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1 Introduction

Multidimensional cosmology has since long ago attracted the attention of cosmologists, who were stim-
ulated initially mainly by the Kaluza-Klein theory [1, 2] and more recently by superstrings models [3] .
The idea that the Universe we live in can be represented as a 4-dimensional hypersurface imbedded in
a (4+n)-spacetime manifold has actually di�erent versions. In particular, we could mention the one put
forward by Wesson, who has developed an embedding scheme in which the Friedmann-Robertson-Walker-
Lemaitre cosmology can be entirely obtained in a rather simple and elegant way from (4+1)-dimensional
Ricci-
at spacetimes [4, 5]. Further generalization of this theory to arbitrary dimensionality with appli-
cations to multidimensional cosmology and lower dimensional gravity was later carried out by Rippl et al
[6]. General multidimensional and multicomponent schemes were studied in [11] (see also refs. therein).

In addition to the role multidimensional theories might play in providing a theoretical framework
in which the most fundamental laws of physics appear to be uni�ed, another motivation may come
from a conjecture - originally proposed by Dirac [7] - regarding the time variation of the Newtonian
gravitational constant G. Indeed, this idea, which was to be taken seriously by superstrings theory and
recent in
ationary models, is also present in the context of multidimensional cosmological models where
G is considered not as a fundamental constant of Nature, but as a cosmological function depending on
the geometry of an `internal space' [8, 11].

Among the several attempts to construct gravity theories with varyingG is Brans-Dicke theory, where
the strength of the gravitational force is determined by a scalar �eld [9]. Here we �nd again the same
idea underlying the connection between higher dimensions and time variation of G, as it can be shown
that n-dimensional Kaluza-Klein models reduce to Brans-Dicke vacuum models for w = 0. Other theories
with scalar �eld (especially conformal) see in [10].
In this paper we consider, as in [11] , a (4+n)-spacetime manifold de�ned by the topological product
M4+n = R �M3

k �Kn, where M3
k is a 3-dimensional space of constant curvature (i.e.,M3

k = S3; R3; L3

according to k = +1; 0;�1, respectively), and Kn is a n-dimensional Ricci-
at manifold. We assume also
that this spacetime is generated by a (4+n)-dimensional multicomponent perfect 
uid.
Now, it turns out that the �eld equations for the special case k = 0 may be reduced to an autonomous
homogeneous system of second order. This system contains some free parameters, one of them being
n (the dimensionality of the internal space) and the others come from the equations of state of the
multicomponent-
uid. However, by restricting ourselves to 'dust-like' matter, we are left with n as the
only parameter of the system. Then, we construct the phase diagram of the system to obtain a general
picture of the solutions. As a by-product of the analysis we also obtain analytical solutions of the
equations for arbitrary values of n.

2 The �eld equations

The gravitational �eld equations in a (4+n)-dimensional gravity are postulated to be

(4+n)R�� = �2
�
(4+n)T�� � g��

T

(n + 2)

�
; (1)

where all the geometric quantities are de�ned in (4 + n) dimensions and �2 is the generalized Einstein
constant [11]. We take the metric tensor to be given by the line element

ds2 = dt2 � R2(t)(3)gij(x
k)dxidxj � b2(t)(n)gpq(y

r)dypdyq ; (2)

where i; j; k = 1; 2; 3; p; q; r = 4; :::; n+ 3; (3)gij, (n)gpq , R(t) and b(t) are, respectively, the metrics and
scale factors for (3)Mk and Kn. The (4+n)�dimensional energy-momentum tensor for a multicomponent
perfect 
uid is taken to be

T�
� = diag(%(t);�p3(t)�

i
j ;�pn(t)�

m
n ) (3)

From (2) and (3) the Einstein equations become:

3
�R

R
+ n

�b

b
=

�2

n+ 2
(�(n + 1)% � 3p3 � npn) ; (4)
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2k

R2
+

�R

R
+ n

_b

b

_R

R
+ 2

_R2

R2
=

�2

n + 2
(% + (n� 1)p3 � npn) (5)

�b

b
+ (n� 1)

_b

b2

2

+ 3
_R

R

_b

b
=

�2

n+ 2
(%� 3p3 + 2pn) (6)

