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Abstract

We study, through the damage spreading method, the dynamical behaviour of the

square lattice 3-state Potts ferromagnet within the heat-bath dynamics. We �nd that this

very simple model has a new dynamical chaotic phase with unusual features. We obtain

that its upper boundary occurs, within the error bars, at the same critical temperature as

that of the static Ising one, although the estimated critical exponent

z ' 1:54 is much smaller than the values reported in the literature for the Ising model.

The temporal behavior of the damage at this transition suggests that it may be in the

directed percolation universality class.
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In recent years, there has been an increase of interest in the study of dynamical

phase transitions and their universality classes. One of the techniques largely employed

in this investigation is the damage spreading method [1{13], which consists basically in

measuring the time evolution of the Hamming distance or damage D(t) between two

initially di�erent con�gurations of a sample of a system subjected to a speci�c dynamics

and the same thermal noise. From the behaviour of the sample average of the damage

hD(t)i as a function of the initial damage, the temperature and of any other relevant

parameter, one can obtain a dynamical phase diagram, which usually depends on the

employed dynamics (heat-bath, Glauber, Metropolis, etc).

In the case of the Ising ferromagnet subjected to a heat-bath stochastic process, it

was found, for both dimensions d = 2 [2, 3] and d = 3 [1, 9], a two-phase structure

with a damage transition temperature which agrees, within the obtained error bars, with

the corresponding static critical temperature. In more complex systems which contains

competing interactions [1, 2, 6], dilution [5], continuous [4] or non-trivial symmetries (Zq

for q � 5) [7], it has been found three or more dynamical phases where a few of them

have no clearly known static equivalent. In the 3D Ising spin glasses [1, 6] and in the

2D XY model [4], it was obtained 3 di�erent regimes: a high-temperature one (T � T1)

where < D(t) >= 0; an intermediate one (T2 � T < T1) where < D(t) >6= 0 and

it does not depend on the initial value D(0), and a low-temperature regime (T < T2)

where < D(t) > 6= 0 and it depends on D(0). In both systems the coincidence with the

equilibrium critical temperature occurs at the lower transition T2.

In this letter we study, for the �rst time as far as we know, the spread of damage of a

very simple model, namely the 3-state Potts ferromagnet (for a review on the Potts model,

see [14]) which has been reported in the literature to have an unique dynamical transition

at the equilibrium critical temperature kBTc(q = 3)=J = [ln(1 +
p
3)]�1. We show herein

that this model presents a three-phase structure whose upper transition unexpectedly

coincides, within the error bars, with the static Ising critical temperature.

Let us associate to each site i of the square lattice a Potts variable �i which can assume

3 integer values (�i = 0; 1 and 2) and consider the Potts ferromagnet model described by

the following Hamiltonian:

H = �J X
<ij>

�(�i; �j) ; (�i = 0; 1; 2); (1)

where J > 0 is the ferromagnetic coupling constant and �(�i; �j) is the Kronecker delta

function. The sum is over all the nearest-neighbor spins < ij > of the square lattice.
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Our numerical simulations are implemented on square lattices of linear size L (N = L2

sites) submitted to periodic boundary conditions. We consider two replicas A and B

with di�erent initial con�gurations f�Ai (t)g and f�Bi (t)g at time t = 0 and let them

evolve through a sequential Monte Carlo heat-bath process (in fully vectorized code). We

use the same sequence of random numbers for updating the spins. Consequently if two

con�gurations become equal at time t, they will remain identical for all later times, and

we can introduce the survival probability P (t) of two replicas A and B being still di�erent

at time t. We de�ne the Hamming distance D(t) between the con�gurations f�Ai (t)g and
f�Bi (t)g at time t as:

D(t) =
1

N

NX

i=1

[1� �(�Ai (t); �
B
i (t))] (2)

where the sum is over all the N sites. In order to average D(t) over thermal 
uctuations

we repeat the simulations for M samples, obtaining thus the average damage < D(t) > :

We use herein three di�erent sets of initial con�gurations for the two replicas, namely:

(a) ordered along distintic states: f�Ai (0) = 0;8ig and f�Bi (0) = 1;8ig (D(0) = 1);

(b) con�guration f�Ai (0)g is random and con�guration f�Bi (0)g = f�Ai (0)g except for

50% of the spins which are randomly chosen and given any of the two other possible states

with equiprobability (D(0) = 1=2);

(c) same as in (b) except for 5% of chosen spins that are di�erent (D(0) = 0:05).

