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I. INTRODUCTION

Supersymmetry (SUSY) in classical mechanics (CM) [1,2] in a non-relativistic sce-

nario is investigated. SUSY �rst appeared in relativistic theories in terms of bosonic

and fermionic �eldsy, and the possibility was early observed that it can accomodate a

Grand-Uni�ed Theory (GUT) for the four basic interactions of Nature (strong, weak,

electromagnetic and gravitational). However, after a considerable number of works inves-

tigating SUSY in this context, con�rmation of SUSY as high-energy uni�cation theory

is missing. Furthermore, there exist phenomenological applications of the N = 2 SUSY

technique in quantum mechanics (QM) [3]. In the literature, there exist four excellent

review articles about SUSY in quantum mechanics [4]. Recently a general review on the

SUSY QM algebra and the procedure on like to build a SUSY Hamiltonian hierarchy

in order of a complete spectral resolution it is explicitly applied for the P�oschl-Teller I

potential [5].

We must say that, despite being introductory, this work is not a mere scienti�c exposi-

tion. It is intended for students and teachers of science and technology. The pre-requisites

are di�erential and integral calculus of two real variables functions and classical mechan-

ics. Recently, two excellent mini-courses were ministered of introduction to the theory

of �elds with the aim of presenting the fundamental basics of the theory of �elds includ-

ing the idea of SUSY with emphasis on basic concepts and a pedagogical introduction

to weak scale supersymmetry phenomenology, in which the reader may use for di�erent

approaches and viewpoints include [6].

Considering two ordinary real variables x and y, it is well known that they obey the

commutative property, xy = yx. However, if ~x and ~y are real Grassmann variables, we

have: ~x~y = �~y~x) ~x2 = �~x2 = 0.

In this work, we will use a didactic approach about the transformations in the su-

yA bosonic �eld (associated with particles of integral or null spin) is one particular case obeying

the Bose-Einstein statistic and a fermionic �eld (associated to particles with semi-integral spin)

is that obey the Fermi-Dirac statistic.
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perspace, showing the in�nitesimal transformation laws of the supercoordinate and of its

components, denominated by even and odd coordinates, in the unidimensional space-time

D=(0+1) = 1. We will see that by making an in�nitesimal variation in the even coor-

dinate, we generate the odd coordinate and vice-versa. This approach is done in this

work using the right derivative rule. We will distinguish that property of supersymmetry

in which the action is invariant with the translation transformations in the superspace

(ÆS = 0), noting that the same does not occur with the Lagrangian (ÆL 6= 0).

In the construction of a SUSY theory with N > 1, referred to as extended SUSY, for

each spatial commuting coordinate, representing the degrees of freedom of the system,

we associate one anticommuting variable, which are known that Grassmannian variables.

However, we consider only the N = 1 SUSY for a non-relativistic point particle, which

is described by the introduction of only one real Grassmannian variable �, in the con-

�guration space, but all the dynamics are putted in the time t. In this case, we have

two degrees of freedom. The generalized anticommuting coordinate (odd magnitude)

will be represented by  (t). The new real coordinate de�ned in the superspace will be

called supercoordinate. It will have the following more general possible Taylor expantion:

�(t; �) = q(t) + i�	(t). Note that the �rst term is exactly the ordinary real commuting

coordinate q(t) and, like the next term, must to be linear in �, because �2 = 0. In this

case, the time dependent part multiplying � is necessarely one Grassmannian variable

	(t), which need the introduction of i for warranty that the supercoordinate �(t; �) will

be realz.

We would like to highlight to the readers who know �eld theory, but have never seen the

supersymmetrical formalism in the context of classical mechanics that in this work we will

present the ingredients for implenting N=1 SUSY, namely, superspace, supertranslation,

supercoordinate, SUSY covariant derivative and super-action. Indeed, the steps adopted

in this approach are the same as used in the supersymmetrizations of quantum �eld

theories in the quadrimensional space-time of the special relativity (D = (3+1), three

position coordinates and one temporal coordinate).

zLike will be see below.
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This work is organized as follow: in section II we construct a �nite supercoordinate

transformation and the in�nitesimal transformations on the supercoordinate and its com-

ponents via the translaction in the superspace. In section III, we investigate the super-

particle using the Lagrangian formalism in the superspace, noting the fact that the N=1

SUSY does not allow the introduction of a potential term for only one supercoordinate

and we indicate the quantizating procedure. In section IV, we present the conclusion.