At this point it is worthwhile mentioning the way by which higher dimensional gravity theories of this
type can be naturally related to their 4-dimensional counterparts with varying G [11]. This is simply
done by integrating the (4+ n)-dimensional energy density over the Kn compact space and equating the
result to (4)%(t), thereby de�ning the energy density in 4-dimensional spacetime:

(4)%(t) =

Z
Kn

dyn
p

(n)gbn(t)%(t) = %(t)bn(t); (7)

where
p

(n)g is the determinant of (n)gpq. It is convenient to `normalize' the scale factor b(t) by imposing

the condition
R
Kn

p
(n)gdyn = 1. Thus, in order to get the equations of the 4-dimensional gravity we

put

8�G(t)
h
(4)%(t)

i
= �2%(t): (8)

This procedure leads us to the de�nition of an e�ective gravitational `constant' G(t) given by 8�G(t) =
�2b�n(t). In this way the time variation of G is directly related to the time variation of the internal space
scale factor b(t) by

_G

G
= �n

_b

b
(9)

Clearly for n = 0 the Friedmann Cosmology in ordinary 4-dimensional spacetime is recovered.

3 The dynamical system and the phase portraits

In this section we let M3
k = R3 and assume that the multicomponent 
uid satis�es the equations of state

p3 = pn = 0, i.e., we assume that matter behaves as a (n+ 4)-dimensional `dust'. Then, letting x = 3 _R
R

and y =
_b
b
the equations (4-6) become

_x+
x2

3
+ n _y + _y2 = �

n+ 1

n+ 2
�2% (10)

_x+ x2 +Nxy =
3�2%

n+ 2
(11)

and

_y + ny2 + xy =
�2%

n+ 2
: (12)

Eliminating % from these equations results in

_x =
1

2(n+ 2)

�
�2(n+ 1)x2 + 2n(1� n)xy + 3n(n� 1)y2

�
(13)

and

_y =
1

2(n+ 2)

�
2x2

3
� 4xy � n(n+ 5)y2

�
(14)

De�ned1 in this way x can be interpreted as a measure of the usual cosmological expansion of the
4-dimensional observable Universe, while y is a measure of the time variation of the gravitational constant
G or, equivalently, the expansion of the compact space Kn (see eq.(9) ). The above system of equations
represents a homogeneous autonomous dynamical system of second-order. To carry out an analysis of

1It is possible, of course, to absorb the factor 1
2(n+2) de�ning a new time d� = 2(n + 2)dt. However,

nothing is gained by this in terms of simplicity.
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this system we �rst note that, as the system is homogeneous, the origin of the phase space x = y = 0
corresponds to an equilibrium point (in fact , an isolated equilibrium point )[12]. Physically, this point
represents nothing else but the 
at Minkowski spacetime of General Relativity, with % = 0.

In order to construct the phase diagram of a homogeneous dynamical system we �rst determine the
invariant rays of the system [12] by introducing the polar coordinates in the phase plane: x = r cos �; y =
r sin �: In these coordinates a general homogeneous dynamical system of order m of the form

_x = Xm(x; y); _y = Ym(x; y)

is transformed into
_r = rmZ(�); _� = rm�1N (�);

where the functions Z(�) and N (�) are given by

Z(�) = Ym(cos �; sin �) sin � +Xm(cos �; sin �) cos � (15)

N (�) = Ym(cos �; sin �) cos � �Xm(cos �; sin �) sin �: (16)

Then, the invariant rays of the system are obtainded by solving the equation N (�) = 0. Clearly, in the
phase plane they will be depicted as straight semi-lines starting from the origin and it is not di�cult to
see that if they do exist then they are automatically solutions of the dynamical system [12]. In our case
m = 2 and a straightforward calculation leads to

Z(�) =
1

2(n + 2)

h
�n(n+ 5) sin3 � + (3n2 � 3n� 4) sin2 � cos �

+ (2n � 2n2 +
2

3
) sin � cos2 � � 2(n+ 1) cos3 �

i
(17)

