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1. Introduction

We have recently studied di�erent properties of multidimensional cosmology with a matter source of the multidimensional
Einstein equations in the form of a perfect 
uid [1-6]. But certainly models incorporating some viscosity e�ects may be
more realistic. In 4-dimensional cosmology the viscous Universe was considered by a number of authors from di�erent
points of view. Without presenting a detailed review of the subject (an extensive review was given by Gr�n [7]), we just
mention some main trends in cosmology with viscous 
uid as a source.

First, Misner [8] considered neutrino viscosity as a mechanism for reducing anisotropy in the Early Universe. Stewart [9]
and Collins and Stewart [10] proved that it is possible only if initial anisotropies are small enough. Another series of papers
was started by Weinberg [11] who studied entropy production in the viscous Universe. Both isotropization and entropy
production during the lepton era in models of Bianchi types I and V were considered by Klimek [12]. Caderni and Fabbri
[13] calculated coe�cients of shear and bulk viscosity in the plasma and lepton eras within the Bianchi type I model. One
more direction is connected with obtaining singularity-free \viscous" solutions. The �rst nonsingular solution was obtained
by Murphy [14] within a 
at Friedman-Robertson-Walker model with 
uid possessing a bulk viscosity. Murphy supposed
that the coe�cient of bulk viscosity is proportional to the 
uid density. However, Belinsky and Khalatnikov [15, 16] showed
that this solution corresponds to a very peculiar choice of parameters and is unstable under anisotropy perturbations. Other
nonsingular solutions with bulk viscosity were obtained by Novello and Aranjo [17], Romero [18], Oliveira and Salim [19].

In this paper we study a multidimensional cosmological model with a chain of Ricci-
at spaces for the source in the
form of a 
uid possessing pressure and bulk viscosity, both anisotropic. In Section 2 we describe the model and obtain
the basic equations. To integrate them, we develop some vector formalism suggested in our previous papers. In Section 3
we integrate the equations of motion for two special sets of parameters in the �rst and second equations of state. Exact
solutions are presented in a Kasner-like form and their properties are studied.

2. The model

Following our previous papers [1-6], we consider a multidimensional cosmological model with the metric

g = �e2
(t)dt
 dt+

nX
i=1

exp[2xi(t)]g(i); n � 2; (2.1)

de�ned on the D -dimensional manifold

M = R�M1 � : : :�Mn; (2.2)

where R is the time axis and Mi is an Einstein space of dimension Ni with a metric g(i) . In this paper we consider only
Ricci-
at spaces M1; : : : ;Mn , i.e.

Rnili [g
(i)] = 0; ni; li = 1; : : : ;Ni: (2.3)

It is easy to obtain in the usual way the following nonzero components of the Ricci-tensor for the metric (2.1) [3]:

R0
0 = e�2
(t)(

nX
i=1

Ni( _x
i)2 + �
0 � _
 _
0); (2.4)

R
mi

ki
= e�2
(t)(�xi + ( _
0 � _
) _xi)�mi

ki
; (2.5)

where we have denoted 
0 =
Pn

i=1
Nix

i . The indices mi and ki range from D �
Pn

j=i
Nj to D �

Pn

j=i
Nj + Ni for

i = 1; : : : ; n (D = 1+
Pn

i=1
Ni = dimM ).

We take the energy-momentum tensor for a viscous 
uid in the standard form

TAB = �uAuB + (p� ��)PAB ; (2.6)

where � and p are the 
uid density and pressure, respectively, � is the bulk viscosity coe�cient. The vector uA is the
D -dimensional velocity of the 
uid and PAB = �AB + uAuB is the projector to the (D� 1)-dimensional space orthogonal to

uA . By � we denote the scalar � = uA;A .
We impose the comoving observer condition for the D -dimensional velocity: uA = �A0 e

�
(t) . Then

(uAuB) = diag(�1;0; : : : ; 0); (2.7)

(PAB ) = diag(0;1; : : : ; 1); (2.8)

� = _
0e
�
(t): (2.9)

Let us remark that the function 
(t) in (2.1) determines a time gauge for the comoving observer. We have the harmonic
time gauge for 
(t) = 
0 and the proper time gauge for 
(t) = 0. The harmonic time t and the proper time � are
connected by d� = exp[
0]dt .