II. TRANSLATIONS IN SUPERSPACE

We will consider the N=1 supersymmetry i.e. SUSY with only one anticommuting

variable. Supersymmetry in classical mechanics unify the even coordinate q(t) and the

odd cordinate 	(t) in a superspace characterized by the introduction of a Grassmannian

variable, �, not measurable [1,2,7].

Superspace! (t; �); �2 = 0; (1)

where t and � act, respectively, like even and odd elements of the Grassmann algebra.

The anticommuting coordinate, �, will parametrize all points of superspace, but all

dynamics will be put in the time coordinate t. SUSY in classical mechanics is generated

by a translation transformation in the superspace, viz.,

�! �0 = �+ �;) Æ� = �0 �� = �

t! t0 = t + i��) Æt = t0 � t = i��; (2)

where � and � are real Grassmannian paramenters,

[�; �]+ = ��+ �� = 0) (��)� = (����) = (��) = �(��): (3)

This star operation of a product of two anticommuting Grassmannian variables ensures

that the product is a pure imaginary number and for this reason must insert the i =
p�1

in (2) to obtain the real character of time. SUSY is implemented for maintain the line

element invariantex:

xThat properties of Grassmannian magnitudes, necessary for one better comprehension of this

section will be introduced gradatively.
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dt+ i�d� = invariant, (4)

where one again we introduce an i for the line element to become real.

The supercoordinate for N = 1 is expanded in a Taylor series in terms of even q(t)

and odd  (t) coordinates:

� � �(t; �) = q(t) + i� (t): (5)

Now, we need to de�ne the derivative rule with respect to one Grassmannian vari-

able. Here, we use the right derivative rule i.e. considering f(�1;�2) a function of two

anticommuting variables, the right derivative rule is the following:

Æf =
@f

@�1

Æ�1 +
@f

@�2

Æ�2; (6)

where Æ�1 and Æ�2 appear on the right side of the partial derivatives.

One in�nitesimal transformation of supercoordinate that obbey the SUSY transfor-

mation law given by (2) results in:

Æ�(t; �) = �(t0; �0)� �(t; �) = (@t�)Æt+ (@��)Æ� = i�� _q(t)� i� (t); (7)

On the other hand, making an in�nitesimal variation of (5) i.e. Æ�(t; �) = Æq(t) +

i�Æ (t) and comparing with (8) we obtain the following SUSY transformation law for

the components of the supercoordinate:

Æq(t) = i� (t); Æ (t) = �� _q(t): (8)

Therefore making a variation in the even component we obtain the odd component

and vice versa i.e. SUSY mixes the even and odd coordinates.

Note from (5) and (7), that the in�nitesimal SUSY transformation law can be written

in terms of the supercoordinate �(t; �):

Æ�(t; �) = �Q�(t; �); Q = �@� + i�@t; (9)

where @� � @
@�
; @t � @

@t
:
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Therefore any coordinate which obbey equation (9) will be interpreted as

supercoordinate��. The di�erential operator Q, called the supercharge, is a represen-

tation of the translation generator in the superspace. In fact one �nite translation can

be easily obtained (9) which has an analogous form as that of translation in the ordinary

space

U(�)�(t; �)U�1(�) = �(t0; �0); U(�) = exp(�Q); U�1(�) = U(��); (10)

with the operator Q doing a similar role as that of the linear momentum operator in

ordinary space.

III. COVARIANT DERIVATIVE AND THE LAGRANGIAN

Now, we build up a covariant derivative (with respect to �) which preserves the

supersymmetry of super-action i.e. we will see that the derivative with respect to �

(@��) does not itself transform like a supercoordinate. So it is necessary to construct a

covariant derivative.