In �gure 1 we show the survival probability P (t) as a function of the temperature T

at di�erent times t with initial conditions (c). >From this we clearly observe three distinct

behaviors: i) a low temperature one (for T < T2, with T2 ' 1:0) where P varies sensibly

with T ; ii) an intermediate temperature one (for T2 � T < T1, with T1 ' 1:2) where P

remains maximum (P = 1); iii) a high temperature one (for T � T1) where P vanishes.

The sudden increase of P near T2 as well as the abrupt fall of P near T1 signal the

existence of dynamical transitions at T2 and T1, respectively. A similar behavior, for an

initial D(0) = 1, has been observed by Leroyer and Rouidi [7] in the p-state clock model

(5 � p � 10) for the two higher transition temperatures (see their �g. 9). But in our

case, we have also checked that in the intermediate phase P (t) equals 1 for any initial

damage (including an in�nitesimal one). Therefore we can say that this phase is fully

chaotic in the sense that even two con�gurations in�nitesimally close at t = 0 will always

become separated by a �nite distance. This is in contrast with the behavior found for the

3D Ising ferromagnet[1] where, for all temperatures, P decreases as the initial damage

decreases.
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The three temperature regimes can be also seen in the plot of < D(t = 10000) > as

a function of T, for di�erent initial conditions, exhibited in �g. 2. We observe in such a

simple and discrete model the same behavior as that found for the spin glass [1, 6] and

XY model [4] described above . We have also checked the loss of initialization dependence

in the intermediate phase for several other values of D(0) including one single spin 
ip.

Since the �nite time and size e�ects are more serious near the transition temperatures

T1 and T2, we followed the �nite size scaling procedure [3, 4, 9] in order to get more

reliable estimates of these transition temperatures. For this, we computed the following

quantities for each sample s (s = 1; 2; :::;M) of linear size L at the temperature T :

�1(L; T; s) =

P
t tDs(t)P
tDs(t)

(3)

�2(L; T; s) =

P
t t

2Ds(t)P
tDs(t)

(4)

and the ratio

R(L; T; s) =
�2(L; T; s)

� 21 (L; T; s)
(5)

where the samples were iterated until the damage Ds for the s-th sample has vanished

(near 200000 MCS for the largest systems close to the critical temperature). �1 and �2

are measures of characteristic times for two con�gurations to meet.

One expects, from �nite size scaling arguments, that the sample average < R(L; T ) >

becomes independent of L at the transition temperature T1 and for a su�ciently large

size [3, 4, 9]. The plot of the curves < R(L; T ) > for di�erent values of L shown in Fig.

3 leads to the following estimate

kBT1
J

= 1:13 � 0:01 (6)

which is unexpectedly close to the exact static critical temperature [ln(1 +
p
2)�1] =

1:13459... of the Ising ferromagnet.

In order to determine the other transition temperature T2 below which < D(t) >

depends on the initial damage we follow the same procedure used for the XY model in

ref. [4]. Consider, thus, three di�erent replicas A, B and C and de�ne the following

measure �(t) for comparing the evolution of f�Ai (t)g , f�Bi (t)g and f�Ci (t)g :

�(t) = DAC (t)�DAB(t) (7)
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whose sample average < � > for a su�ciently long time t plays the role of order parameter

for the continuous transition at T2.

De�ning � (�)1 (L; T; s), � (�)2 (L; T; s) and R(�)(L; T; s) in a similar way to the respective

Eqs. 3, 4 and 5 with Ds(t) being replaced by �s(t) (and performing the sum until �s(t)

vanishes for the �rst time) we obtain the temperature dependence of the average < R(�) >

drawn in �g. 4. These curves cross at a temperature

kBT2
J

= 0:99 � 0:01 (8)

which, similarly to the 3D spin glass [1, 6] and the 2D XY model [4], is very close to

the exact critical temperature 0:99497... of the 3-state Potts ferromagnet at thermal

equilibrium.