We admit that the pressure and the bulk viscosity term in (2.6) are anisotropic with respect to the whole space
M1 � : : :�Mn . Such an admission leads to the following generalization of the expression (2.6):

(TAB ) = diag(��; (p1 � ��1)�
m1

k1
; : : : ; (pn � ��n)�

mn

kn
)

(2.10)
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where pi and �i are pressure and bulk viscosity coe�cients in the spaces Mi . Furthermore, we suppose that a barotropic
equations of state holds:

pi = (1� hi)�(t); (2.11)

where hi=const for i = 1; : : : ; n .
The Einstein equations RAB � 1

2 �
A
BR = �2TAB (�2 is the gravitational constant) may be written as RAB = �2(TAB �

T
D�2 �

A
B) . Further, we employ the equation R0

0 � 1
2 �

0
0R = �2T 0

0 and the equations R
mi

ki
= �2(T

mi

ki
� T

D�2 �
mi

ki
) . Using

(2.4), (2.5) and (2.10) we get

nX
i=1

Ni( _x
i)2 � _
20 = �2�2e2
�; (2.12)

�xi + ( _
0 � _
) _xi = �2

��
�hi +

Pn

k=1
Nkhk

D � 2

�
�e2


+

�
��i +

Pn

k=1
Nk�k

D � 2

�
_
0e




�
: (2.13)

To develop the integration procedure for the equations of motion (2.12) and (2.13) we introduce the n -dimensional real
vector space Rn . By e1; : : : ; en we denote the canonical basis in Rn , i.e. e1 = (1;0; : : : ; 0) etc.

Let < :; : > be a symmetric bilinear form de�ned on Rn , such that

< ei; ej >= �ijNj �NiNj � Gij: (2.14)

In our previous papers [1-6] this form was introduced as a minisuperspace metric for the cosmological models. It was shown
that it is a nongenerate form with the pseudo-Euclidean signature (�;+; : : : ;+). So, for vectors a = a1e1 + : : : + anen
and b = b1e1 + : : :+ bnen we have

< a; b >=

nX
i;j=1

Gija
ibj : (2.15)

The form < a; b > may be also written as

< a; b >=

nX
i=1

aib
i =

nX
i=1

aibi =

nX
i;j=1

Gijaibj ; (2.16)

if we introduce the covariant components of vectors as

ai =

nX
j=1

Gija
j: (2.17)

By Gij = �ij=Ni + 1=(2� D) we denote components of a matrix inverse to (Gij) .
We call a vector y 2 Rn time-like, space-like or isotropic if < y; y > takes negative, positive or null values, respectively.

The vectors y and z are called orthogonal if < y; z >= 0.
In our model the following vectors are used:

x = x1e1 + : : :+ xnen; (2.18)

u = u1e1 + : : :+ unen ;

ui = hi �
Pn

k=1
Nkhk

D� 2
; ui = Nihi (2.19)

� = �1e1 + : : :+ �nen;

�i = �i �
Pn

k=1
Nk�k

D � 2
; �i = Ni�i: (2.20)

If hi = 1 for i = 1; : : : ; n , we have dust in the whole space (pi = 0, see (2.11)). The vector (2.19) corresponding to dust
in the whole space is denoted by ud . We note that

(ud)i = Ni; uid = �1=(D� 2);

< ud ; ud >= �(D�1)=(D�2); <ud; x> = 
0 : (2.21)
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Thus, using (2.15), (2.18)-(2.20), we obtain the Einstein equations (2.12) and (2.13) in the form

< _x; _x >= �2�2e2
�; (2.22)

�x+ (< ud; _x > � _
) _x = ��2(�e2
u+ < ud ; _x > e
�):

(2.23)