SUSY really possesses a peculiar characteristic. As the anticommuting parameter � is

a constant we see that SUSY is a global symmetry.

In general local symmetries are the ones which require covariant derivatives. For

example the gauge theory U(1) with local symmetry requires covariant derivatives. But

because of the fact that @��(t; �) is not a supercoordinate, SUSY will require a covariant

derivative for us to write the super-action in a consistent form. To prove this fact we use

(10) so as to obtain the following variations:

Æ@��(t; �)= @�Æ�(t; �) = �i� _�(t; �) + i��@� _�(t; �) 6= �Q@��(t; �)

Æ@��(t; �)= �� _ (t) 6= �Q@��(t; �) = ��� _ : (11)

On the other hand, making an in�nitesimal variation of the partial temporal derivative

we �nd:

��Note that Æ�(t; �) = �Q�(t; �) (where � is a supercoordinate) give us a way for test if � is a

supercoordinate indeed. If this equality not is true, � is not a supercoordinate.
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Æ@t�(t; �) = �Q@t�(t; �): (12)

So we conclude that @t� obeys the SUSY transformation law and therefore it is a superco-

ordinate. The covariant derivative of supersymmetric classical mechanics is constructed

so that it obeys the anticommutativity with Q i.e. [D�; Q]+ = 0: It is easy to verify that

one representation for a covariant derivative is given by:

D� = �@� � i�@t , ÆD��(t; �) = �QD��(t; �): (13)

Another interesting property which occures when the SUSY generator (Q) is realized

in terms of spatial coordinates on in the con�guration representation [3,4] is the fact that

the anti-commutator of the operator Q with itself gives us the SUSY Hamiltonian:

[Q;Q]+ = �2i@t = �2H; Q2 = �H; (SUSI)2 / H; (14)

i.e. two sucessive SUSY transformations give us the Hamiltonian. This is an algebra

of left supertranlations and time-translations. The corresponding right-supertranslations

satisfy the following algebra:

[D�; D�]+ = 2i@t = 2H; D2
� = H: (15)

Before we construct the Lagrangian for a superpoint participle, we introduce the

Berezin integrals [7] for an anticommuting variable:

Z
d�� = 1 = @��;

Z
d� = 0 = @�1: (16)

Now we are in conditions to analyse the free superpoint particle in one dimension

and to construct a manifestly supersymmetric action. We will see that SUSY is a super-

action symmetry but does not let the Lagrangian invariant. A super-action for the free

superpoint particle can be written as the following double integralyy

yyIn this section about supersymmetry we use the unit system in which m = 1 = !, where m

is the particle mass and ! is the angular frequency.
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S =
i

2

Z Z
dtd�(D��) _�

=
i

2

Z Z
dtd�f�i _q �� _ � i� _q2g

= � i
2

Z
dtfi _q

Z
d�+  _ 

Z
d��+ i _q2

Z
d��g

�
Z
dtL: (17)

Indeed after integrating in the variable �, we obtain the following Lagrangian for the

superpoint particle:

L =
1

2
_q2 � i

2
 _ ; (18)

where the �rst term is the kinetic energy associated with the even coordinate in which the

mass of the particle is unity. The second term is a kinetic energy piece associated with

the odd coordinate (particle's Grassmannian degree of freedom) dictated by SUSY and

is new for a particle without potential energy. Thus we see that the Lagrangian is not

invariant because it's variation result in a total derivative and consequently is not zero,

which can be obtained from ÆS; D� j�=0= Q� j�=0:

ÆS =
i

2

Z
dtd�Æf(D��) _�g ) ÆL =

1

2
�
d

dt
(D��) _� j�=0= i

2
�
d

dt
f _qg 6= 0: (19)

Because of the fact that the Lagrangian is a total derivative, we obtain ÆS = 0 i.e.

the super-action is invariant under N=1 SUSY transformation.

