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ABSTRACT:

We study numerically the scaling behavior associated with

M-farcations (M =3,4,5) in the map x 1-alx, |*(z>1). The

t+l
scaling constants & and a, as function of z, are calculated,

as well as the more general scaling functions o and f(a).
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I. INTRCDUCTION
.The one-dimensional iterative map
= f(x) =1-yulx|* , (z>1) (1)

which maps the interval x € [Z1,1] into itself, displays a very
rich dynamical behavior[:l’zj. This map is generic. for all
single-hump one-dimensional maps which have (locally arocund
the maximum) a leading nonlinearity of order z. The z =2 case
is by far the most cammon in experiments[:sj, but also  other
values of z-are found[:4].

When the parameter u in Eg. (1) is raised (starting from
u =0) the attractows (or long-time solutions) of the map  show
a sequence bf periodic orbits with period-zk(k =0,1,2...). The
k-th-peribd appears at My through a pitchfork bifurcation of
the (k-1)-th period, and the'sequence'{uk} accumulates (k » )
at u_(z), where the system enters into chaos. In the chaotic
region aperiodic attractors are present as well as an .'infinite
number of periodic windows, which always appear in the . same
order, independently of z. When these windows are taken in an
appropriate order, they form sequences of M-furcations, with
period Mk (M >2), which generalize the bifurcations (M =2).
The windows of the M-furcations are not adjacent on the para-
meter axis and they are very narrow. However, the period-tripling
gsequence (M =3) has been observed experimentallylzsj. : ﬁAbdve

b =2 no finite attractors exist and X

¢ is driven to infinity.

All the sequences of M-furcations present scaling  factors
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that converge and define universality classes determined by z.
in the sense_that the factors do not change if higher order terms
are included in Eq. (1). In the p-direction there is the scaling fac-
tor § and.in the x-direction there is a whole set of scaling
factors (the principal ones being o and az), which together
form the scaling function ¢. The presence of a set of scaling
indices i; the attractor at the accumulation point . of the M-
furcation, characterizes the presence of .a multifractal, which
can be studied through the function f{a). |

In the paper by van der Weele etral.[:GJ they studied 8,
a,0  ‘and.f (a)} as function of z for the bifurcations (M=2),and
Shau-Jin Chang et.al.[:T:I gtudied a, 8  and fractal dimensions
for the 2 =2 case and M < 7.-The_Refs.-B-l4ﬂdeal abso’ with
scaling factors for the M-furcations in the map (1). |

The aim of the present communication is to study numerical
ly as function of z, the scaling factors o and §, -.and the
scaling functions ¢ and f(a) for M =3,4 and 5, which correspond res
'pectively to:trifurcations, tetrafurcations and pentafurcations.
The paper is organized as follows: in the next séction we study
the scaling funétion.G; in sections . II and III we study . ‘'the
functions ¢ anf f(a), respectively: the last section is dedi-

cated to the conclusions.

II. THE SCALING FACTOR 6§

In this section let us initially fix upon notations to in—

-

troduce the method used in the numerical calculations. For
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every periodic'orb;t in the map (1) there is one value of the
tontrol parameter for which:the orbit inéludas' the ciitical
point (peak) of the map. At this value of the parameter the
cycle is called surperstable. Following the images .of the
peak at the superstable cycle it is possible to form a  word
of R and L acceording to whether the subsequents iterates in the
orbit are on the right'ér the left of the peak. This word 1is
.called U-sequence of the cyéle[:15]. In the case of the tri-
furcations and tetrafurcations the basic 3-cycle and 4~cycle
have U-sequences RL and RLL {or RL?)}. . The pentafurcations have
three. types of sequences for-thewbasic 5~cycle, namely .. RLRZ,
RLZR and RL®. The U-sequehces related to the higher order pe-
riods in the M~furcations are constructed following the rules
described in Refs. 1 and 15.

For each family of cycles related to a given U-sequence the
sat { ﬁk} where superstable cycles occur oonverges geometrically at

-

a rate given by

i -f._
ko

uh?l =H

and it accumulates at .