Excluding the density � from (2.23) by (2.22), we get the equation

�x+ (<ud; _x>� _
) _x =
1

2
< _x; _x>u� �2<ud; _x>e


�:

(2.24)

To integrate Eq.(2.24) we need a second equation of state for the bulk viscosity coe�cients �i . To obtain an exact
solution in a 4-dimensional 
at Friedman-Robertson-Walker model with bulk viscosity, Murphy [14] used the second equa-
tion of state of the form � =const� . Belinsky and Khalatnikov [20] studied the qualitative behavior of this model with a
more general equation: � = ��� , where �;�=const. It is easy to show that, for this model on the manifold R�M3

1 for

(t) = 0, the set of equations (2.22), (2.23) may be written as

3H2 = �2�; (2.25)

_H =
�

2
3�+1H2�+1 +

3

2
(h� 2)H2; (2.26)

where H is the Hubble parameter of the 3-dimensional Ricci-
at manifold M3
1 , i.e. H = _x1 . The set of equations (2.25),

(2.26) coincides with the one obtained by Belinsky and Khalatnikov [20]. It is easy to see that Eq.(2.26) for H is always
integrable by quadratures. In the simplest case with � = 1 we get the exact solution obtained by Murphy [14]. Other
solutions for special values of � and h and a solution for arbitrary � and h were also obtained (see [7] for details).

For a multidimensional cosmological model with the manifold M = R�M1 � : : : �Mn the set of equations (2.22),

(2.23) is more complicated. We obviously have the set of nonlinear di�erential equations (2.24) for the scale factors ex
i

of the spaces M1; : : : ;Mn . If we adopt Belinsky and Khalatnikov's condition � � �� , then rather complicated equations
arise. In particular, for � = 1 Appel and Ricatti equations appear. Chakraborty and Nandy [21], within a 5-dimensional
model with the manifold R �M3

1 � S12 , avoided this di�culty by imposing an additional constraint for the scale factors:
exp[x2] = � exp[!x1] , �; � =const.

Here, with no loss of generality, we consider the integration of Eqs.(2.24) for another second equation of state. We
suppose that the bulk viscosity coe�cient �i corresponding to the space Mi is proportional to e�
0 , i.e.,

�i � [scale factor of M1]
�dimM1

� : : : � [scale factor of Mn]
�dimMn : (2.27)

Physically, the assumption (2.27) means that the expansion of the spaces M1; : : : ;Mn is accompanied by a decreasing bulk
viscosity e�ect.

Let us notice that the metric dependence of the bulk viscosity coe�cient was also considered by other authors. Lukacs
[22] integrated a homogeneous and isotropic 4-dimensional model with viscous dust with the second equation of state
� = const [scale factor]�1 . The curvature-dependent bulk viscosity was studied in a multidimensional cosmology by Wolf
[23]. Recently Motta and Tomimura [24] studied a 4-dimensional inhomogeneous cosmology with some metric dependence
of the bulk viscosity coe�cient.

3. Integrable models

We �rst study a model with essential anisotropic pressure and viscosity. Here we assume that the nonzero vectors u and
� in (2.24) corresponding to the pressure and the bulk viscosity are parallel. Combining this assumption with the second
equation of state (2.27), we get

� =
�0

�2
e�
0u or �i =

�0

�2
e�
0hi; (3.1)

where �0 is a positive constant. We also suppose that the orthogonality condition

< ud; u >= �
nX
i=1

1

D � 2
Nihi = 0 (3.2)

holds, which means a certain restriction on the eqs. of state (some hi are negative). Then the set of equations (2.24) for
the harmonic time gauge (
 = 
0 ) looks as follows:

�x =
�1
2
< _x; _x > ��0 < ud; _x >

�
u: (3.3)
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To integrate (3.3), we use the decomposition

x = < ud; x >
ud

< ud ; ud >

+ <u; x>
u

<u; u>
+

nX
i=3

<e0i; x>e
0

i: (3.4)

in the orthogonal basis ud; u; e
0

3 ; : : : ; e
0

n (if n = 2, we have only ud and u). The orthogonality conditions together with
(3.2) read