N (�) =
1

2(n+ 2)

h
�3n(n� 1) sin3 � + n(n � 7) sin2 � cos �

+ 2(n� 1) cos2 � sin � +
2

3
cos3 �

i
: (18)

Here let us make some comments. First, we should point out that the dynamical system (13-14) is not
de�ned for n = 0, since in this case we would not have equation (6). If n = 1, then the solutions of the
equation N (�) = 0 yield six invariant rays which correspond to the angles �i = �

�
2
and arctan(�1

3
), with

i = 1; :::; 6. For an arbitrary n > 1 we can put the equation (18) in the following factorized form:

N (�) =
cos3 �

2n+ 4

�
(
1

3
� a)[3n(n� 1)a2 + 6na+ 2]

�
(19)

where we have de�ned a = tan �. Then, for n > 1 we have again six invariant rays, now corresponding
to the angles �i = arctan ai, with

a0 =
1

3
; a� =

1

n� 1

 
�1 �

r
1

3
(1 +

2

n
)

!

See �gs. 1 and 2. The knowledge of the invariant rays as well as the analytic expressions for the functions
N (�) and Z(�) allow us to drawn separately the following phase diagrams for the two cases n = 1 and
n > 1 (for details see appendix). These diagrams show the behaviour of all solutions of the equations
(13-14) which make up our dynamical system. Each curve corresponds to a speci�c cosmological model
satisfying the �eld equations (12-13), the origin representing the Minkowski spacetime M . In order to
know the behaviour of the solutions of the in�nity we employed a method due to Poincare', consisting
of projecting the phase plane onto a plane circle [16]. In this compacti�ed phase plane the points at
in�nity correspond to points located in the border of the circle. The directions of the invariant rays are
not a�ected by the transformation (see appendix).
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4 The physical picture

Let us begin our analysis considering n > 1, and leave the comments on the case n = 1 to the end of this
section. In �gure 1 we have a typical diagram for arbitrary n > 1. First we note that the invariant rays
divide up the phase plane in six topologically distinct regions (or sectors) A,B,...,F. Each of these regions
contains an in�nite number of solutions which represent cosmological models with di�erent physical
properties. The arrows in the curves are to be interpreted as the time evolution of the corresponding
models.
Since there is no closed curve in the phase plane we can conclude that all models are singular ( the
expansion parameter x tends to in�nity either in the past or in the future), some of them starting from
a big-bang (x ! +1)while others collapsing to a big-crunch (x ! �1). In this sense the solutions
represented by the invariant rays exhibit the same behaviour. It would be rather tedious to describe
exhaustively the time evolution of the models corresponding to all the curves of the phase diagram.
So, we will pick up some illustrative cases, although the complete informations about all solutions are
provided by the phase portrait.
To begin with let us consider the solution represented by the invariant ray depicted in �gure 1 as the
semi-line I+. This curve clearly describes a universe starting from a big-bang (x = +1) and evolving
towards the Minkowski spacetime (depicted in the diagram as the �xed point M located at the origin) .
Since y > 0 along this trajectory we see that as time goes by the gravitational constant G decreases. This
is in agreement with the known hypothesis formulated by Dirac who, postulated, inspired on a di�erent
reasoning ( the large numbers conjecture), that Newtonian gravitational constant should decrease as the
Universe expands [7].
Analogously, the same analysis shows us that the invariant ray II+ corresponds to an expanding universe
starting from a big-bang and tending to Minkowski spacetime. Since y is negative in this anti-Dirac