To .determine the set {ﬁk} where the cycles\belonging to. .a
family of M-furcations are superstable, we ﬁse the method in-
troduced by Hao Bai-Lin[:lsj. Let us explain the method with
the same type of U-sequence chosen by him, namely, RLRR. At
the superstable cycle the iterates of the map proceed from

x =0 to x=0, i.e.,
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—d-
fR(fR(fI"-(fR'(f'(_u,O})l)lm0 ' (3)
where the subscript R or L indicates which branch Right or

left of the map has been used at each iteration. S8ince the

inverse mapping is two:valued, we define

R(x) Yax) =+ Ca-xizu]t/® ((42)

X (x) f;‘-»ou.x) =-[ (l*x')/u]"” ? (4b)

depending on which half of the mapping is used. If successive

inverses of Eg. (3) are taken we obtain for the word RLRR the func-

tional relation
R(L(®(R(0)))) = 1 (5)

which is an equation for u. If we multiply this equation By

B = % , we obtain

BEB(I +..-E.(l "EB(.]' "Blfz)]l"l."ﬂ%!:z)jljz — (6)

This equation can be solved by iterations, as suggested by

Kaplan E”], i.e., replacing the equat:.on by
1 EBnL-En(l + Een(l - E@n'(l -Bhlz_z)_]1,_5_):]-.-113):'1/2 7)

‘and than iterating it for a suitable By-
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This method is quite simple and can be used for any type
of map whose inverse is calculable in ciosed form and for any
type of U=-sequence. However, we obserﬁe that the @ohveréehce
rof Eq. (7) becomes slower in the z + 1 and z + « limits.

In table I we display the. values of the accumulation points
ii_ of the superstable values and of § for z =1.5,2,3,4,6,8 and
10 and five types of sequences, namely (RL)*%, (RL2)*%, (RLR?)*®,

(RLZR) *® and (RL®)*® (see Ref. 1 for this notation), which cor
respond to M = 3,4.and 5. The nﬁmerical values of & as a func
tion of z are ploted in Fig. 1. We observe that § diverges in
the limit z - 1, for all cases considered and presents a mi-
nimum near z =2. For the bifurcations (M =2), §(2) is a mono-
tonously increasing function of z and §(l) = 2[:1]. Thére- is
a controversy about the behavior of £1m §.(z). Eckmann et
al. E”‘] and van der Weele et al l:ﬁ EI ¢laim that £m S (t) 530,
whereas . Bhattachargee et al.!:]"?:I claim that §(z) diverges in
the z »» limit (this result ceincides with that one obtained
via Renormalizatioﬁ Group[:12])..For M > 2 we do not know any
-conjecture about the behaﬁior of §(z} in the z +w'limit.' Nume
rical calculations in this limit are very difficult, since the

convergence of § becomes very slow.

III. THE FUNCTION ¢

In the x-direction there is a whole set of scaling indices
associated with the attractors at the accumulation point of

the M-furcations; this fact characterizes the presence'of a
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multifractal. The principal indices are o and o%, which ~are
related to central (near x = 0) and top (Hear x = 1) distances
of the M-furcation tree, respectively. To determine the fung
tion o let .ug consider the superstable'Mk-cyc;e_{xop&,."‘xwki}

with X, =0, The distances between X and X .yqk-1 @re given by

dk:m = Ixmﬂ-‘lk'l - xml

£8)
k-1,
= e oy - £5™ 0y
P "
For-n1>Mk“1 we consider dk}nﬂk-l+p#dk > with n,p =1,2.... The

refore the scaling function ¢ can be defined by

d _
g(t) = Zim a—Eaﬂ—w , b= o (9)
k+w “k+l,q M
- k
‘where q = 1,2...M".
The scaling factors o and o® are associated with the

greatest and smallest value of o, respectively, and are given

by the following relations c(l) =L and c(0+) =2 . In
M o : aZ

table I we display the values of o for z = 1.5,2,3,4,6,8,10 and
M= 3,4 and 5. In Fig. Z(a) we plot o versus z. We  observe
that the qualitative behavior 6f a{z) is the same for all se-
quences with M = 2,3,4 and 5, i.e., it is a monotonously de-
creasing function of z and goes to infinity when z +1 (see
Ref. 6 for the M = 2 case}). The scaling a®, is shown in Fig.
2(b). We observe a qualitative behavior very similar between

