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vor quantum numbers using the bound state approach to the topological

soliton model and the recently proposed approximation for multiskyrmion

�elds based on rational maps. We use an e�ective interaction lagrangian
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I. INTRODUCTION

In recent years multibaryons have received a considerable amount of attention. A rea-

son for this is that their hypothetical existence could provide valuable information about

the nature of the strong interactions at low energies. Perhaps the most celebrated exam-

ple is that of the H-dibaryon predicted by Ja�e more than twenty years ago [1]. Since

then the possible existence of some other exotic states has been investigated in various

models. Of particular interest are those containing avor (i.e. S , C , B ) quantum num-

bers. In fact, it has been speculated that strange matter could be stable [2]. This has

lead to numerous investigations of the properties of strange matter in bulk and in �nite

lumps (for a recent review see Ref. [3]). Moreover, with the advent of heavy ion colliders

there is now the possibility of producing strange [4] and even charmed [5] multibaryonic

states with rather low baryon number in the laboratory. These new developments pro-

vide further motivation for the study of the properties of multibaryons with heavy avor

quantum numbers. Most of the known predictions come from MIT bag model (see for

example Refs. [6]) or non-relativistic quark model based calculations. Here, we will adopt

a di�erent point of view. We will asume that the heavy avor multibaryons are formed by

an SU(2) multiskyrmion with some heavy mesons bound to it. This is basically an exten-

sion of the bound state approach to strange hyperons originally introduced by Callan and

Klebanov [7] and later shown to describe heavier avor baryons as well [8]. A study of

strange multibaryons within this approach has been recently presented in Ref. [9]. There,

a chiral lagrangian written in terms of pseudoscalar meson �elds with some chiral sym-

metry breaking terms has been used as the e�ective lagrangian. As well known by now,

although adequate for the light (up and down) and strange sectors, such type of e�ective

lagrangian has to be modi�ed when heavier avors (e.g. charm) are incorporated. In

that case, heavy quark symmetry [10] has to be imposed. This symmetry requires that

both the heavy pseudoscalar and the heavy vector �elds appear explicitly in the e�ective

lagrangian. Lagrangians which have both chiral symmetry and heavy quark symmetry

have been described in the literature [11,12]. In our calculation we will adopt such type

of lagrangian. As already mentioned, in our description the baryon number of the system

comes from a non-trivial soliton con�guration in the light sector. Until very recently only

few multiskyrmion con�gurations (i.e. those with B � 4) were known. In 1997, how-

ever, after some demanding numerical work Battye and Sutcli� [13] were able to identify



CBPF-NF-037/99 2

those which are believed to be the lowest energy con�gurations with baryon number up

to B = 9. Interestingly, all these con�gurations have the symmetries corresponding to

the regular polyhedra. Even more important for our purposes, Houghton, Manton and

Sutcli�e [14] have exploited the similarities between the BPS monopoles and skyrmions to

propose some ans�atze based on rational maps. They have shown that such con�gurations

approximate very well the numerically found lowest energy solutions with B � 9. In our

investigations we will make use of these approximate ans�atze. An interesting feature of

these con�gurations is that for B > 1 the derivative of the radial soliton pro�le vanishes

at the origin. Since to leading order in the inverse of the heavy quark mass mQ the

heavy meson-soliton interaction is proportional to this quantity [15] we do not expect any

bound state in that approximation. However, next-to-leading order corrections in 1=mQ

are required even to describe the spectrum of B = 1 heavy baryons [16]. In the present

work these corrections will be properly taken into account.

This article is organized as follows. In Sec.II we introduce the e�ective lagrangian

together with the ansatz for the multiskyrmion con�gurations. In Sec.III we present our

numerical results. Finally, in Sec.IV our main conclusions are given.

