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Quantum dynamics of inhomogeneous Kaluza-Klein cosmological models in the vicin-

ity of a cosmological singularity is considered. We use the Kasner-like parametrization to

divide dynamical variables in two parts. The �rst part contains scale functions of Kas-

ner vectors and behaves near the singularity like ordinary scalar �elds. The second part

containing residual variables has behavior like a set of vectors �elds and in leading order
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� > p. Within that approximation we solve the Wheelr-DeWitt equation and de�ne the

probability interpretation by means of singling out a positive-frequency sector in the space

of solutions. In virtue of an ambiguity of such a procedure it is argued the need of some

kind a third quantization for gravity. We suggest a scheem for third quantization and
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e�ects in a third quantized theory.

Key-words: Inhomogeneous multidimensional cosmology; Quantum model; Third quan-

tization.

PACS number: 04.20J, 0440 + n, 0365. Ge

�Permanent address: Center for Gravitation and Fundamental Metrology, VNIIMS,
3-1 M.Uljanovoy str., Moscow, 117313, Russia. e-mail: mel@cvsi.rc.ac.ru



{ 1 { CBPF-NF-037/95

1 Introduction.

One of the most di�cult problems of modern theoretical physics is the problem of the cosmological
singularity. Singularities follow from the classical theory and, as is widely accepted, need quantum
gravity to provide its exhaustive description. We do not have any reasonable theory of such a kind yet
save, presumably, the superstring theory [1]. And as is known, the last one adds some new features to
the existing Einstein gravity. In particular, the superstring theory predicts the dimension of the universe
exceeds that of we use to experience at a macroscopic level. In the present Universe additional dimensions
are supposed to be compacti�ed to the Planckian size, and display themselves as a set of ordinary matter
�elds. However, close to the singularity one should expect that all dimensions to play an equal role, and
have to be regarded on an equal footing. This enables us to consider more general than Einstein's one
multidimensional theories of gravity [2] in order to study the nature and properties of singularitites.

From the classical point of view properties of general inhomogeneous cosmological Kaluza-Klein
models near the singularity were recently considered in Ref. [3] (for more early investigations of the
problem see also Refs.[4, 5]). It was shown that the properties of metric functions near the singularity
may be well-described in the framework of asymptotic models. In this paper we are considering a quantum
description of just those models and investigate their behavior near the singularity from the quantum
point of view. The main result of this paper is that in the case of n � 9 (n is the number of spatial
dimensions) estimates for mean values of scale functions turns out to be of the same order as in the
classical theory. For mean scale factor we get < ai >=< gQi >� cgQmin as g ! 0, where g is the
metric determinant which near the singularity may serve as a time variable, Qmin = �n�3

n+1 is the minimal
admissible value of the anisotropy parameters Qi and c is a slowly varying with g function, including
quantum corrections, and di�ering from the classical one. When considering dimensions exceeding n = 9
the situation changes drastically. The potential does not restrict the con�guration space and, therefore,
we have no states which would be localized on the space of Qi. If we get ready a localized state (a wave
packet) the width of the packet spreads eventually more and more out and simultaneously the center of
the wave packet runs to the in�nity of the con�guration space. In classical theory this signals us that
the oscillatory mode becomes unstable and transforms into a Kasner-like behavior. Therefore, di�erent
mean values will depend upon the initial state crucially.

The paper is organized as follows. In Sec.2 we use generalized Kasner variables introduced �rst in
Ref. [6] and adapted to the multidimensional models in Ref. [3] to divide basic variables into two parts.
Near the singularity the �rst part has a behavior like a set of coupled scalar �elds while residual variables
behave as a set of vector �elds and can be neglected in a leading order (in the same manner as it happens
for the matter having an equation of state � > p, where p and � are an energy density and pressure
respectively) [7, 3]. The asymptotic model is derived in Sec.3. In Sec.4 we consider the quantization
of the model. The Wheeler-DeWitt equation turns out to be dependent upon the �rst group variables
only. We solve this equation in a lattice approximation of the coordinate manifold. The probability
interpretation is introduced by making use of an explicit selection of a positive frequency sector on
the space of solutions to the Wheeler-DeWitt equation [8]. Such procedure implies an ambiguity and,
therefore, the same ambiguity will be inherently presented in the obtained quantum gravity. In order to
overcome this di�culty we, in Sec.5,6, discuss the possibility of the third quantization. We note that the
third quantization seems to be the natural scheme providing a description of di�erent possible topologies
of the universe [9, 10]. We use the scheme proposed in [11] to show that in the course of the evolution
the presence of matter, e.g. of an ordinary scalar �eld, can result in an increasing of quantum topology