6§ and o?; both of them have a minimum near z =2, diverge”
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z

for z +1 and .in the limit 2z + the_relation¢6 g a” i§. verified

(this relation was obseruwed for M =2 in Ref. 8).  Therefcre,
the guestion if & has or not a limiting value when z -+« is
transformed in a similar question for aZ.

The function‘ ¢ calculated for larger values of g does not giwve
k+1,q+MK = dk+1’quand therefore
o(t +3) = o(t). In Fig. 3 we show o(t) for z =1.5;2 and 10 for

.any further ihformation since d

the trifurcations (M =3). In every rational value of t(0 <t <§)
there exist a jump .in -the function ¢, but we observe that the
discontinuities decrease rapidly as the binary expansion  of
the rational increases. In a crude approximation there are M
‘plateaus, which are divided in.éprlateaus. We observe that
the discontinuities of the subplateaus become more and more
pronounced when z increases, and they can be calculated  using

approximative methods (see Ref. 6 for the M =2 case}.

IV. THE FUNCTION f (a)

The scaling funqtion f(a) is another way to . characterize
the multifractal set associated with the x-direction. It is
more convenient than the function ¢, in the theoretical and ex
perimental points of view, since it is a smooth function.

The formalism introduced by Halsey et al.[:laj consists in
convering the attractor with boxes, indexed.by.i,nof size aﬂi,
and assume that the probability density scales like P ¢£§ in
the limit Ei +0. The next step is to form the normalized par .

tition functidn
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q
T{g,1) =] 2==1 {(10)
| i

eo]

T
i

o)

The function T(gq) gives the function f£(a) through a Legendre
transformation.

To study the multifractal set present at the attractor of

the M-furcations, we have chosen P, S p = i-l for the K-cycle..
' M
Therefore the partition function becomes
T 1\ ?k“l a, T (11)
N (Mk_l) =1 0 -

where dk " is given by Eq. (8}. The function fk(a) obtained by

Eq. (11) converges, £or k large enough, to the universal = function
f(a). .The minimal and maximal wvalues of &, which respectively
characterize the most tfoncentrated and most rarified'regions of

. - Pat7 z =
the attractor, are given by @ in = £aM/Ln o and,_amax

M/ fn o . Consequently ‘a . = 24 . for all kinds of se-

quence, which is a useful relation to determine. the order . of
the maximum of the map in physical experiments. .

In Fig. 4 we show the function £ (a) for =z =1,5r2,4,10 and
for the sequences (RL?2)*® and (RL?*)*®, 1In the limit z »1 the
curve f(a) reduces to a sharp peak at a_=0 s§?ce “min'=“max =0,
and the Hausdorff dimension D0 (which_coinciéés with the maxifmm
of f(a)) goes to zero. For increasing z, D, monotonously .iin-
creases and goes to 1 in the limit z +«, The behavior of 4 .
ahd amax-for increasing z is directly related to the behavior
of a? and o, respectively. Therefofe we observe . that A i

first grows, until reaches a maximum near z =2 and then decreases,
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whereas amax_is a monotonously increasing function of z, and

goes to infinity in the limit z =,

V. CONCLUSIONS

We hafé studied numericallf the scaling factors - associated
with the M-furcations (M =3,4 and 5) for single~hump onerdimensicnal
maps given by x' =1 -alxlz. The numérical data were obtained
by observing the level-by-level convergence of the scalings in
the M-fwrcation tree. When z is varied we have found that the
factors §.and o® have a similar gqualitative behavior for M =3,4
and 5, i.er,they“diverge for z +1 and have a minimum near z-=2.
In the.limit z +~ we verify § g a®, but if these scalings  di-
verge. or not in this limit is a guestion to be worked out.
The scaling a is a monotonously decreasing funotion of z forall
.igequences studied. We alsc have calculated the-functiona -2
and f (a) related to the multifractal set present at the accumu-

lation points of the M-furcations.