II. THE LAGRANGIAN

To describe the dynamics of the light and massive mesons interacting with each other

we will consider an e�ective lagrangian of the following form [12]

L = Ll + (D��)
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where Ll is the e�ective light meson lagrangian. In the present work we will consider

pions as the only explicit light degree of freedom and choose Ll to be simply the Skyrme

lagrangian. Consequently, the e�ective lagrangian Ll , written in terms of the chiral �eld

U = exp(i~� � ~�=f�), reads
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Here, f� is the pion decay constant and � is the so-called Skyrme parameter. In Eq.(1), �

represents the heavy pseudoscalar doublet and  � the corresponding vector doublet. For

example, for charmed mesons
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Moreover, f and g are the � �� and  � �� coupling constants, respectively, and

D� = @� + v� ; (4)

 �� = D� � �D� � : (5)

Finally, in terms of the chiral �eld the currents v� and a� read
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As usual in the bound state model we should �rst determine the static skyrmion

background. For this purpose we introduce the rational map ansatz for the pion �eld. It

reads [14]

~� = f�F (r) n̂ : (8)

Here, F (r) is the (multi)skyrmion pro�le which depends on the radial coordinate only

and n̂ is a unit vector given by

n̂ =
1

1 + jRj2
�
2 <(R) {̂+ 2 =(R) |̂+ (1� jRj2) k̂

�
; (9)

where R is the rational map corresponding to a certain winding number B which is

identi�ed with the baryon number. Such map is usually written as a function of the

complex variable z which is related to the usual spherical coordinates �; ' via stereographic

projection, namely z = tan(�=2) exp(i'). For example, the map corresponding to the

B = 1 hedgehog ansatz is the identity map R = z. The explicit form of the maps

corresponding to the other baryon numbers B � 9 can be found in Ref. [14]. Using Eq.(8)

it is possible to obtain the expressions of the a� and v� currents to leading order in Nc.

The time components vanish at this order while the space components result

ai = � i
2

�
F 0 ~� � n̂ r̂i + s ~� � rin̂

�
; (10)

vi = �is=2 �n̂�rin̂
� � ~� ; (11)

where we have introduced the short hand notation s = sinF , s= = sin(F=2). The radial

pro�le function F (r) is determined by minimizing the soliton energy. Details of this
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procedure as well as plots of these functions for di�erent baryon numbers are given in

Ref. [14].

To order N0
c , we have a system of heavy mesons moving in the static soliton back-

ground. To derive the explicit form of the relevant heavy meson-soliton lagrangian we

need some consistent ans�atze for the heavy meson �elds. For the pseudoscalar �eld we

use [9]

�(~r; t) =
1p
4�

�(r; t) ~� � n̂ � ; (12)

where � is a two-component spinor. To obtain the corresponding ansatz for the heavy

vector meson �eld it is convenient to analize the coupling terms in the e�ective lagrangian.

They are the last two terms in Eq.(1). From their structure and the form of the a� and

v� currents in the static limit it is possible to see that the ansatz should have the form
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Replacing Eqs.(8), (12), (13) and (14) in the e�ective lagrangian, Eq.(1), we obtain

that the heavy meson-soliton lagrangian LHM�sol is

LHM�sol =
1
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where s and s= have been already de�ned, c= = cos(F=2) and I is the angular integral

I =
r4

16�

Z
d


�rin̂arin̂a
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The diagonalization of the hamiltonian obtained from LHM�sol leads to a set of eigen-

value equations for the heavy meson �eld. They are
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The numerical solution of this set of coupled equations supplemented with the ap-

propiate boundary conditions provides the heavy meson energy ! for the di�erent baryon

numbers B. The corresponding results are discussed in the following section.

III. NUMERICAL RESULTS

In our numerical calculations we use two sets of parameters in the SU(2) sector. Set

A corresponds to the case of massless pions and Set B to the case where the pion mass

takes its empirical value m� = 138 MeV. In both cases, f� and � are adjusted so as to

reproduce the empirical nucleon and � masses. The �tted values are f� = 64:5 MeV ,

� = 5:45 for Set A and f� = 54 MeV , � = 4:84 for Set B. With these parameters �xed

and using for each baryon number B the rational map given in Ref. [14], we obtain the

pro�le F (r) that minimizes the mass of the soliton.

