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Abstract

We discuss the formalism of Thermo Field Dynamics for deformed systems. We

apply this method to the study of the statistics of q-bosonic oscillators.
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Quantum Groups and Algebras [1{4] have attracted a lot of attention in the last few
years. They can be interpreted as non-trivial generalizations of Lie groups and algebras
which are recovered in the limit q ! 1, where q is a deformation parameter, or a set
of parameters, introduced in the deformed theories. These mathematical structures have
found their application in several areas of physics [4{6] such as: inverse scattering method,
vertex models, anisotropic spin chains hamiltonians, knot theory, conformal �eld theory,
heuristic phenomenology of deformed molecules and nuclei, non-commutative approach
to quantum gravity and anyon physics.

On the other hand Thermo Field Dynamics (TFD) [7] is a formalism whereby the
usual �eld theory de�ned in real space-time can be generalized to the case with �nite
temperature. In this formalism the Feynman diagram method can be easily formulated
by means of the real-time causal Green's function [8], which are expressed in terms of
\temperature-dependent vacuum" expectation values, and all the operator relations of
T = 0 �eld theory are preserved. Thermo Field Dynamics has been extensively developed
and has been applied to problems in condensed matter physics as well as in high-energy
physics [8{9].

In this letter we discuss the initial steps in the development of TFD of deformed
systems and as a speci�c, and simple, example we study the statistics of bosonic q-
oscillators (or deformed Heisenberg algebras) exploiting the algebraic structure which
emerges from the TFD method. The study of bosonic q-oscillators is not a new subject [10]
and recently their connection with Quantum Algebras and Groups have been established
[11{12].

We start by considering the average of a quantity Ô over the canonical ensemble at
temperature T

< Ô >� Z�1(�)Tr[Ôe��H] (1)

where

Z(�) = Tr[e��H] (2)

with � = (kBT )�1 and kB the Botzmann constant.
In the formalism of TFD [7{9] one constructs a temperature dependent vacuum,

j0(�) >, in which the statistical average of Ô de�ned in (1) coincides with the vacuum
expectation value using the new vacuum j0(�) >, i.e.

< Ô >= Z�1(�)Tr[e��HÔ] =< 0(�)jÔj0(�) > : (3)

Let fjn >g be the orthonormal basis of the state vector space H consisting of eigen-
states of the Hamiltonian H

Hjn > = Enjn >

< mjn > = �m;n : (4)

In order to construct such a state j0(�) > one introduces a �ctitious system (tilde system)
characterized by the Hamiltonian ~H and the state vector space ~H spanned by fjn >g
obeying
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~H jn > = Enjn >

< njm > = �n;m : (5)

The state vector j0(�) > belongs to the tensor product space H
 ~H and is given by:

j0(�) >= Z�1=2(�)
X
n

e��En=2jn > 
jn >� Z�1=2(�)
X
n

e��En=2jn; ~n > : (6)

If one uses (6) in (3) one has

< 0(�)jÔj0(�) > = Z�1(�)
X
n;m

e��En=2e��Em=2 < ~n; njÔjm; ~m >

= Z�1(�)
X
n

e��En < njÔjn >=< Ô > (7)

which is the result claimed in (3). We shall see later that the tilde system has a sensible
physical interpretation.

We are now going to extend this formalism to the case of statistical averages of sys-
tems made up with q-oscillators. One calls bosonic q-oscillators the associative algebra
generated by the elements a; a+ and N satisfying the relations [11{13]

[N; a+] = a+ ; [N; a] = �a

aa+ � qa+a = q�N (8)

where q 2C; a; a+ and N are the annihilation, creation and number operators respectively.
There are di�erent forms of the above algebra (8); if for instance one de�nes the operators

A = qN=2a ; A+ = a+qN=2 (9)

they satisfy the algebra

AA+ � q2A+A = 1 : (10)

It is possible to construct the representation of the relations (8) or (10) in the Fock space
F generated by the normalized eigenstates jn > of the number operator N as

Aj0 > = 0 N jn >= njn > n = 0; 1; 2; :::

jn > =
1q
[n]A!

