directions in our conventions are associated to the + (respectively �) sign.

The �'s matrices are assumed to be unitary (the chosen normalization is for the square
of time-like �-matrices being +1). The three matrices A, B, C are the generators of the
three conjugation operations (hermitian, complex conjugation and transposition respec-
tively) on the �'s. In particular

C�mCy = �(�1)t+1�mT (1)

where � = �1 in even-dimensional spacetimes label inequivalent choices of the charge
conjugation matrix C.

A;B; C are related by the formula

C = BTA (2)

Up to an inessential phase, A is speci�ed by the product of all the time-like � matrices.
An unitary transformations U applied on spinors act on �m, A;B; C according to [8]

�m 7! U�mUy
A 7! UAUy
B 7! U�BUy
C 7! U�CUy (3)
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A Majorana representation for the �'s can be de�ned as the one in which B is set equal
to the identity. Spinors can be assumed real in this case.

In even dimensions we can also introduce the notion of Weyl representation, i.e. when
the \generalized �5 matrix" is symmetric and block diagonal and with no loss of gener-
ality can be assumed to be the direct sum of the two equal-size blocks 1 � (�1). The
compatibility of both Majorana and Weyl conditions constraints the spacetime (t+ s) to
satisfy

s� t = 0 mod 8; for both values � = �1 (4)

In even dimensions Majorana representations, but not of Weyl type, are also found for

s� t = 2 mod 8 for � = �1;
s� t = 6 mod 8 for � = +1: (5)

For d < 8 the only spacetimes supporting Majorana-Weyl spinors have signatures (n+n).
At d = 8 a new feature arises, Majorana-Weyl spinors can be found for di�erent signatures.

3 Majorana-type representations.

It is convenient to introduce the notion of Majorana-type representation (or shortly
MTR) for the � matrices as one in which all the �'s have a de�nite symmetry. For
d = p + q a MTR with p symmetric and q antisymmetric �'s will be denoted as (pS ; qA)
in the following.

For such representations the C matrix introduced in the previous section is given by
either the product of all the symmetric � matrices, denoted as CS , or all the antisymmetric
ones (CA). In even dimensions CS, CA correspond to opposite values of � in (1).

A Majorana representation in a given signature spacetime is a MTR. Conversely, given
a MTR, we can �nd a spacetime signature for which the representation is Majorana. The
admissible couples of (pS ; qA) values for a MTR are immediately read from the Majorana
tables given above (4) and (5). The construction is such that C must correspond to the
correct value of � in the tables.

The list of all possible MTR's in any given dimension is easily computed. In order
just to give an example one can check that in d = 6 there exists a MTR (not of Weyl
kind) with 6 anticommuting � matrices plus an anticommuting �7 (0S ; 6A;�7

A). It gives
the Majorana basis in the Euclidean 6-dimensional space.

In d = 8 the MTR's of Weyl type are (8S; 0A), (4S ; 4A), (0S ; 8A), associated to the
corresponding Majorana-Weyl spacetimes.

Di�erent MTR's belong to di�erent classes under similarity transformations of the �'s
representations. Indeed in, let's say, an euclidean (all + signs) space, the index

I = tr(�m � �mT ) = (pS � qA) � tr1 (6)

takes di�erent values for di�erent MTR's.
We computed explicitly all MTR's up to d = 12 and Majorana-Weyl representations up

to d = 14 (the results will be furnished elsewhere) by using a recursive algorithm presented
in [10]. It allows producing Weyl representations in d dimensions from any given couple of
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representations in r and s dimensions, for even-dimensional d; r; s satisfying d = r+ s+2.
The only MTR up to d = 12 which does not directly �t into this scheme, the above-
mentioned 6-dimensional (0S ; 6A), is however constructed from the (3S ; 3A) representation
(this one directly produced from the 2-dimensional Pauli matrices for r = s = 2) after
computing the value of the symmetric matrix B in the euclidean 6-dimensional space, and
later �nding the transformation (3) which maps it into the unity.