We proceed to solve the bound state eigenvalue equations (17)-(20), using the values

shown in Table I for the parameters that appear in the heavy meson lagrangian, Eq.(1).

For the pseudoscalar and vector meson masses we use the empirical values. On the other

hand, since little is known about the heavy meson coupling constants, we use the heavy

quark symmetry relation [12]

f = 2 m g (21)
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as a guideline in order to estimate f . We take g to be the value given by the non-relativistic

quark model: g = �0:75. As discussed in a recent analysis [18], this value is compatible

with the upper bound g2 <� :5 established by the experimental upper limit for the decay

width �(D�+) < 131 keV set by the ACCMOR Collaboration [19].

Our results for the heavy meson binding energies "B de�ned by

"B = m� � !B (22)

are shown in Table II. Also listed in Table II are the soliton masses per baryon number

Msol taken from Ref. [9].

The general structure shown by the binding energies is in qualitative agreement with

what was found in Ref. [9] for the strangeness case. For the heavy avors we also �nd

that the binding energy decreases with increasing baryon number, except for the crossings

that take place at B = 4 and B = 7. This general behaviour is the opposite to what was

found in Ref. [17]. It should be pointed out that, due to the absence of explicit vector

mesons in the corresponding e�ective action, the approach used in [17] is expected to be

less accurate than the one followed in the present work.

From Table II we also notice that, for heavy avors, the binding is stronger for Set A

than for Set B. This can be understood as follows. In themQ !1 limit the heavy avored

meson would be concentrated at the origin [15], wrapped by the soliton. Thus, it would

only probe the potential at this point. For B = 1 such potential is basically proportional

to jgF 0(0)j and attractive. As well known (see, e.g., Fig.1 of Ref. [20]), jF 0(0)j is larger
in the massless case. That leads to the observed behaviour. Similar analysis can be done

for higher values of B. For the strangeness case the behaviour of the pro�le function at

medium distances becomes important and the situation is reversed [9].

In order to study the stability of the heavy multiskyrmions we will only consider the

mass of the background multiskyrmion and the binding energy of the bound mesons. This

should be a good approximation since the non-adiabatic corrections are expected to be

small as a consequence of the rather large values of the moments of inertia involved [21].

In the following we will focus on those states which have avor number equal to their

baryon number. These states are of particular interest since in the strange sector the

analog states, namely those with Y = 0, have been found to be stable for some values of

B [22,9].

Using
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IB =M1 +MB�1 �MB (23)

with MB = B(Msol + m� � "B) and the values given in Table II, we get the ionization

energies IB shown in Table III. We observe that the only heavy avored states that may

be stable are those with B = 4 and B = 7. In Table IV we summarize the energies for

the other possible strong decays of these states. We observe that, although these states

are stable against strong decays into two fragments, some decays into a larger number of

fragments are allowed. However, since the usual phase space factors tend to suppress the

decay rates as the number of fragments n in the �nal state increases we expect them to

be quite narrow. For instance, in the case of the charmed heptalambda the decay width

will be very small since the only allowed decay mode is the one that has seven �c in the

�nal state (Set A).

Therefore the present model predicts, both for charm and bottom, narrow heavy multi-

baryon states with baryon number four and seven. The main reason for the unstability of

these particles can be traced back to the rather large di�erence that exists between the

B = 1 and B > 1 binding energies. This can be easily understood noting that, to leading

order in 1=mQ, the only non-vanishing binding energy would be that corresponding to

B = 1 since for B > 1 the radial derivative of the soliton pro�le function vanishes at the

origin. On the other hand, in the case of strangeness the meson wavefunction is wider

and, therefore, much less sensitive to the value of the potential at the origin. Conse-

quently, the gap between the binding energies of B = 1 and B > 1 is much smaller and

the corresponding multibaryon states with baryon number four and seven turn out to be

absolutely stable against strong decays [9].