uctuations and, therefore, properties of inhomogeneities of the metric may completely be determined
by vacuum 
uctuations in the third quantized theory. We conclude this paper with some estimates and
speculations in Sec.7.

2 Generalized Kasner Solution, Generalized Kasner

Variables

Aiming to obtain a quantum description of inhomogeneous Kaluza-Klein models we start with the canon-
ical formulation of multidimensional gravity. In this formulation basic variables are the spatial Riemann
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metric components g�� and the matter source which will be taken in the form of a scalar �eld � and
its conjugate momenta ��� =

p
g(K�� � g��K) and ��. These variables are functions speci�ed on the

n�manifold S (� = 1; :::; n) and K�� is the extrinsic curvature of S. For the sake of simplicity we shall
consider S to be compact i.e. @S = 0 (one may consider S to be the n-dimensional sphere though this
will not have any signi�cance for our investigation). The action has the following form in Planck units
(see for example [12])

I =

Z
S

(�ij @gij
@t

+��
@�

@t
�NH0 �N�H

�)dnxdt; (2.1)

where

H0 =
1p
g

�
��
��

�
� �

1

n� 1
(��

�)
2 +

1

2
�2
� + g(W (�) �R)

�
; (2.2)

H� = �2���
j� + g��@����; (2.3)

here

W (�) =
1

2

�
g��@��@��+ V (�)

	
: (2.4)

It turns out to be convenient to use the so-called generalized Kasner-like parametrization of the dynamical
variables [6, 3]. The metric components and their conjugate momenta are represented as follows

g�� =
X
a

exp fqag la�la� ; ��
� =

X
a

paL
�
a l
a
� ; (2.5)

where L�a l
b
� = �ba (a; b = 0; :::; (n� 1)), and the vectors la� contain only n(n � 1) arbitrary functions of

spatial coordinates. Further parametrization may be taken in the form [3]

la� = Ua
b S

b
�; Ua

b 2 SO(n); Sa� = �a� +Ra
� (2.6)

where Ra
� denotes a triangle matrix (Ra

� = 0 as a < �). Substituting Eq.(2.5), (2.6) into (2.1) we �nd
the following expression for the action functional

I =

Z
S

(pa
@qa

@t
+ T�a

@Ra
�

@t
+ ��

@�

@t
� NH0 �N�H

�)dnxdt; (2.7)

where T�a = 2
P

b pbL
�
b U

b
a and the Hamiltonian constraint takes the form

H0 =
1p
g

�X
p2a �

1

n� 1
(
X

pa)
2 +

1

2
�2
� + V

�
: (2.8)

In the case of n = 3 the functions Ra
� are connected purely with transformations of a coordinate system

and may be removed by resolving momentum constraints H� = 0 [6]. However, in the multidimensional

case the functions Ra
� contain

n(n�3)
2 dynamical functions as well.

3 Asymptotic model in the case of arbitrary small

times

As it was shown, [6, 13, 3] (see also [12]), in the vicinity of a singularity the potential term in (2.8) can
be modeled by potential walls. To this end we represent the potential in the following form

V =
kX

A=1

�Ag
�A ; (3.1)

where �A is a set of functions of all dynamical variables and of their derivatives and �A is given by the
expression

�abc = 1 +Qa �Qb �Qc; b 6= c; (3.2)
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where Qa are the anisotropy parameters Qa = qaP
q
. Then assuming the �niteness of the functions �A

and considering the limit g ! 0 we �nd that the potential V may be modeled by potential walls

g�A ! �1[�A(Q)] =

�
+1 ; �A < 0;
0 ; �A > 0

(3.3)

Thus, if we put the expressions (3.3) into (2.8) we �nd that the Hamiltonian constraint does not depend
on the variables Ra

� and its conjugate momenta T�a . Of course this is an approximation and the real
potential reserves a dependence of this group of variables and, therefore, one should consider the model
(3.3), (2.8) as a �rst step in an approximation procedure. Then the rest of dynamical variables as well
as an ordinary matter sources with the state equation satisfying the inequality � > p may be accounted
in subsequent steps of the approximation procedure [7].