universe the gravitational constant G increases with the cosmic time.
The invariant rays I+ and II+ encloses an in�nite class of solutions all lying within the region A. A
typical solution of this class describes an expanding and singular universe undergoing a transition from
an increasing G (anti-Dirac ) to an decreasing G era ( Dirac phase).
A quite di�erent situation arises when one examines the solution corresponding to the invariant ray
III+ . Here we observe an initially static universe (x = 0) entering an expansion regime during which
the gravitational constant increases with time.
At this point it is interesting to note that one might look alternatively at the dynamics of the models
corresponding to II+ and III+ as describing the usual cosmic expansion taking place in ordinary 4-
dimensionality (here expressed by the variable x) followed by a contraction of the internal n-dimensional
space ( represented here by y). The sector B, which is delimited by II+ and III+ , contains only solutions
which do not approach Minkowski spacetime, neither in the future nor in the past. On the other hand, the
solutions lying in sector F all tend toM and start their trajectories as contracting universes, slowing down
before enter an expanding era. In this class of models the gravitational constant is an ever decreasing
function of the cosmic time.
We shall not carry out a detailed analysis of the solutions lying in sectors D and E as these describe
only contracting universes, ipso facto not being physically relevant. (As we shall see later, in section 6,
sector E as well as sector B both represent classes of solutions with negative energy density.) In sector
C a typical universe comes from Minkowski spacetime in the past and has a contracting era followed by
further expansion.
In the case n = 1 (see �gure 2) the physical picture is very similar. However, now as two of the invariant
rays, namely III+ and III� lie exactly on the y-axis they represent vacuum 
at solutions with a time-
varying G.( In fact, an identical con�guration has been already found in the context of Brans-Dicke
theory by Romero-Barros [13]). An alternative way to look at these solutions is to consider them as
a topological product of a static Minkowski spacetime by a time-dependent (expanding or contracting)
compact internal space.

5 Exact solutions of the �eld equations

Often the knowledge of the invariant rays present in a homogeneous dynamical system is helpful in
obtaining exact analytical solutions of the system. In that case the problem of �nding the solutions
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corresponding to the invariant rays reduces to solving an algebraic equation of one order higher as the
system itself. In our particular case we will have to solve a cubic polynomial equation, the roots of which
are nothing more than the already known tangents ai of the arcs de�ned by the invariant rays. Let us
express the equations of the invariant rays simply by y = ax, where clearly a generically denotes ai. Now,
putting this into the equations (13-14) we get

_x =
x2

2(n+ 2)

�
�2(n+ 1) + 2n(1� n)a+ 3n(n� 1)a2

�
(20)

_y = a _x =
x2

2(n+ 2)

�
2

3
� 4a� n(n+ 5)a2

�
(21)

The condition for (20) and (21) to be consistent is the algebraic equation

3n(n� 1)a3 + n(7� n)a2 + 2(1� n)a�
2

3
= 0 (22)

which is, in fact, equivalent to eq.(18). Again, we have to consider the two cases a) n > 1 and b) n = 1:

a) If n > 1 then the roots of (24) are given by

a0 = 1=3; a� =
1

n� 1

"
�1�

r
1

3
(1 +

2

n
)

#

Now, going back to equation (13) and putting y = ax, with a = a0; a�, we get respectively:

_x = 
x2 (23)

where 
 = 
0; 
� and


0 = �
(n + 3)

6
(24)


� = �(1 + na�) (25)

These last equations can be immediately integrated to give R(t) and b(t).Then, corresponding to the
three values of a = a0; a� we have respectively (after suitable coordinate transformations):

R(t) � t
� 1

3
0 = R0t
2

n+3 (26)

b(t) � [R(t)]3a0 = b0t
2

n+3 (27)

R(t) � t
�1
3
� = R0t

�1
3(1+na� ) (28)

b(t) � [R(t)]3a� = b0t
a�

1+na� (29)

where R0 and b0 are constants.
b) If n = 1 then the equation (24) has two solutions, namely, a = �

1
3 . Naturally, these solutions

correspond to the invariant rays de�ned by �i = arctan�1
3 in section 3. The third solution, corresponding

to the other invariant rays, �i = �
�
2 can be obtained directly from the dynamical system (eqs.(13,14))

just putting n = 1 and x = 0. This procedure leads us back to the static solution referred earlier in
section 4:

R(t) = constant; (30)

b(t) = b0t (31)

The other solutions are:
R(t) = R0t

1
3 (32)

b(t) = b0t
1
3 (33)

R(t) = R0t
1
3 (34)
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b(t) = b0t
�

1
3 : (35)

We conclude this section by noting that equations (28-37) actually represent six distinct pair of solutions
R(t), b(t) , each being singular at t = 0. Indeed, after integrating (25) we obtain (apart from a constant
of integration which can be further eliminated by a coordinate transformation)

x = �
1


t
; (36)

which,in fact, has to be understood as representing di�erent solutions (for the same 
) according to t
2 (�1; 0) or t 2 (0;+1). In the phase diagrams these twofold degeneracy is re
ected by the presence
of distinct solutions ( including the equilibrium point M ) all lying on the same line y = ax . Finally, we
should mention that if n = 0 in (28) we recover Friedmann's solution for a dust �lled universe.