We also computed the dynamic critical exponents z1 and z2 at the respective transition

temperatures T1 and T2 (normally de�ned as � � Lz, where � is the relaxation time for

the dynamics at the transition) by considering the average vanishing time of < D > and

< � > similar to the procedure of Wang et al [9]. We obtained that z1 ' 1:54� 0:02 and

z2 ' 2:28� 0:03. Notice that z2 compares well with the recent value z � 2:196 computed

for the 3-state Potts model from short-time dynamics [15] and with other previous results

where 2:1 � z � 2:8 (see [16] and references therein, [17]). In contrast, z1 di�ers a lot from

the values (1:9 < z < 2:3) quoted in the literature for the Ising ferromagnet (see [16] and

references therein, [8{12]). Notice that the damage spreading technique with the heat-

bath dynamics has led, for the Ising model [8{12], to values of z which are consistent with

those predicted by other methods. Thus we conclude that, although T1 is consistent with

the static Ising critical temperature, the dynamic transition between the intermediate and

high temperature regimes is not in the Ising universality class.

A similar discrepancy in the universality class also happens in the upper transition

of spin glasses, where T1 occurs at the non-frustrated bond percolation and the critical

exponents correspond to the standard bond percolation [6, 18]. In fact we have also

examined the temporal behavior of < D(t) > for short times (t << Lz) at the transition

temperature T1. We have found a power law decay [3] (< D(t) >� t��) where although we

cannot compute a precise value for �1, it seems to be compatible with the value � ' 0:46

for the directed percolation (DP) in 2 + 1 dimensions [19]. This is in agreement with

Grassberger's conjecture [20] since the transition at T1 does not coincide with the static

3-state Potts one.

In summary, we have studied the spread of damage in the 3-state Potts model within

the heat bath dynamics. We have found three (instead of two) dynamical phases which are
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characterized by < D > and < � > as follows: (i) for T < T2, < D >6= 0 and < � >6= 0;

(ii) for T2 � T < T1,< D > 6= 0 and < � >= 0; (iii) for T � T1,< D >=< � >= 0. In

regime (ii) two initial con�gurations stay di�erent for a very long time (since P (t) = 1)

and always achieve, for a �xed temperature, the same long-time Hamming distance no

matter how close they are at t = 0. It is remarkable that the very simple pure system

studied herein presents a new dynamical chaotic phase with such unusual features. It is

even more remarkable that its upper boundary coincides, within the error bars, with the

static Ising critical temperature, although its z exponent di�ers from the Ising one. We

found that the relaxation time at T1 is smaller than at T2(since z1 < z2) and that the

memory e�ect of the initial damage disappears for T � T2. This suggests that, similarly

to the 3D spin glasses [21, 22], the long-time behavior of the spin auto-correlation function

in this unexpected regime decays slower than in the high temperature regime (where it

is probably given by a simple exponential decay) but faster than in the low-temperature

one (where it could be eventually given by a stretched exponential decay similar to that

found for the 2D Ising ferromagnet [23, 13]).

We will present more detailed results, as well as the in
uence of external �elds in the

considered damage spreading in a forthcoming paper.
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Figure 1: The survival probability P(t) versus temperature for di�erent values of time.

The data for t=9000 and 10000 coincide within the used scale.M = 100 samples of linear

size L = 64 with initial con�gurations (c) (where D(0) = 0:05) were examined.
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Figure 2: Average damage < D > versus temperature for three di�erent initial damages

(a)D(0) = 1, (b) D(0) = 0:5 and (c) D(0) = 0:05. Simulations were performed for

M = 100 samples of linear size L = 64 and t = 10000.
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Figure 3: The ratio < R >=< �2=�
2
1 > versus temperature for distinct sizes L. The

number M of samples used were 16000; 10000 and 500 for L = 16; 32 and 64, respectively.

The initial damage was D(0) = 1 (set (a) of initial con�gurations). The error bars are

smaller than the symbols. The arrow signals the exact static Ising critical temperature.



{ 9 { CBPF-NF-039/96

Figure 4: The ratio < R(�) >=< �
(�)
2 =(� (�)1 )2 >versus temperature for di�erent sizes. We

used M = 10000; 1000 and 250 for the respective sizes L = 16; 32 and 64. The replicas A

and B are in the inital con�guration (b), while the third replica C is obtained from A by

changing the state of each spin to one of the two other possible states with equiprobability

(hence, DAB = 1=2 and DAC = 1). The error bars are smaller than the symbols. The

arrow signals the exact static critical temperature Tc(q = 3).
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