(A+)nj0 > (11)

where A = a ; [n]a = (qn� q�n)=(q� q�1) and [n]a! = [n]a � � � [1]a for the relations (8) and
A = A ; [n]A = (q2n � 1)=(q2 � 1) and [n]A! = [n]A � � � [1]A in the case of relations (10).
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In the Fock space F it is possible to express the deformed oscillators, A or a, in terms
of the standard bosonic ones b; b+; for instance in the case of a; a+ one has [13]

a =

 
[N + 1]

N + 1

!1=2

b ; a+ = b+
 
[N + 1]

N + 1

!1=2

(12)

and it can easily be shown in F that

AA+ = [N + 1]A ; A+A = [N ]A : (13)

Let us consider now an ensemble of q-bosons with Hamiltonian given by

H = wN (14)

with eigenvalues wn (n = 0; 1; 2; � � �) on F . We introduce the Hamiltonian of the tilde
system as

~H = w ~N (15)

where the tilde q-operators we are considering satisfy the following relations

[ ~N; ~a+] = ~a+ ; [ ~N; ~a] = �~a

~a~a+ � q~a+~a = q�
~N (16)

or

[ ~N; ~A+] = ~A+ ; [ ~N; ~A] = � ~A
~A ~A+ � q2 ~A+ ~A = 1 (17)

and [ ~A; ~A] = [A; ~A+] = 0.
The temperature dependent vacuum j0(�) > in the case of the relations (8) and (16) is
thus given by (with an analogous formula for (10) and (17))

j0(�) > = Z�1=2(�)
X
n

e��n!=2
1

[n]a!
(a+)n(~a+)nj0 >

= (1 � e��!)1=2 expqa(e
��!=2a+~a+)j0 > (18)

with expqA x =
P
1

n=0
1

[n]A!
xn the q-exponential [14], and j0 >= j0 > 
j0 >. The form of

the above expression (18) is dictated by the fact that the partition function of q-bosons
[15] corresponding to the Hamiltonian (14) coincides with the usual one for harmonic
oscillators. We can easily see that the non-deformed case is recovered in the q ! 1 limit

We denote
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u� = (1� e��!)�1=2

v� = (e�! � 1)�1=2

GB = �i��

2
4 ~N + 1

[ ~N + 1]a

!1=2 
N + 1

[N + 1]a

!1=2

~aa

�

 
~N

[ ~N ]a

!1=2 
N

[N ]a

!1=2

~a+a+

3
5 (19)

where cosh �� = u�. With these de�nitions we can rewrite the temperature dependent
vacuum j0(�) >, (18), as

j0(�) >= exp(�iGB)j0 >� Bj0 > : (20)

Let us now de�ne the temperature dependent operators; they are given by:

a� � exp(�iGB)a exp(iGB)

~a� � exp(�iGB)~a exp(iGB) : (21)

It is interesting to observe that this transformation preserves the q-Heisenberg algebra
(8) or (10)), i.e.

a�a
+
� � qa+� a� = q�N� : (22)

This is easily seen by the use relation (12), thus the transformation B is a kind of q-
Bogoliubov transformation. Obviously

a�j0(�) >= ~a�j0(�) >= 0 (23)

and the Fock space can be constructed by applying the B-transformation (20) on (11),
i.e.

jn >
1q
[n]A!

(A+
� )

nj0(�) > (24)

for n = 0; 1; � � �.
Let us now compute the average of a+a which, as we are going to see, depends on the

deformation considered. In the TFD approach this average is given by:

< a+a >=< 0(�)ja+aj0(�) >=< 0(�)j[N ]aj0(�) > : (25)

In order to perform this calculation we go to the basis of the non-deformed bosonic
operators. In the non-deformed case one has [7]

b� = exp(�iGB)b exp(iGB) = u�b� v�~b
+

~b� = exp(�iGB)b exp(iGB) = u�~b� v�b
+ (26)
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with the inverse given by

b = u�b� + v�~b
+

~b = u�~b� + v�b
+
� (27)

where

GB = �i�B(~bb� ~b+b+) : (28)

We recall that the generators of SU(1; 1) algebra

[J0; J�] = �J� ; [J+; J�] = �2J0 (29)

can be realized �a la Schwinger [17] as

J+ = b+�
~b+� ; J� = ~b�b� ; J0 =

1

2
(N� + ~N� + 1) : (30)

