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Abstract

We revisit the construction of topological Yang-Mills theories of the Witten type

with arbitrary space-time dimension and number of \shift supersymmetry" generators,
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1 Introduction

Observables in topological theories possess a global character, such as the knot invariants of
Chern-Simons theory, the Wilson loops, etc. The problem of �nding all theses invariants is a
problem of equivariant cohomology, as proposed by Witten in 1988 [1] for Yang-Mills topo-
logical theory in four-dimensional space-time. Equivariant cohomology is the cohomology
of a BRST-like operator { the \shift supersymmetry operator", associated to a local shift
transformation of the connection �eld { in a space of gauge invariant �eld polynomials. A
superspace formulation of Witten's model was proposed by Horne [2] and developed later
on, in particular by Blau and Thompson [3, 4], who extended it to the cases of more than
one supersymmetry generator and in di�erent space-time dimensions. In various cases these
topological theories are seen to arise from super-Yang-Mills theories through some twist of
group representations [1, 3, 4], possibly accompanied by dimensional reduction. The reader
may see [5] for the systematic construction of topological theories from super-Yang-Mills ones
using this technique. Our proposal is to systematize the superspace construction of actions
in the most general setting involving an arbitrary number NT of topological supersymmetry
generators in any space-time dimension D. Our construction will be direct, not passing
through the twist procedure. The question of the existence, in each case, of a corresponding
super-Yang-Mills theory will not be touched.

The theory intends to describe gauge �eld con�gurations with null curvature { or also
selfdual curvature, in the 4-dimensional case. The null or selfdual curvature condition is
implemented through a Lagrange multiplier �eld B which has the same hierarchy of zero-
modes as the B �eld of a BF type theory [6]. The point of view usually adopted in the
literature [1, 2, 3, 4] is that of considering the supersymmetry generator(s) as BRST oper-
ator(s) associated to the local shift invariance, and �xing the latter with suitable Lagrange
multiplier �elds. In the present paper, in order to avoid certain ambiguities which may arise
in the usual scheme, we shall consider the theory as a rigid supersymmetric theory with two
gauge invariances, namely the usual Yang-Mills gauge invariance and the gauge invariance
of the B �eld, like the one encountered in BF -theories. Both invariances are supergauge
invariances, their parameters being superspace functions. We shall see that this is enough to
de�ne the theory in an unambiguous way, apart from the freedom in the choice of a gauge
�xing procedure. Moreover, in the case of a gauge �xing of the Landau type, we shall show,
using supergraph techniques, that perturbative radiative corrections are completely absent.
The theory thus turns out to be obviously ultraviolet �nite.

A very important point is the systematic characterization of all observables of a topolog-
ical theory. This has been fully done in [7] for the NT = 1 theories. Partial results exist in
the literature. In particular, a set of observables has been given in [8] for the case of NT = 2
in a 4-dimensional K�ahler manifold. In the present paper we shall only show a rather general
set of observables, however without determining if it represents the most general one.

The plan of the paper is the following. After reminding the principal features of the
original Witten-Donaldson's topological Yang-Mills theory [1] in section 2 and of superspace
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formalism for topological theories in section 3, we shall show the construction of the action
as a super-BF one, with the appropriate gauge �xing, in section 4. Examples of observables
are given in section 5, and the ultraviolert problem is dealt with in section 6. A discussion
of the results is done in the concluding section. Some of our conventions and notations are
given in two appendices.

2 Shift Supersymmetry

We are going to review here, for illustrative purpose, how \shift supersymmetry" may de-
scribe the gauge �xing of gauge �eld con�gurations with null curvature, or alternatively with
selfdual curvature. We shall concentrate on the original Donaldson-Witten model [1, 9], with
one supersymmetry generator in four dimensional space-time.