< ud; e
0

i > = < u; e0i >= 0;

< e0i; e
0

j > = �ij; i; j = 3; : : : ; n: (3.5)

Under the condition (3.2) the vector u is spacelike (<u; u> > 0) since ud is timelike. Substituting the expression for x
(3.4) into (3.3), we get

< ud; �x > = 0; (3.6)

< e0i; �x > = 0; i = 3; : : : ; n; (3.7)

< u; �x > = < u; u >

�
1

2

�
< ud; _x >2

< ud; ud >
+

< u; _x >2

< u; u >

+

nX
i=3

< e0i; _x >
2

�
� �0 < ud; _x >

�
: (3.8)

Integration of (3.6)-(3.8) results in

< ud; x > = p1t+ q1; (3.9)

< e0i; x > = pit+ qi; i = 3; : : : ; n; (3.10)

< u; x > = � ln[Cf2]; (3.11)

where p1; p3; : : : ; pn; q1; q3; : : : ; qn; C are arbitrary constants (C > 0). The function f in (3.11) is (t� t0) or 1 for A = 0,
cos[

p
A(t� t0)=2] for A > 0 and cosh[

p�A(t� t0)=2] or sinh[
p�A(t� t0)=2] for A < 0. For constant A we have

A = <u; u>

"
(p1)2

<ud; ud>
+

nX
i=3

(pi)2 � 2�0p
1

#
: (3.12)

To present the scale factors in a Kasner-like form, we introduce the Kasner-like parameters �i and �i such that

� = p3e03 + : : :+ pne0n � �1e1 + : : :+ �nen; (3.13)

� = q3e03 + : : :+ qne0n � �1e1 + : : :+ �nen: (3.14)

Combining (3.4), (3.9)-(3.11) and (3.13)-(3.14), we obtain the exact solution

ex
i

= (Cf2)�u
i=<u;u> exp

h
(�i +

p1

D� 1
)t

+ �i +
q1

D � 1

i
; i = 1; : : : ; n (3.15)

� =
exp[�2(p1t+ q1)]

2�2 < u; u >

�
�
< u; u >

�
D � 1

D � 2
(p1)2� < �;� >

�
� F 2

�
; (3.16)

where the possible variants are

f = sinh[
p
�A(t� t0)=2];

F = �
p
�A coth[

p
�A(t� t0)=2]; A < 0; (3.17)

f = cosh[
p
�A(t� t0)=2];

F = �
p
�A tanh[

p
�A(t� t0)=2]; A < 0; (3.18)

f = cos[
p
A(t� t0)=2];

F =
p
A tan[

p
A(t� t0)=2]; A > 0; (3.19)

f = 1; F = 0; A = 0; (3.20)

f = t� t0; F = �2=(t� t0); A = 0: (3.21)
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For the Kasner-like parameters and the constants we have:

< �;ud > =

nX
i=1

�iNi = 0;

< �;u > =

nX
i=1

�iNihi = 0; (3.22)

< �;ud > =

nX
i=1

�iNi = 0;

< �;u > =

nX
i=1

�iNihi = 0; (3.23)

ui = hi +
1

2�D

nX
i=1

Nihi = hi;

< u; u > =

nX
i=1

(hi)
2Ni > 0; (3.24)

< �;� > =

nX
i=1

(�i)2Ni;

A = <u; u>

�
�D � 2

D � 1
(p1)2 +<�;�>� 2�0p

1

�
: (3.25)

Let us consider the properties of this model. We will say that a solution is physical if the weak energy condition
�(t) � 0 holds for any t . Only solutions with f = 1 and f = cosh[

p�A(t� t0)=2] satisfy this condition. Here we study
the solution with f = 1. It is easy to check that this condition holds for p1 < 0. For the proper time � introduced by
d� = exp[<ud ; x>]dt , this exact solution looks as follows:

ex
i(�) = e

~�i
�
(�p1)(�0 � �)

�
i
; � < �0; (3.26)

�(�) = � �0

�2p1
1

(�0 � �)2
; p1 < 0; (3.27)

where p1 , �0 are arbitrary constants and ~�i obey the relations (3.23). By 
i we denote


i =
1

D� 1
+

�i

p1
; i = 1; : : : ; n: (3.28)

This solution is singular at the �nal point of evolution � = �0 because �(�) ! +1 as � ! �0 � 0. We also notice that
�(�)! 0 as � ! �1 , so this solution can be interpreted as that describing creation of matter in the Universe.