Thus using (27) and (30) we have the following expression for the number operator

N = 2v2�J0 + u�v�(J+ + J�) +N� (31)

which can be rewritten as

N = (u2� + v2�)J0 + u�v�(J+ + J�) +
1

2
C (32)

with

C = N� � ~N� � 1 : (33)

Note that C commutes with the �rst two terms of the right-hand side of expression (32).
Using now (32) and expressing qm as exp�, the relevant terms in the calculation of

(25) have the form

< 0(�)je�Nj0(�) >=< 0(�)je�[(u
2
�
+v2

�
)J0+u�v�(J++J�)+

1

2
C]j0(�) > : (34)

This last expression can be computed by means of the Baker-Campbell-Hausdor� (BCH)
formula, which can be derived for the SU(1; 1) algebra [16]. The BCH formula for the
case we are considering is given by:

e�[(u
2
�
+v2

�
)J0+u�v�(J++J�)] = e�J+eJ0e�J� (35)

where

� =
2v� sinh(�=2)

cosh(�=2) � (u2� + v2�) sinh(�=2)

 = �2 ln[cosh(�=2) � (u2� + v2�) sinh(�=2)] : (36)

The above procedure amounts to normal ordering eq. (34). Using this we obtain
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< 0(�)jqmN j0(�) >=
2q�m=2

qm=2 + q�m=2 � (u2� + v2�)(q
m=2 � q�m=2)

; (37)

and �nally using (25) and (37) we can easily see that

< 0(�)ja+aj0(�) >=
e�! � 1

e2�! � (q + q�1)e�! + 1
(38)

for the bosonic q-algebra given in (8), and for that one given in (10) we have

< 0(�)jA+Aj(�) >=
1

e�! � q2
(39)

which agrees with the results given in ref. [15].
We have thus seen how to implement the formalism of Thermo Field Dynamics to

the case of deformed bosonic systems. We are now going to show that the physical
interpretation of the tilde system, (16) and (17), is the same as in the non-deformed case.
To this end we give the explicit expression of the temperature dependent operators in
terms of those at T = 0; they are given by:

a� = u�

 
[N� + 1]a
N� + 1

!1=2 
N + 1

[N + 1]a

!1=2

a

� v�

 
[N� + 1]a
N� + 1

!1=2 ~N

[ ~N]a

!1=2

~a+

~a� = u�

 
[ ~N� + 1]a
~N� + 1

!1=2 ~N + 1

[ ~N + 1]a

!1=2

~a

� v�

 
[ ~N� + 1]a
~N� + 1

!1=2 ~N

[ ~N]a

!1=2

~a+ : (40)

For their inverse we have

a = u�

 
[N + 1]a
N + 1

!1=2  
N� + 1

[N� + 1]a

!1=2

a�

+ v�

 
[N + 1]a
N + 1

!1=2 ~N�

[ ~N�]a

!1=2

~a+�

~a = u�

 
[ ~N + 1]a
~N + 1

!1=2  ~N� + 1

[ ~N� + 1]a

!1=2

~a�

+ v�

 
[ ~N + 1]a
~N + 1

!1=2 
N�

[N�]a

!1=2

~a+� : (41)

Using conveniently (40-41) on the temperature dependent vacuum state we see that
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a+� j0(�) >=
1

u�

 
N

[N ]a

!1=2

a+j0(�) >=
1

v�

 
~N + 1

[ ~N + 1]a

!1=2

~aj0(�) > (42)

which shows that the one particle state is built up from the thermal equilibrium state
j0(�) > by adding one particle or by eliminating one particle with tilde. Thus, analogously
to the non-deformed case [7] we may interpret that the particle with a tilde is a hole of
the physical particle.

In summary, we have shown how to implement the formalism of Thermo Field Dynam-
ics in the study of the statistical properties of q-oscillators. To this end it was important to
introduce a temperature dependent vacuum, by means of a q-Bogoliubov transformation
acting on a T = 0 vacuum. With this temperature dependent vacuum we computed ther-
mal averages as expectation values instead of traces over the Fock space. As the formalism
of TFD is a real time one and preserves the operator relations of the T = 0 theories, we
believe that it would be useful to study anyonic statistical models and statistical models
with quantum symmetries.
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