The algorithm is given by the formula

�d
i=1;:::;s+1 = �x 
 1L 
 �s

i=1;:::;s+1

�d
s+1+j=s+2;:::;d = �y 
 �r

j=1;:::;r+1 
 1R (7)

where 1L;R are the unit-matrices in the respective spaces, while �x = e12 + e21 and �y =
�ie12 + ie21 are the 2-dimensional Pauli matrices. �r

r+1 corresponds to the \generalized
�5-matrix" in r+1 dimensions. In the above formula the values r; s = 0 are allowed. The
corresponding �0

1 is just 1.
With the help of the above formula we have a very e�cient tool to reduce the analysis

of Majorana-Weyl representations for d � 10 to the 8-dimensional case, since we can
always set either r or s equal to 8 (or possibly both, which corresponds to the d = 18
case). Up to d = 14 Majorana-Weyl spacetimes exist for three di�erent signatures and the
same situation of d = 8 is repeated. A new feature arises for d � 16. A careful analysis
of the consistency conditions is needed in this case, since the triality transformations
that we later discuss no longer preserve the similarity classes of MTRs; stated otherwise,
di�erent representatives of MTR's in the same similarity class and for the same couple of
values (pS ; qA) are mapped under a given triality transformation into representatives of
MTR belonging to di�erent similarity classes. This feature is likely to be related with the
problems encountered in de�ning supersymmetric theories in dimensions greater than 14,
which have been e.g. pointed out in [11].

In any case the construction here discussed is suited to analyze and works perfectly
well for the range d = 8; :::; 14, i.e. the cases which are of interest for, among the others,
the superstrings and the F-theory (notice that the above scheme can �nd applications
to dualities also for odd-dimensional Majorana spacetimes as the 11-dimensional ones
supporting theM -theory, we will commentmore on that in the conclusions). We postpone
to the extended version of this paper the presentation of the full set of reconstruction
formulas which make explicit the construction of MW-spacetimes in dimensions d > 8
in terms of the 8-dimensional ones. For the purpose of this paper is su�cient to recall
that such reconstruction formulas can be given. In particular the higher dimensional C
charge conjugation matrices for d > 8 can be expressed in terms of the eight-dimensional
matrices C8.

4 The set of data for d = 8.

In this section we present the set of data needed to specify a Majorana-Weyl supersym-
metric theory formulated in 8-dimensions. As we have stated in the previous section, this
set of data can be \lifted" to de�ne Majorana-Weyl supersymmetric theories formulated
in higher-dimensions. The results here furnished therefore have a more general validity.
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At �rst we recall that we have three di�erent Majorana-Weyl spacetimes (8 + 0) �
(4 + 4) � (0 + 8) and two choices for � = �1, so in total 3 � 2 = 6 inequivalent theories
(i.e. inequivalent versions of some given supersymmetric theory) that can be formulated
in d = 8.

Each one of these versions is characterized by the following set of data all expressed
in the corresponding Majorana-Weyl representation, being this one the most suitable for
analyzing supersymmetry. Such data will play the roles of the \words" in the three-
languages dictionary that will be later furnished:

i) the bosonic (and/or vector-�elds) coordinates xm, with vector index m = 1; :::; 8;
ii) the fermionic coordinates (and/or spinorial �elds)  a, � _a, with chiral and antichiral

indices a = 1; :::; 8, _a = 1; :::; 8 respectively;
iii) the diagonal (pseudo-)orthogonal spacetime metric (g�1)mn, gmn;
iv) the A matrix of section 2, used to introduce barred spinors, which is now decom-

posed in an equal-size block diagonal form such as A = A� ~A, with structure of indices

(A)a
b and ( ~A) _a

_b
respectively;

v) the charge-conjugation matrix C, always symmetric, also put in equal-size block
diagonal form C = C�1 � ~C�1. Since C is invariant under bispinorial transformations
it can be promoted to be a metric for the space of chiral (and respectively antichiral)
spinors, used to raise and lower spinorial indices. Indeed we can set (C�1)ab, (C)ab, and

( ~C�1) _a
_b, ( ~C) _a_b;

vi) �nally we have the upper-right � and the lower-left ~� blocks in the �'s matrices

with structure of indices (�m)a
_b and (~�m) _a

b respectively.
The B matrix is automatically set to be the identity (B = 1) due to our choice of

working in the Majorana-Weyl representation.
In order to work in the Majorana-Weyl basis for each one of the six di�erent versions

of the theory, the correct Majorana-type representation must be picked up. In (4+4) the
(4S ; 4A) representation must be chosen for both values of �, while in (8 + 0) the (8S; 0A)
works for � = +1 and the (0S ; 8A) works for � = �1 (and conversely in the (0 + 8) case).