Now we can remove the rest of dynamical functions T�a , R
a
� from the action (2.7) by putting N� = 0.

Then we get the reduced dynamical system

I =

Z
S

�
pa
@qa

@t
+��

@�

@t
� �

�X
p2 � 1

n� 1
(
X

p)2 +
1

2
�2
� + U (Q)

��
dnxdt; (3.4)

where � is expressed via the lapse function as � = Np
g .

The con�guration space M of the system (3.4) (called also superspace) can be represented in the form
of the direct product M =

Q
x2SMx. Moreover, every local space Mx is the ordinary n+ 1-dimensional

pseudo-Euclidean space. Indeed, one can choose on M a new harmonic set of variables related to the old
ones as follows

qa = Aa
j z

j + z0; zn =

s
2

n(n� 1)
�; (3.5)

where j = 1; :::; n� 1, a = 0; :::n� 1 and the matrix Aa
j is a constant [3] which obeys the conditionsX

a

Aa
j = 0;

X
a

Aa
jA

a
k = n(n � 1)�jk ; (3.6)

and can be expressed in the explicit form as

Aa
j =

s
n(n� 1)

j(j + 1)
(�aj � j�aj ); �aj =

�
1 ; j > a ;
0 ; j � a :

: (3.7)

Then the action (3.4) takes the form formally coincided with the action for a continueous set of relativistic
particles

I =

Z
S

�
Pr
@zr

@t
� �

0

(P 2
i + U � P 2

0 )

�
dnxdt; (3.8)

where r = 0; :::; n, i = 1; :::; n, �
0

= �
n(n�1) and the kinetic term, that determines a metric on Mx, turns

out to be coincided with that of the ordinary 
at n+1-dimensional pseudo-Euclidean spacetime manifold.

4 Quantization and the probability interpretation

As it was mentioned above the action (3.8) resembles the action for a continueous set of relativistic
particles. Therefore, quantization of such a system may be carried out in the complete analogy with
that of relativistic particles [14]. The zero-energy Hamiltonian constraint leads to the set of the Wheeler-
DeWitt equations [15]

(��x + Ux + �Px)	 = 0; x 2 S; (4.1)

where 	 is the wave function of the universe, �x denotes a Laplace operator onMx : �x =
1p�G@A

p�GGAB@B ,

GAB is the metric on Mx determined by the interval

��(x)2 =
1

4�0
((�zi(x))2 � (�z0(x))2); (4.2)
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Px is the curvature scalar of Mx. The value of � should be chosen as � = n�1
4n to provide a conformal

invariance of Eq.(4.1) which re
ects the arbitrariness in the choice of the lapse function � . Indeed, the
transformation

GAB ! eGAB = e�2
GAB; 	! e	 = e
n�1
2


	

transforms the Eq.(4.1) into

(�e�x + e2
Ux +
n � 1

4n
ePx)e	 = 0:

and the theory becomes independent on a particular choice of �.
To solve the equation (4.1) we shall consider a lattice approximation. To this end we shall suppose the

existence of a su�ciently small minimal scale of inhomogeneity for all �elds lmin , so that the coordinates
x will take discrete values only. The continueous limit one obtains tending lmin to zero, though, from the
other side, one may think of the lattice model as of a background model and treat the scales less than
lmin as small perturbations.