6 The energy density

So far we have not been concerned with the energy density predicted by the models. A brief look into
the �eld equations shows us that % must be given by

% =
1

6�2
�
2x2 + 3n(n� 1)y2 + 6nxy

�
: (37)

If n > 1 the above equation however can be put into the factorized form :

% =
1

6�2
(y � a+x)(y � a�x); (38)

with a� as de�ned in section 5. This last equation allows us to draw the following conclusions:

i) For n > 1 we verify that the solutions lying on the invariant rays corresponding to a� are vacuum
solutions.

ii) All solutions lying on the sector B and F are non-physical (in the sense that they have negative
energy, which classically is forbidden). Incidentally, these are the only solutions which never tend to
Minkowski spacetime neither in the past nor in the future.

iii) Solutions lying on the invariant ray corresponding to a0 have positive energy density for arbitrary

value of n > 1. This can be easily veri�ed by computing % for this case as we have % = x
2

36�2

�
2n2 + n+ 12

�
.

All the properties mentioned above are ilustrated in �gure 3. 2

For n = 1 the same procedure leads to the picture displayed by �g.4.

7 Conclusions

The idea that the Newtonian constant of gravitation G could indeed vary with time on a cosmic scale,
which seems to have ocurred �rst to Dirac, in 1938, is far from being supported by current experimental
data. Recent results [14] based on solar-system experiments tend to indicate an upper limit given by��� _G=G��� < 10�12 to any possible variation of G. Yet even this rather stringent condition has not prevented

cosmologists to speculate and investigate what theoretical consequences would such hypothesis lead to
(for a list of references on past and recent works see [8, 10, 11, 15]). Among other attempts to insert G in
gravity theories as a scalar �eld (e.g. , Brans-Dicke-Jordan theories ), is the multidimensional cosmology

2One could argue that it is not exactly % , but (4)% the physical quantity which would be actually
measured. However, from equation (7) we see that all that has been said in this section of % is also true
for (4)%.
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approach [11] which was described in section 2. The fact that in this scheme the �eld equations plus
some symmetry assumptions may be tractable by mathematical techniques of dynamical system theory
led us to obtain a whole spectrum of cosmic con�gurations where the matter of the Universe is regarded
as a multicomponent perfect 
uid in higher dimensions. It turns out that in this scheme some solutions
exhibit a non-physical behaviour (at least from a classical standpoint). However, other solutions seem
not

to be in contradiction with generally accepted and standard models of the Universe, as they manifest
properties such as cosmic expansion and the existence of an initial singularity. Also, in some of these
expanding solutions the gravitational constant G decreases with time, a property which may justify calling
them Dirac universes ( we detect the presence of anti-Dirac models as well ). Evidently, it was not our
aim here to provide a quantitative discussion of the solutions, even of the more physically relevant ones,
trying to square them in the context of present observational and experimental data. Rather, our interest
in this paper was actually to call the attention of theorists for the extremely rich scenario which arises
when one allows for higher dimensionality and the varying gravitational constant hypothesis.

8 Appendix

In order to construct the phase diagrams corresponding to the �gures 1 and 2 all we need is to calculate
the values of the functions N l(�), and Z(�) at � = �i, where �i is an invariant ray and the superscript l
refers to the �rst non-vanishing derivative evaluated at �i [12]. Since the system is quadratic the phase
portraits are symmetric by plane re
ections ( x ! �x, y ! �y ), although the time orientation of the
curves must be reversed in this operation. Such property means we only need carrying out our analysis
in the neighbourhood of just three of the six invariant rays. Then, let us summarize the results which
come from straightforward calculations.