For later purpose it is convenient to present the matrix C for each one of the six
versions. We have

C = �9 = 18 � (�18) in (8 + 0)

C = 116 in (0 + 8)

C = (C�1)� (�C�1) in (4 + 4) (8)

where in the last case C�1 can be chosen to be the 8� 8 matrix with (+��++��+)
entries in the antidiagonal and 0 entries in any other position.

5 The V-C-A triality.

The outer automorphisms of the D4 Lie algebra is responsible for the triality property
among the 8-dimensional vector, chiral and antichiral spinor representations of SO(8)
which has been �rst discussed by Cartan [9].

In our language the triality property can be restated as follows. The C�1, ~C�1 matrices
introduced in the previous section, for each one of the six di�erent cases we discussed,
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are symmetric and with the same set (up to an overall sign) of eigenvalues (�1) as the
corresponding g�1 spacetime metric.

In each one of the above cases one can simultaneously map both C�1, ~C�1 (with
di�erent similarity transformations G, ~G) into the corresponding spacetime g�1 metric:

G : C�1 7! g�1 = G � C�1 �GT

~G : ~C�1 7! g�1 = ~G � ~C�1 � ~GT (9)

The structure of indices for G and its inverse G�1 is (G)m
a
and (G�1)a

m
(an analogous

structure holds for ~G, and ~G�1). Therefore G, ~G can be used to transform chiral (antichi-
ral) indices in vector indices allowing to work with, let's say, vector indices alone.

The concrete 8�8-dimensional matrices G, ~G are of course not uniquely de�ned since
any other matrix of the kind LC � G � Lg, with LC , Lg preserving by similarity the C�1

and the g�1 metrics respectively, are equally well suited. For our purposes however it is
su�cient to furnish a concrete representative for the G, ~G matrices.

In all the above cases we can choose the concrete matrices G, ~G to be square root of
unity:

G2 = ~G2 = 18 (10)

Indeed the only case in the previous section discussion where C�1 ( ~C�1) is not diagonal
is the (4 + 4) case, with C�1 given in (8) and ~C�1 = �C�1. A matrix G which sets C�1

to the diagonal form (+ + ++����) is

G =
1p
2
�

0
BBBBBBBBBB@

1 0 0 0 0 0 0 1
0 1 0 0 0 0 �1 0
0 0 1 0 0 �1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 �1 0 0 0
0 0 �1 0 0 �1 0 0
0 �1 0 0 0 0 �1 0
1 0 0 0 0 0 0 �1

1
CCCCCCCCCCA

(11)

In all the other cases we have to 
ip a number n of signs in the diagonal, with n = 0 mod
4. Instead of working with the standard Wick rotation prescription, which is the only
one applicable for odd numbers of signs to be 
ipped, a smarter choice is allowed for even
numbers of 
ipping: the passage e.g. from (++) 7! (��) can be produced via similarity
with the help of the �y Pauli matrix �y = �ie12+ ie21, through

�y � 12 � �yT = �12 (12)

Of course �y satis�es �y2 = 12 and is antisymmetric. The bridge matricesG which 
ip the
euclidean (++++++++) metric into the (++++����) and the (��������)
metrics are therefore respectively given by

G1 = 14 � �y � �y

G2 = �y � �y � �y � �y (13)
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which are both square root of unity.
The above given bridge operators G, ~G in a given Majorana-Weyl spacetime allows

to pass from the Majorana-Weyl representation to another representation, that we can
call VCA, where triality is manifest and only vector-like indices are present. Please
notice that, as far as transformation properties alone are concerned, the commuting or
anticommuting nature of spinors is not taken into account. For commuting spinors a more
radical property holds. Bilinear and trilinear invariants under the S3 permutation group
of vectors, chiral and antichiral spinors, can be constructed. The procedure is as follows.
At �rst the three bilinear scalars

BV = V T��1V; BC =  TC�1 ; BA = �T ~C�1� (14)

and the trilinear one

T =  TC�1���1V � (15)

are constructed. Applying the above bridge transformations in a passive way we can set

 ̂ = (GT )
�1
 ; �̂ = ( ~GT )

�1
� (16)

Therefore

BV = V T��1V; BC =  ̂T��1 ̂; BA = �̂T��1�̂ (17)

and their sum

B = BV +BC +BA (18)

is by construction invariant under the S3 exchange of V;  ̂; �̂.
As for the trilinear term T , it reads as follows

T =  ̂TMV �̂ (19)

where the trivector M is given by

Mmnp = (��1)mr(GT�1)r
a

(�q)a
_b(��1)qn( ~GT )_b

p
(20)