The system of equations (4.1) turns out to be uncoupled, for each from these equations contains a set
of functions which are speci�ed at a distinct point x of S . We shall call such sets as x�sets. Therefore,
the space H of solutions to this system takes the form of the tensor product of spaces Hx (H =

Q
x2S Hx)

as that ofM , where Hx is the space of solutions to a distinct x� equation ( 4.1). Accordingly, all x�sets
of degrees of freedom may independently be considered. Therefore, at �rst it will be convenient to work
out the probability interpretation and all the technique on the example of one local x�set of degrees of
freedom and after that to generalize it to the case of all degrees of freedom.

4.1 The space of solutions to the WDW equation for a distinct

x-set of degrees of freedom.

Every local x-equation (4.1) admits the conserved current JA(	;	) = i[	�rA	 � 	rA	
�] which may

be used to determine the inner product in the space Hx

< ' j � >= i

Z
�x

JA('; �)d�
A
x ; (4.3)

where �x is an arbitrary space-like surface on Mx and rA denotes a covariant derivative on x-metric
(4.2).

To construct a complete set of solutions to the local Eq.(4.1) it turns out to be convenient by making
use of the so-called Misner-Chitre like variables [6, 3] (~y = yj , j = 1; :::; n� 1)

z0 = �e�� 1 + y2

1� y2
; ~z = �2e�� ~y

1� y2
; y =j ~y j� 1: (4.4)

In these variables the anisotropy parameters become independent of the timelike variable �

Qa(y) =
1

n

(
1 +

2Aa
j y

j

1 + y2

)
(4.5)

and that of the potential U (Q) in Eq.(4.1). The metric (4.2) in the new variables takes the form

��(x)2 =
e�2�

4�0
(
4(�yj)2

(1� y2)2
+ e2� (�zn)2 � (�� )2): (4.6)

For the sake of simplicity we shall use the gauge 4�0e2� = 1 in what follows.
The part of the con�guration space Mx related to the variables ~y is a realization of the (n � 1)-

dimensional Lobachevsky space and the potential U cuts a part K of it [4, 5, 3]

�abc = 1 + Qa �Qb �Qc � 0; a 6= b 6= c (4.7)
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which in the case n � 9 has a �nite volume. We shall suppose that there is a set of solutions to the
eigenvalue problem for the Laplace - Beltrami operator

(�y + k2J +
(n� 2)2

4
)'J (z) = 0; 'J j@K= 0; (4.8)

where the Laplace operator �y is constructed via the metric dl2 = hijdy
idyj = 4(dy)2

(1�y2)2 and J collects

all indices numbering the eigenfunctions 'J . In the case of n < 10 the region K has a �nite volume and
J takes discrete values (J = 0; 1; 2; : : :); while for n � 10 the volume of K is in�nite and the spectrum
of the Laplace - Beltrami operator becomes a continueous one. The functions 'j obey the orthogonality
and normalization relations

('I ; 'J ) =

Z
K

'�I (y)'J (y)d�(y) = �IJ ; (4.9)

where d�(y) = 1
c

p
hdn�1y = 2n�1

c
dn�1y

(1�y2)n�1 , and c is the volume of K. The completeness conditions are

X
I

'�I (y)'I(y
0) =

� (y � y0)p
h

:

Then a complete orthonormal set
�
up; u

�
p

	
of solutions to x�equation (4.1) is constituted by functions

of the form

up = exp(�1

2
� )�p(� )�p (y; z) ; �p (y; z) = (2�)�1=2'J (y) exp(i�zn) (4.10)

where p = (J; �). Functions �p(� ) satisfy the equation following from (4.1):

d2�p
d�2

+ !2p(� )�p = 0; !2p(� ) = k2J + �2e�2� (4.11)

with the normalization condition ��p
d�p
d�
��p d�

�

p

d�
= �i, and are expressed via the Bessel functions. The

initial conditions to Eq.(4.11) at a moment �0 are to be taken in the form �p(�0) =
1p

!p(�0)
, �0p(�0) =

�i!p (�0)�p(�0) .
The set of solutions (4.10) is orthonormal in the sense of the scalar product (4.3), i.e. they satisfy

the relations
< up j uq >= � < u�p j u�q >= �pq ; < up j u�q >= 0: (4.12)

Thus, an arbitrary solution f to the local Wheeler-DeWitt equation (4.1) can be represented in the form

f =
X
p

A+
p up +A�p u

�
p; (4.13)

where A�p are arbitrary constants which are to be speci�ed by initial conditions.