IV. CONCLUSIONS

In this work we have studied the masses of heavy multibaryon con�gurations using

the bound state approach to the Skyrme model. This is a natural extension of previous

work done in the strange sector. In order to consider the heavier avors of charm and

bottom in a consistent way, however, it is important to take into account the heavy quark

symmetry. This is accomplished by the lagrangian given in Ref. [12]. An important

feature of this e�ective heavy meson lagrangian is that it contains the degrees of freedom

of the heavy scalar meson and the heavy vector meson explicitly, which leads to a system
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of four coupled equations for the bound state problem instead of just one equation as in

Ref. [9]. The baryon number is carried by the soliton con�guration of the light background

�elds, for which we have used the expressions in terms of the rational maps given in Ref.

[14].

We obtained solutions for the bound state equations for B � 9. As in the strangeness

case we �nd that the binding energy decreases with the baryon number and that the B = 4

and B = 7 states are the most stable against strong decays. However, for the charm and

bottom avors these states are not absolutely stable. Still, they are expected to be quite

narrow since only decays into �nal states with three or more fragments are energetically

allowed. We do not expect that the collective quantization of the soliton-meson bound

system will change this picture. It would be important, however, to estimate the zero

point energy [23] of these multiskyrmion con�gurations. As discussed in Ref. [24] this

contribution may be the cause for the H particle, which appears almost at threshold, to

be unbound. In any case, since the predicted tetralambda and heptalambda are more

strongly bound against two particle decays than the H, this contribution is not expected

to be so important so as to open those leading decay channels.
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TABLE I. Masses and coupling constants for the heavy meson lagrangian.

charm bottom

m� 1867 MeV 5279 MeV

m 2010 MeV 5325 MeV

f -3016 MeV -7988 MeV

g -0.75 -0.75

TABLE II. Meson binding energies "B (in MeV) for the case of massless pions (Set A) and

massive pions (Set B) as a function of the baryon number B. Also listed are the soliton masses

per baryon unit Msol (in MeV) which are taken from Ref. [9].

Msol "B(charm) "B(bottom)

B Set A Set B Set A Set B Set A Set B

1 863 864 383 328 554 474

2 847 848 321 272 438 374

3 830 832 300 255 408 351

4 797 798 301 256 407 350

5 804 808 287 245 391 339

6 797 802 283 243 386 336

7 776 780 288 247 392 341

8 784 790 280 242 383 335

9 787 796 275 239 378 332
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TABLE III. Ionization energies IB (in MeV) of the charm and bottom multilambdas in the

case of massless pions (Set A) and massive pions (Set B).

IB(charm ) IB(bottom )

B Set A Set B Set A Set B

2 -92 -80 -200 -168

3 -58 -43 -139 -105

4 86 99 15 41

5 -121 -111 -196 -163

6 -19 -3 -92 -61

7 148 159 87 113

8 -136 -117 -211 -177

9 -96 -93 -164 -146
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TABLE IV. Energy balance (in MeV) for the multilambda strong decays in the case of mass-

less pions (Set A) and massive pions (Set B). The �rst column indicates the number of fragments

n in the �nal state.

charm bottom

n Set A Set B Set A Set B

2 M4� � 2M2� -120 -136 -76 -104

3 M4� � (2M� +M2�) -28 -56 124 64

4 M4� � 4M� 64 24 324 232

2 M7� � (M2� +M5�) -221 -236 -195 -220

M7� � (M3� +M4�) -158 -168 -138 -162

3 M7� � (M� +M2� +M4�) -100 -125 1 -57

M7� � (M� + 2M3�) -244 -267 -153 -203

M7� � (2M� +M5�) -129 -156 5 -52

M7� � (2M2� +M3�) -278 -304 -214 -266

4 M7� � (M� + 3M2�) -220 -261 -75 -161

M7� � (2M� +M2� +M3�) -186 -224 -14 -98

M7� � (3M� +M4�) -8 -45 201 111

5 M7� � (3M� + 2M2�) -128 -181 125 7

M7� � (4M� +M3�) -94 -144 186 70

6 M7� � (5M� +M2�) -36 -101 325 175

7 M7� � (7M�) 56 -21 525 343


