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Abstract

We deduce the classsical one-dimensional Caldirola-Kanai action from quantum mechan-

ics, at the W.K.B. limit, formulated as an eletronic 
ux interacting with an enviroment in

the usual Langevin-Brownian phenomenological path integral framework.
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It is an interesting problem in quantum mechanics to introduce interactions leading to

damping in the equations of motion, at the classical limit of the associated quantum systems

([1],[4]).

In this brief report, we propose a phenomenological framework for the above mentioned

problem by considering instanton con�gurations associated to a path integral ([2]) describing

the W.K.B. leading limit of a quantum particle wave function interacting with a white noise

reservoir with a friction interaction of a Brownian type.

Let us start by writing the one dimensional particle Schroedinger wave equation in a

convenient way to implement the hydrodynamical analogy with quantum mechanics:

	(x; t) = �2(x; t)e
i

�h
S(x;t) (1)
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S(x; t)) = 0 (3)

In order to write the above Schroedinger equation as a hydrodynamical equation suitable to

introduce dissipation as usualy implemented in classical 
uid 
uxes, we consider a W.K.B.

pure phase approximation for Eqs.(1)-(3) and relevant for probing the classical limit of the

system

	(x; t) � exp(
i

�h
S(x; t)) (4)

By substituting Eq.(4) into Eq.(2), we get as our basic phenomenological dynamical

equation, the inviscid Burger equation for the eletronic 
ow de�ned by the wave function

phase gradient v(x; t) = d

dx
S(x; t), namely:

@

@t
v(x; t) +
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2m
(v

d

dx
)v = �

d

dx
V (x; t) (5)

At this point it is worth to remark that the quantum mechanical probability conservation

law, Eq.(3), will be neglected at the zeroth W.K.B. limit, Eq.(4), together with the quantum
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potential �h2

2m

d
2

dx2
�(x;t)

�(x;t) which has the meaning of describing a complicated pressure term in the

quantum hydrodynamical interpretation ([4]).

In order to modelling, phenomenologically, the friction with a thermal reservoir, we

follow the usual Langevin-Brownian procedure by introducing the viscosity stress tensor

on the right-hand side of Eq.(5), as a damping term of the form ��v(x; t). The reservoir


uctuation interaction will be modelled by random impurities producing a pure Gaussian

stochastic force stirring the eletronic 
ux v(x; t) ([5]).

As a consequence of the above made model assumptions, we are lead to consider the fol-

lowing Beltrami-Burger equation, in the range 0 � t � 1, describing our damped quantum

eletronic system in the phase approximation, Eq.(4),
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)v(x; t) = ��v(x; t) + F (x; t)� (

d
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V )(x; t) (6)

Here the phenomenological damping term, �, is temperature dependent and the stochas-

tic force posesses the non-trivial two-point correlation form below, similar to phenomeno-

logical studies of Brownian motion ([5]),

hF (x; t)F (x0; t0)i = �(x� x0)�(t� t0) (7)

Proceeding as in Refs ([2], [3]), the space time characteristic functional of the random

"forced" (Brownian) eletronic 
ux, Eq.(6), is given by the following Wyld-Rosen path inte-

gral
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R
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Following Ref.[2], we consider the classical (instanton) equations of motion associated

with the path integral, Eq.(8), with J(x; t) � 0,
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)�ins(x; t) + ��ins(x; t) = 0 (10)

A straightforward calculation leads to the following solutions for t > 0:

�ins(x; t) = 0 (11)

vins(x; t) = e��tv̂ins(x; t) (12)

with v̂ins(x; t) satisfying the equation

@v̂ins(x; t)

@t
+
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2me�t
(v̂ins
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)v̂ins(x; t) + e�t(

d

dx
V )(x) = 0: (13)

Now, proceeding backward of the steps taken at the begining of this brief report, we can

write the e�ective Schroedinger equation for the wave function associated with the phase-
ux

instanton, Eq.(12),

i�h
@	ins(x; t)

@t
= (�

�h2

2me�t
d2

dx2
+ e�tV (x))	ins(x; t) (14)

It has a time dependent mass term and a linear forcing potencial as a consequence or

our proposed Brownian-Ohmic friction enviroment interaction. It is worth to remark that

e�ective Schroedinger equation, Eq.(14), may be formally associated with the well known

Caldirola-Kanai Lagrangean([6]):

Lclassical(x; t) =
1

�h

Z t

0

d�e��[
1

2
m(

dx

d�
)2 � V (x(�))] (15)

As a consequence of the above exposed results, we get our main result,i.e, the damped

classical equation of motion for the quantum particle interacting with our Brownian reservoir

model, at the W.K.B.( �h! 0) limit.

d2xcl(t)

dt2
+ �

dxcl(t)

dt
= �

d

dx
V (xcl(t): (16)

Finally, and for completness of our previous path integral study, let us brie
y discuss the

Fokker-Planck approach ([7]) for our Beltrami-Burger stochastic equation, Eq.(6), where for

simplicity we have taken V (x) � 0.



CBPF-NF-037/98 4

The Fokker-Planck probability distribution function in a Fourier domain is given by the

equal time occupation random variable, i.e,

P ((x1; :::; xn); (p1; :::; pn); t) = hexp(i

NX
k=1

pkv(xk; t))i (17)

where the average h:::i is de�ned by the stochastic proccess of the eletronic 
uid velocity

induced by the Gaussian stochastic force with general spatial correlation

hF (x; t)F (x0; t0)i = K(x� x0)�(t� t0) (18)

The Fokker-Planck equation is easily deduced by following closelly Ref.[6], i.e,
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The main remark related to this Fokker-Planck approach is that Eq .(9) is a closed partial

di�erential equation. Let us map Eq.(9) into a deterministic many-particle Schroedinger

equation. In order to i8mplement such a mapping, we introduce mixed coordinates, i.e,

pj + xj = uj ; pj � xj = vj (20)

The Fokker-Planck Eq.(19) takes, thus, the following closed form(after analytic continuation

v! iv).
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0

` + iv`0)K(u` � u`0 + i(v`0 � v`))]P ((u1; :::; un); (iv1; :::; ivn); t) (21)

At this point we remark that it is straightforward to implement a numerical, "low viscosity"

(� � 1), perturbative calculations by considering a slowly varying (even function) correlation

function of the form (see Ref.[2]):
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K(x) � K(0)�
`0
2
x2; jxj � (

K(0)

`0
)1=2 � L

K(x) � 0; jxj � L (22)

Numerical studies of Eq.(21) are in progress and will appear elsewhere.
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