For both cases n > 1 and n = 1, we obtain the following:
l = 1, N1(�1) < 0, N1(�2) < 0, N1(�3) > 0, Z(�1) < 0, Z(�2) < 0, and Z(�3) > 0; where for the case

n > 1 the invariant rays are: �1 = arctan 1
3 , �2 = arctan a+, �3 = arctan a�, whereas for the case n = 1,

�1 = arctan+1
3
, �2 = arctan�1

3
and �3 = �

�
2
. With these results we can classify for arbitrary values of

n the invariant rays �1 and �2 as being of type (�), while �3 is of type (�) [12]. From this classi�cation
we are led to the diagrams displayed in �gs. 1 and 2.
To carry out the Poincare' compacti�cation of phase plane we perform the transformations of variables
u = y

x
and z = 1

x
. Then, starting from the equations (20) and (21), we end up with the dynamical

system:
du

d�
=

1

2(n+ 2)

�
(
1

3
� u)

�
3n(n� 1)u2 + 6nu+ 2

��
(39)

du

d�
=

z

2(n+ 2)

�
2(n+ 1) + 2n(n� 1)u+ 3n(1� n)u2

�
; (40)

where zd� = dt. The equilibrium points of the dynamical system in the plane uz are: (1=3; 0); (u�; 0),
with u� = a�. A simple analysis of the topological character of these points reveals that they correspond
to a saddle-point and two nodes (unstable and stable), respectively [16].

Acknowledgements

CR was partially supported by CNPq (Brazil) and would like to thank the School of Mathematical
Sciences for hospitality during the preparation of this work. We also are grateful to R.K.Tavakol and
R.M.Zalaletdinov for helpful comments on the manuscript. VM was partially supported by CNPq and
the Russian Ministry of Science.



{ 8 { CBPF-NF-039/95

References

[1] Kaluza, T. (1921) Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys. Math., k1 33, 966.

[2] Klein, O. (1926). Z.Phys. 37, 895.

[3] Green, M. B., Schwarz, J. H. and Witten, E. (1987) \Superstring Theory" (Cambridge University
Press).

[4] Wesson, P. S. (1992). Astrophys.J. 394, 19.

[5] Wesson, P. S. and Ponce de Leon, J. (1992). J.Math.Phys. 33, 3883.

[6] Rippl, S., Romero, C. and Tavakol, R. (1995). \D-dimensional Gravity from (D+1)-dimensions",
Preprint 03/95-DF-UFPb.

[7] Dirac, P. A. M. (1938). Proc. R. Soc. A165, 199.

[8] Bronnikov K.A., Ivashchuk V.D. and Melnikov V.N. (1988) Nuovo Cim., 102, 209. La, D. and
Steinhardt, P.J. (1989). Phys. Rev. Lett. 62, 376.

[9] Brans, C. and Dicke, R. H. (1961). Phys. Rev. 124, 539.
Narlikar, J.(1983). \Introduction to Cosmology "(Cambridge University Press), Chapter 8.

[10] Stanyukovich K.P. and Melnikov V.N. (1983) \Hydrodynamics, Fields and Constants in the Theory
of Gravitation, Moscow, Energoatomizdat (In Russian).

[11] Melnikov, V. N.(1994). \Multidimensional Cosmology", Proceedings of the VII Brazilian School of
Cosmology. Edited by M.Novello. Editions Frontieres, Singapore, p. 147. Ivashchuk V.D., Melnikov
V.N. (1994) Int. Mod. Phys. D3, N4, 795.

[12] Sansoni, G. and Conti, R. (1964) \Non-linear di�erential equations" (Pergamon Press, Oxford),
Chapter 2.

[13] Romero, C. and Barros, A. (1993). Gen. Rel. Grav. 25, 491.

[14] Will, C. (1981). \Theory and Experiment in Gravitational Physics", (Cambridge University Press,
Cambridge). Section 8.4.

[15] Damour, T., Gibbons, G. W. and Gundlach, C. (1990). Phys. Rev. Lett. 64, 123.

[16] Andronov, A.A., Leontovich, E.A., Gordon, I. I. and Maier, A.G. (1973). \Qualitative Theory of
Second Order Dynamic Systems" (John Wiley & Sons, New York).Chapter 6.



{ 9 { CBPF-NF-039/95



{ 10 { CBPF-NF-039/95