Note that for N = 1 SUSY and with only one coordinate �, we can�t introduce a

potencial term V (�) in the super-action because it conduces to non-invariance i.e. (ÆS 6=
0). There are even two more inconsistency problems. First we note that the super-

action S acts like an even element of the Grassmann algebra and for this reason any

additional term must be an even element of this algebra. Indeed, analysing the terms

present in the super-action we see that the line element has one d� and one dt which

are respectively odd and even. As the supercoordinate is even, the potential V (�) must

also be even, which when acts with the line element dtd� becomes odd which fact will

let the super-action odd and this is not admissible. The other inconsistency problem can

be traced form the dimensional analysis. In the system of natural units the super-action

must be non-dimensional. In such a system of units, the time and the even component
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q(t) of the supercoordinate have dimension of [massa]�1. In this way, starting form the

supertranslation, we will see that � will have dimension [massa]�
1

2 . Consequently the

supercoordinate � has dimension of [massa]�1 and _� is non-dimensional. Because of this

when we introduse a potential term V (�) we would obtain a super-action with inconsistent

dimension.

The cannonical conjugate momentum associated to the supercoordinate is given by

�(t;�) =
@

@ d�

dt

L =
i

2

@

@ d�

dt

Z
d�(D��) _� =

1

2

Z
d�f� _�+ iD��g; _� � d�

dt
; (20)

which leads to the following Poisson brackets:

f�(t;�); �(t;�0)g = 0 = f�(t;�);�(t;�0)g (21)

f�(t;�);�(t;�0)g = Æ(���0): (22)

We can not implement the �rst cannonical quantizating method directly because there

exist constraints: the primary obtained from the de�nition of cannonical momentum

and the secondary obtained from the consistency condition. In this case we must to

construct the modi�ed Poisson parentheses called Dirac brackets. These aspects have

been considered in the quantization of the superpoint particle with extended N = 2

SUSY and is out of the scope of this work [9].

We �nalize by writing another manifestly supersymetric action which can be con-

structed for the case with N = 1 SUSY using the generator of right supertranslation

D�:

S2 =
i

2

Z Z
d�dtD�(D��): (23)

It is left as an exercise for the reader to demonstrate that it is possible to e�ect the

integral in � and encounter the N = 1 SUSY Lagrangian for the case.
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IV. CONCLUSION

After the introduction of a real Grassmannian anticommuting variable, we consider a

translation in superspace and implement the transformation laws of the supercoordinate

and its components. We show that an in�nitesimal variation of the even coordinate

generates the odd coordinate and vice-versa, characterizing N=1 SUSY. We introduce

a covariant derivative for writing the super-action in a consistent way. We verify that

occure an interesting property occurs when the SUSY generator (Q) is realized in terms of

Grassmannian coordinates: the anticommutator ofQ with itself results in the Hamiltonian

i.e. two successive SUSY transformations gererate the Hamiltonian. If the reader considers

two successive supertranslations, will obtain exactly the Hamiltonian as result i.e. D2
� =

H. In the original works about supersymmetric in classical mechanics [1,2], the respective

authors do not justify as to why in the case of N=1 SUSY is not allowed to put a

potential term in the Lagrangian. Therefore, the main purpose in this work has been to

make an analysis of this question in the context of a Lagrangian formalism in superspace

with N=1 SUSY. In synthesis from the fact as to how the super-action must be even

and the line element dtd� in its construction be odd, we show that it is not possible to

introduction a potential energy term V (�), because which a potential term would conduze

in a super-action with inconsistent dimension i.e. the super-action itself becomes odd too.

Therefore when we have only one supercoordinate �, the N = 1 SUSY exists only for a free

superpoint particle. The equations of motion for the superpoint particle with N=1 SUSY

are �rst order for odd coordinate ( _� = d�
dt

= 0) and second order for even coordinate

(�x = d2

dt2
x = 0).

In conclusion we must stress that the super-action must always be even but the La-

grangian may eventually be odd. Nonetheless, the same analysis can be implemented for

the case with N = 2 SUSY so that one may put a potential term in the superaction.

In this case, considering only one supercoordinate � of commuting nature, is allowed the

introduction of a potential term in the Lagrangian [9,10]. On the other hand, one can

introduce an odd supercoordinate of anticommuting nature so that the N = 1 SUSY is

ensured and the main consequence is to obtain the unarmonic oscillator potential.
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