I acknowledge with 'pleasure useful discussions with Constan
tife Tsallis and a'critic,-al reading of the.manﬁscript bhy E.M.F.
Curado. I am very indebted to Zeng Wan-Zhen and Hao Bai-Lin for
making available to-.details- of the method described in -.'secfr.ion

IT of this communication.
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CAPTION

Fig. 1.

Fig. 2.

Fig. 3.

. Fig. 4.

-10=-.

FOR FIGURES

The scaling'factor § as a function of z for the se-

quences (RL)*", (RLZ)*", (RLR*) ™", (RL2RY*" and (RL®)*",

The scaling factors (a)a and (b)o® as function of =z
. for the sequences (RL)*", (RLZ)*", (RLR?)*", (RL?R)*" and

(m‘3)*n.

The scaling function ¢ for z =1.5,2 and 10 .for the se

quence (RL)*®.,

The function f(a) for.z=1.5%,2,4 and 10 for the se-

quences (a) (RL2)*® and (b) (RL?)*™.
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Fig. 2(a)
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CAPTION FOR TABLE

Table I - Accumulation points j_, and M-furcation rates § and «
for typical values of z and for the sequences (RL)*7",
(RL2)*", (RLR%) *®, (RL2R) *™ and (RL®)*". The results
for z=2,4,6 and 8 are also.calculated._ in Ref. 10.,but

* the present numerical values are more accurate.
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Table I
K (®D) *® (RL2F*® | (RRH*® P @LIR*T | (RSP
‘| §, |1-713540707 |1.908140938. 1.581073957 11810146096 1.970391709
1.5_ ) \ Lo . . . . . . I 1 . . - -
o186 .17.311.x10% 12,719 x10% |6.442 x10? |4.984 x10° |8.691 x10"
o - [3.010 x10' |3.234 x102 1,292 %102 ./5.143 x10% [3.174 x10*
| §, |1.786440255 |11942704354 [1.631926654|1.862224022{1,985539530
2 | M= : > _ *Y
8. |5.524 x10 ~19.816 x10® |2.555 x10% [1.287 x10° |1.693 x10*
o |9.277 _13.882'x10* [2.013 x10® 14.580 x10' |1.600 x10°
| Mo |1.867865948 [1.973452851 |1.7002047261.9182980281.995250019
31 s 6.681 x10? [9U665 x10% |2.404 x10% [1.106 x10° |1.486 x10*
o 14:364 1,063 x10'  |6.720 1.125 x10' |2.645 x10!
1 i 11.909335470 |1.985504660 {1.743351015]1.945858588|1.997974021
4 o _ ? ~ > ke
- 8 [8.578 x10 1.275 x10° 12.919 x10* 11.418 x10° [2.099 x10*
o |3.152 16.193 4.294 6.398 _ 1.248 x 10}
f,, |1.948866269 |1.994205417. (1.795920044]1.970972615(1.999432441
6 o 3 : g _ _
1.8 ]1.301 x10% [2.22 x10%. {4.317 x102 |2.433 x10® |4.32 x 10"
o $2,281 3.659 2.790. 3.727 6.007
1 W, |1-966776434 |1.997084404 11.827674871|1.981779236(1.999779411
8 1'a J1.789 x10% |3.49x10°  [5.89 x10° 13.79 x10% |7.87 x10* _
o j1.925 2.791 125237 2.826 4.122 _
A, [1- 976500608|1.998317004 |1.849408804|1.987431027(1.999896134
10 & [2.296x10% |5.05x10° 7.53 x10%  |5.42 x10° {1.28 x10°
“oux |1.729 |2.355 1.949 12,375 3426
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