4.2 Probability interpretation and the case of all degrees of

freedom

Since the norm determined by the scalar product (4.3) turns out to be sign-inde�nite we face up with the
di�culty of probability interpretation. The simplest way to de�ne a positive-de�nite inner product is to
separate a submanifold H+

x on the space Hx which is of "positive frequency". If we suppose A�p = 0 in
(4.13), then the normalization condition for f takes the form

< f j f >=
X
p

j A+
p j2= 1; (4.14)

and meets no di�culties. Thus, the subspace of physical states H+
x becomes the ordinary Hilbert space

and we can adopt the standard probability interpretation [14].
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Now the generalization to the case of all degrees of freedom may be carried out straightforwardly.
The positive frequency sector H+ in the total space of solutions H we determine as the direct product
of positive frequency local submanifolds H+ =

Q
x2S H

+
x . Thus, the wave function takes the form

	 =
X
[p(x)]

Fp(x)Up(x); Up(x) =
Y
x2S

up(x) (4.15)

with the scalar product induced by (4.12)

h�j i =
X
[p(x)]

B�p(x)Ap(x) ; (4.16)

where � =
P
Bp(x)Up(x) and  =

P
Ap(x)Up(x) are arbitrary vectors from H+ .

Dispite that Eq. (4.15) and (4.16) give already well de�ned probability interpretation it is necessary
to mention that the procedure of the choice of H+

x in the Hx is not uniquely de�ned. We can use a
Bogoliubov transformation to construct a new set of modes

vp;x =
X
q

n
� (x)pq uq + � (x)pq u

�
q

o
(4.17)

where we add the label x to point out the possible dependence on x 2 S and while � (x)pq 6= 0 di�erent

sets of modes (4.17) de�ne di�erent submanifoldsH+
x . The situation will be worse still when considering

the total space H. Therefore, the probability interpretation turns out to be crucially dependent upon
the particular choice of the physical sector H+ in H . Here we face with the main inherent di�culty of
quantum cosmology which, apparently, cannot be solved in the framework of the ordinary "one-particle"
quantum gravity. To overcome this di�culty it is necessary to use the procedure of second (or "third")
quantization of the wave function of the Universe [9, 16, 10, 17].

5 Third quantization

In addition to provide a probability interpretation third quantization has another goal. This theory allows
describe processes connected with topology changes. The simplest processes of such a kind was widely
discussed earlier in connection with wormholes and baby universes [9] and in the context of a description
of a quantum creation of the Universe from nothing [16, 17]. In the present section we use a new approach
pointed out in Refs. [10, 11] which generalizes the third quantization and allows to describe arbitrary
topologies of the universe. That generalization follows from the fact that the system of WDW equations
(4.1) is uncoupled in the leading order. Therefore, one may secondly quantize every x-set of degrees of
freedom independently from each other. In quantum gravity this corresponds to the situation when the
number of points of the physically observable space, speci�ed at a particular point of the basic coordinate
manifold S, turns out to be a variable and topology of the physical space may be di�erent from that of
S [10, 11] (below we shall follow Ref. [11]) .

Let us consider a distinct x�set of the degrees of freedom. While we do not account for interactions
between these sets we can describe quantum states of each set by a local wave functions 	x . When the
third quantization is imposed the wave functions 	x become �eld operators and can be expanded in the
form (4.13) (for simplicity we consider 	x to be a real scalar function):

	x =
X

C(p; x)u(p; x) +C+(p; x)u�(p; x); (5.1)

where u(p; x) is the set of modes (4.12) and the label x we add to point out the possible dependence
on spatial coordinates. Now we consider the operators C(p; x) and C+(p; x) to satisfy the standard
commutation relations

[C(p; x); C+(q; x0)] = �p;q�(x; x
0): (5.2)

The �eld operators 	x act on a Hilbert space of states which has the well known structure in the Fock
representation. The vacuum state is de�ned by the relations C(x; p) j 0 >= 0 (for all x 2 S), < 0j0 >= 1.
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Acting by the creation operators C+(p; x) on the vacuum state we can construct states describing the
Universe with arbitrary spatial topologies. In particular, the states of the type (4.15) describing the
Universe whose spatial topology coinsides with the topology of S take the structure

jf >=
X
[p(x)]