The behavior of the scale factors (3.26) near the singular point is of Kasner type. For the Kasner-like parameters 
i

we obtain the relations

nX
i=1


iNi = 1;

nX
i=1


iNihi = 0; (3.29)

nX
i=1

(
i)2Ni = 1+ 2
�0

p1
: (3.30)

It is clear that such a Kasner-like solution always provides the contraction for one part of spaces Mi and expansion for
another part. So, we may interpret the expanding space as the external one and the contracting spaces as the internal ones.
We notice that for n � 3 this solution cannot be stationary but special solutions with stationary internal spaces always
exist.

Now we will study another model with pressure and viscosity both isotropic, i.e.,

pi = (1� h)� or u = hud; (3.31)

�i =
�0

�2
e�
0 or � =

�0

�2
e�
0ud; i = 1; : : : ; n; (3.32)

where �0 and h are constants. Here we assume that

0 < h < 2 and �0 > 0: (3.33)
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Then the set of equations (2.24) in the harmonic time gauge (
 = 
0 ) looks as follows:

�x =
h

2
< _x; _x > ud � �0 < ud; _x > ud (3.34)

(recall that 
0 =< ud; x > .) To integrate (3.34), we use the following decomposition of the vector x :

x = <ud; x>
ud

<ud; ud>
+

nX
i=2

<e0i; x>e
0

i: (3.35)

The vectors ud; e
0

2; : : : ; e
0

n form an orthogonal frame in Rn , i.e.

<ud; e
0

i> = 0; <e0i; e
0

j> = �ij ; i; j = 2; : : : ; n: (3.36)

We notice that in this frame any vector ei cannot be timelike because the vector ud is timelike. The set of equations (3.34)
may be written as

< ud; �x > = < ud; ud >

�
h

2

�
< ud; _x >2

< ud; ud >

+

nX
i=2

<e0i; _x>
2

�
� �0<ud; _x>

�
; (3.37)

< e0i; �x > = 0; i = 2; : : : ; n: (3.38)

Integration of (3.37) and (3.38) results in

< ud; x > = � 1

h
ln[Cf2] +

�0

h
< ud; ud > t; (3.39)

< e0i; x > = pit+ qi; i = 2; : : : ; n; (3.40)

where pi; qi; t0 and C are arbitrary constants (C > 0). The symbol f denotes sinh[Ah(t � t0)=2] or cosh[Ah(t� t0)=2]
where

A = � �0

h
< ud; ud >

s
1�

h2
Pn

i=2
(pi)2

�20 < ud; ud >
: (3.41)

A special solution arises for f = exp[�Ah(t� t0)=2] . In this case C = exp[�0 < ud; ud > t0] .
To present the scale factors exp[xi] in a Kasner-like form, we introduce the vectors �;� 2 Rn

� = p2e02 + : : :+ pne0n � �1e1 + : : :+ �nen; (3.42)

� = q2e02 + : : :+ qne0n � �1e1 + : : :+ �nen: (3.43)

Recall that the vectors e1; : : : ; en form a canonical frame in Rn . The coordinates �i and �i are the Kasner-like parameters.
Using (3.35),(3.39),(3.40) and (3.42)-(3.43), we obtain the exact solution in the Kasner-like form

ex
i

= (Cf2)�1=[h(D�1)] exp

�
(�i � �0

h(D � 2)
)t+ �i

�
:

(3.44)

The Kasner-like parameters obey the relations

< �; ud > =

nX
i=1

�iNi = 0;