A trilinear scalar, invariant under S3, is constructed through

X
perm

MmnpVm ̂
T
n �̂p (21)

where the sum is extended over all the permutations of V;  ̂; �̂.
The action of the S3 permutation group on the original vectors, chiral and antichiral

spinors is given by the pull-back of the bridge transformations. It is just su�cient to write
it down for two of the generators, called P , R, of S3, where

P 2 = R2 = 1 (PR)3 = 1 (22)
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We have, symbolically,

P : V 7! V;  $ �

R : � 7! �; V $  (23)

6 The spacetime triality.

The triality discussed in the previous section is the Cartan's V � C � A triality,
which connects vectors, chiral and antichiral spinors of the same spacetime. However the
procedure which has been used so far can be repeated to connect vectors belonging to
spacetime metrics with di�erent signatures. In the case of our interest three spacetimes,
denoted as X;Y;Z, possess vector-indices (m; ~m;m) which are referred to the metrics
(+ + ++++++), (+ + ++����), (��������) respectively.

The passage from one of the above metrics to another one can be done by employing
the same bridge matrices introduced in (13). The construction straightforwardly repeat
the one already encountered. It should be clear that an enormous technical advantage
is o�ered by performing the connection between two di�erent Majorana-Weyl spacetimes
working in both cases with the respective VCA representations. The \spacetime bridge
matrices" in this case only see vector indices. The connection between Majorana-Weyl
representations is then reconstructed in terms of the bridge matrices (introduced in the
previous section) linking, in each one of the two spacetimes, the Majorana-Weyl with the
VCA representation.

There is no need to repeat here the formulas presented in section 5. Each one �nds
its \mirror spacetime" equivalent. They have just to be reinterpreted in the light of the
spacetime triality.

We just point out that under spacetime triality Y ~m, Zm are mapped into

Y ~m 7! Ŷm; Zm 7! Ẑm (24)

carrying a (+ + ++++++) vector index-structure.
The bilinear invariant under the S3 group of permutations is

B = XT�X
�1X + Ŷ T�X

�1Ŷ + ẐT�X
�1Ẑ (25)

while the trilinear one is

T =
X
perm

MmnpXmŶ
T
n Ẑp (26)

where the trivector Mmnp is constructed in full analogy with (20).
We remark that for what concerns spacetime triality invariances it is likely that we

do not have to bother about the anticommuting character of spinors as it is the case for
invariances under V � C �A triality. For instance, in the simplest example, the bosonic
supersymmetric composite vector Xm = xm � i��m� is the building block to introduce
the superparticle and we do not need to worry about Grassmann variables.
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Let us �nally comment that the same bridge transformations already encountered can
be used to produce dualities relating the opposite values of �. Indeed just an overall �
sign for the ~C�1 matrix distinguishes the two cases.

7 Conclusions.

In this paper we have shown that the triality automorphisms of Spin(8) not only
induce dualities among di�erent-signatures Majorana-Weyl spacetimes, but also furnish
bilinear and trilinear invariants which can be possibly used to formulate supersymmetric
theories possessing a space-time triality invariance.

Triality relations connect the various Majorana-Weyl spacetimes in a given dimension.
The basic strategy of our construction consists in the fact that even for dimen-

sions d > 8 the di�erent signatures of Majorana-Weyl spacetimes can be encoded in
the 8-dimensional � matrices, used as building blocks in the construction of the higher-
dimensional �'s.

The bridge operators connecting in each givenMajorana-Weyl spacetime the Majorana-
Weyl representation to a Cartan-type representation in which the 8-dimensional V �C�A
triality is manifest are helpful in linking together di�erent-signatures Majorana-Weyl
spacetimes. Indeed in a Cartan-like basis the problem of relating di�erent space-time
signatures is considerably simpli�ed since we have to worry about just how to connect
vector-like indices and spacetime metrics.

A complete and extensive list of the results here outlined will be presented in a forth-
coming paper.

The range of possible applications for the methods and the ideas here discussed is vast.
We limit ourselves to mention that we are currently investigating the web of dualities
connecting the 12-dimensional Majorana-Weyl spacetimes which should support the F -
theory (3�2, taking into account of �), with the 6 versions of the 11-dimensional Majorana
spacetimes (for the M -theory) in (10 + 1), (9 + 2), (6 + 5), (5 + 6), (2 + 9), (1 + 10)
signatures and with the di�erent (again 3� 2) versions of the 10-dimensional Majorana-
Weyl spacetimes.
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