Fp(x)j1p(x) >; j1p(x) >= 1

Z1

Y
x2S

C+(x; p(x))j0 >; (5.3)

where Z is a normalization constant and the wave function (4.15) describing the simple-topology Universe
can be found as

< 0j	jf >=< 0j
Y
x2S

	xjf >=
X
[p(x)]

Fp(x)Up(x): (5.4)

The states describing the Universe with n disconnected spatial components have the structure

jn >= j1p1(x); :::; 1pn(x) >=
1

Zn

nY
i=1

Y
x2S

C+(x; pi(x))j0 > (5.5)

(we recall that in the model under consideration in virtue of the existence of lmin the coordinates x take
discrete values). Besides these states describing simplest topologies the approach considered allows to
construct nontrivial topologies as well. This is due to the fact that the tensor product in (5.3), (5.5) may
be de�ned either over the whole coordinate manifold S or over part of it D � S. In this manner, taking
su�ciently small pieces Di of the coordinate manifold S we can glue arbitrarily complex physical spaces.
In order to construct the states of such a kind it is convenient to introduce a set of operators as follows

a(D; p(D)) =
Y
x2D

C(x; p(x)); a+(D; p(D)) =
Y
x2D

C+(x; p(x)): (5.6)

These operators have a clear interpretation, e.g. the operator a+(D; p(D)) creates the whole regionD 2 S
having the quantum numbers p(D). Thus, in the general case states of the Universe will be described by
vectors of the type

j� >= c0j0 > +
X
I

cIa
+
I j0 > +

X
I;J

cIJa
+
I a

+
J j0 > +:::: (5.7)

Now consider an interpretation of the scheme suggested in [11]. Ordinary measurements are usually
performed only on a part K of the coordinate manifold S. There are two possibilities. The �rst one
is that an observer measures all of the quantum state of the region K and, the second, more probable
one is when the observer measures only a part of the state. In the second case the observer considers K
as if it were a part of the ordinary 
at space. Therefore, the part of the quantum state which will be
measured, appears to be in a mixed state. This means the loss of quantum coherence widely discussed
in Refs.[9]. In order to describe measurements of the second type we de�ne the following density matrix
for the region K

�nm(K) =
1

N (K)
< �ja+(K;n(K))a(K;m(K))j� >; (5.8)

where j� > is an arbitrary state vector of the (5.7) type and N (K) is a normalization function which
measures the di�erence between the real spatial topology and the coordinate manifold S. If we consider
the smallest region K which contains only one point x of the space S the normalization function N (x) in
(5.8) will play the role of a "density" of the physical space. For the states (5.3), (5.5) we have N (x) = 1
and N (x) = n respectively. Thus, if A(K) is any observable we �nd < A >= 1

N Tr(A�).

6 Topology 
uctuations and quantum creation of

the Universe from nothing

Since the WDWEq.(4.1) has an explicit "time"-dependent form one could expect the existence of quantum
polarization e�ects (topology 
uctuation or the so-called spacetime foam [18, 19]). These e�ects can be
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calculated either by singling out the asymptotic in and out regions on the con�guration space M for
which we can determine positive-frequency solutions to Eq.(4.1) (see for example [17]), or by using the
diagonalization of the Hamiltonian technique [20] by means of calculating depending on time Bogoliubov's
coe�cients. Let us consider solutions (4.10) of the arbitrary local x-equation (4.1). The function �p can
be decomposed in positive and negative frequency parts

�p =
1p
2!p

(�pe
�i�p + �pe

i�p);
d�p
d�

= �i
r
!p
2
(�pe

�i�p � �pe
i�p ); (6.1)

where �p =
R �
�0
!pd� . The functions �p and �p satisfy identity j�pj2�j�pj2 = 1 and de�ne the depending

on time Bogoliubov coe�cients [20]. The depending on time creation and annihilation operators take the
form

b� (x; p) = �p (� )C (x; p) + ��p (� )C
+ (x; p) ; b+� (x; p) = ��p (� )C

+ (x; p) + �p (� )C (x; p) : (6.2)