< �; ud > =

nX
i=1

�iNi = 0; (3.45)

< �;� > =

nX
i=1

(�i)2Ni =

nX
j=2

(pj)2: (3.46)

Using (2.22), we obtain the density

� =
a2+ < �;� >

2�2
(Cf2)2=h exp

�
2a2h

�0
t

�

�
�
F +

a�p< �;� >p
a2+ < �;� >

��
F +

a+
p
< �;� >p

a2+ < �;� >

�
:

(3.47)
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For the functions f and F in (3.44) and (3.47) we have the following variants

f = sinh[Ah(t� t0)=2];

F = coth[Ah(t� t0)=2]; C > 0; (3.48)

f = cosh[Ah(t� t0)=2];

F = tanh[Ah(t� t0)=2]; C > 0; (3.49)

f = exp[Ah(t� t0)=2];

F = 1; C = exp[� �0(D � 1)

D � 2
t0]; (3.50)

f = exp[�Ah(t � t0)=2];

F = �1; C = exp[� �0(D� 1)

D � 2
t0]: (3.51)

The constants A and a are such that

a =
�0

h

r
D � 1

D � 2
;

A =
D� 1

D� 2

r
�20
h2

+
D � 2

D � 1
< �;� > (3.52)

It is easy to check that the solution for f = exp[Ah(t� t0)=2] determines the density without a range of negative values.
This solution can be written in terms of the proper time � as follows:

ex
i(�) = e

~�i
�
�0 � �

T0

�1=(D�1)�T0�
i

; � < �0; (3.53)

�(�) =
�0T0

�2h

1

(�0 � �)2
; (3.54)

where �0 is an arbitrary constant and the parameters ~�i obey the relations (3.45). For the constant T0 we have

1

T0
=

D � 1

D � 2

�
�0

h
+

�
�20
h2

+
D�2
D�1<�;�>

�1=2�
: (3.55)

As in the previous case, this solution is singular at the �nal point of evolution � = �0 and describes matter creation in the
Universe.

It is also worth noticing that this solution describes contraction of at least one space of M1; : : : ;Mn . Indeed, due to the
relations (3.45) at least one of the Kasner-like parameters is nonpositive, so the corresponding scale factor monotonically
decreases on the interval (�1; �0) . This process can be interpreted as contraction of the internal space to the Planck scale
(10�33 cm). Moreover, it can be shown that for some set of Kasner-like parameters the solution describes expansion of one
part of spaces and contraction of the other part.

Let us consider this property for a simplest model on the manifold R � R3 � T d , where R3 is a 3-dimensional 
at
external space and T d is an internal space having the shape of d -dimensional torus. The exact solution (3.53) gives

ex
1(�) = e

~�1
�
�0 � �

T0

�1=(d+3)�T0�
1

; (3.56)

ex
2(�) = exp[�3

d
~�1]

�
�0 � �

T0

�1=(d+3)+ 3

d
T0�

1

; (3.57)

where

1

T0
=

d+ 3

d+ 2

 
�0

h
+

r
�20
h2

+ 3
d+ 2

d
(�1)2

!
; (3.58)

�0 , ~�1 and �1 are arbitrary constants. If �1 > 0, then the internal space monotonically contracts. It is easy to show that
under the condition

(d+ 3)(d� 1)

d
� > 2

�0

h
(3.59)

we obtain the monotonic expansion of the external space on the interval (�1; �0) . This condition can be satis�ed for
d � 2.

For exact solutions with other functions f the condition �(t) � 0 for any t is not satis�ed. However, for the solution
with f = sinh[Ah(t� t0)=2] the density is positive for any t 2 (t0;+1) and this interval corresponds to the proper time
interval (�1; �0) . So, we consider this solution to be also admissible from the physical point of view. It follows from (3.44)
that this solution and that with f = exp[Ah(t � t0)=2] have an identical behavior near the singular point � = �0 . For
2=h > 1 we have �(�)! 0 as � ! �1 , then this solution can be interpreted as that describing creation of matter.
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