In terms of these operators the super-Hamiltonian of the �eld 	x (the Hamiltonian density) becomes
diagonal

Ex =

Z
��

��Ad�
A
x =

1

2

X
p

!p (� )
�
b+� (x; p) b� (x; p) + b� (x; p) b

+
� (x; p)

�
; (6.3)

where �AB = rA	xrB	x � 1
2GAB

�rC	xrC	x � (U + �P )	2
x

�
and d��x =

p
Gndn�1ydz, Gn is the

metric on ��x induced by (4.6) . The ground state of the Hamiltonian is deternined by the conditions
b� (x; p) j0� i = 0 for all x and p and is also depending on time. The excitations of (6.3) are interpreted
as points of physical space having the coordinate x 2 S .

Now we determine two asymptotic regions as in (� !�1) and out ( �0 ! +1). In these regions the
functions �p and �p take constant values. Substituting the initial conditions �p = 1, �p = 0 as �0 !�1
in (4.11), (6.1) we �nd that in the out region the Bogoliubov coe�cients are

�p = (exp(�kJ )=2sh(�kJ ))
1

2 ; �p = (exp(��kJ )=2sh(�kJ ))
1

2 : (6.4)

Then, for example, if the initial state of the "superspace"-Hamiltonian (6.3) is the ground state j0ini, in
the out region the density matrix (5.8) takes form

�pq(K) =
Y
x2K

�p(x)q(x)(x); (6.5)

where �(x) is the one-point density matrix

�pq(x) =
1

N (x)
j�pj2�(p; q) = 1

N (x)

1

e2�kJ � 1
�(p; q) ; (6.6)

with N (x) being the normalization function N (x) =
P

p
1

e2�kJ�1 . This one-point density matrix does

not depend on spatial coordinates and has the Plankian form with the temperature T = 1
2� and therefore,

the density matrix (6.5) describes a Universe which in average turns out to be homogeneous.

7 Estimates and concluding remarks

In this manner the Universe appears to be homogeneous just after topology 
uctuations are accounted
for. If, on the contrary, one does not consider topology 
uctuations, properties of inhomogeneities of the
metric depend crucially upon the choice of initial data. Despite this, when n � 9 , near the singularity
the behavior of lengths in time shows universal features. This occurs, in the �rst place, due to the fact
that the main contrubution to the mean scales



gQa

�
is given just by those regions of the con�guration

space in which the anisotropy parameters Qa take the minimal values. They are the points Q�a = �n�3
n+1

lying on the boundary @K (see, for more detail Ref [3]). Since at the boundary the eigenfunctions 'J = 0
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, in the neighborhood of @K we have 'J � kJ (Q � Q�) and the probability density can be estimated

as P (Q) � (Q�Q�)n(we recall that in classical theory we had Pcl (Q) � (Q�Q�)n�2 and the need
to average out the scale function appeared as a result of a stochastic behavor of the metric functions in
space and time). Thus, in the same way as in Ref [3] for n > 3 in the limit g ! 0 we �nd for moments
of the scale functions (M > 0)



gMQa

�
= Ca (M; � )

gMQ�

�
(M ln 1=g�)

n+1 ;

in the case n > 3 and for n = 3 the esimate

gMQa

�
= Ca (M; � ) (M ln 1=g�)

�5=2

where g� = g (�;Q�) and Ca is a slowlly varying in time function which includes information of initial
quantum state. Thus, one can see that in quantum theory the average lengths are also increasing.

In the case of n > 9 the volume of K is in�nite and the eigenfunction (4.8) proves to be non-
normalizable and, therefore, we have no states which would be localized on K. If we get ready a localized
state (a wave packet) the width of the packet spreads eventually more and more out and simultaneously
the center of the wave packet runs to the in�nity of the con�guration space. In classical theory this signals
us that the oscillatory mode becomes unstable and transforms into a Kasner-like behavior. Therefore,
di�erent mean values depend upon the initial state crucially.
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