2.1 Transformation rules and invariant actions

We recall that this model implies, beyond the gauge connection a� associated to some gauge
group G, a fermion 1-form  � and a 0-form �, with \shift" supersymmetry de�ned by the
in�nitesimal transformations

~Qa =  ; ~Q = �D(a)� � � (d�+ [a; �]) ; ~Q� = 0 : (2.1)

All �elds here and in the rest of the paper are valued in the Lie algebra of the gauge group
{ assumed to be a compact Lie group. Details on the notation are given in appendix ??.

The usual Yang-Mills gauge transformations read, written as BRST transformations with
ghost c:

Sa = �D(a)c ; S = �[c;  ] ; S� = �[c; �] ; Sc = �c2 : (2.2)

Whereas the BRST operator S is nilpotent, the fermionic generator ~Q is nilpotent modulo
a �-dependent gauge transformation:

~Q2a = �D(a)� ; ~Q2 = �[ ; �] ; ~Q2� = 0 : (2.3)

This means that ~Q is nilpotent when restricted to gauge invariant quantities. Following
Witten, we may thus interpret the shift supersymmetry invariance as a BRST-like invariance
in the space of gauge invariant �eld functionals. The 1-form  represents the ghost of local
shift invariance and � is its ghost of ghost. Then the following counting of degrees of freedom
holds: counting 4 degrees of freedom for a, �4 for the ghost  and 1 for the ghost of ghost �,
we arrive to a total of 1 degree of freedom, which corresponds to the scalar mode of the �eld
a { which in turn is eliminated thanks to the usual Yang-Mills gauge invariance. The �nal
number zero of local degrees of freedom is of course characteristic of a topological theory.

In view of the absence of local degrees of freedom, the theory may be de�ned through an
action which will be purely of a gauge �xing type. This �xing of the local shift supersymmetry
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may be done introducing Lagrange multipliers �elds 0b2,
1�1,

0�0 and
�1�0, together with

the corresponding \antighost" �elds �1�b2,
0 � 1,

�1 � 0 and
�2 ��0, where the lower right index

denotes the form degree and the upper left one the degree of supersymmetry or \SUSY-
number". The latter number corresponds to a ghost number in the interpretation of shift
supersymmetry as a BRST transformation. Each \antighost" transforms under ~Q into its
corresponding Lagrange multiplier:

~Q �1�b2 =
0b2 ; ~Q p�1 � p =

p�p (p = 1; 2) ; ~Q �2 ��0 =
�1�0 ;

~Q 0b2 = �[ �1�b2; �] ; ~Q p�p = �[ p�1 � p; �] ; ~Q �1�0 = �[ �2 ��0; �] ;
(2.4)

the transformation rules of the Lagrange multipliers assuring the nilpotency of ~Q modulo
a �-dependent gauge transformation. If one intends to study the instanton gauge �eld
con�gurations, i.e. those with selfdual curvature F = P+F , where P+ is de�ned by (A.6), the
associated \antighost" and Lagrange mutiplier have to be chosen as anti-selfdual: P+

�1 � 0 =
0, P+

0�0 = 0.

A gauge invariant and ~Q- invariant action may be taken as (following [4])

~Q Tr

Z �
�1�b2 F (a) +

�2 ��0 D(a) �  + 0 � 1 D(a) ��1 �b2 +
�1 � 0 D(a) �0 � 1

�

= Tr

Z �
0b2F (a) +

�1�0 D(a) �  + 1�1 D(a) ��1 �b2 +
0�0 D(a) �0 � 1

+ �1�b2 D(a) + �2 ��0 D(a) �D(a)�+ 0 � 1 D(a) �0 b2 + �1 � 0 D(a) �1�1

+ �2 ��0[ ; � ]� 0 � 1[ ; ��1�b2]� �1 � 0[ ; �0 � 1]
�
;

(2.5)

where F (a) = da + a2 is the curvature of the Yang-Mills connection a and � is the Hodge
duality operator (see appendix ??). One sees that the Lagrange multiplier 0b2 implements
the zero-curvature condition F (a) = 0 { or the selfduality condition, as in the original
Witten's paper. �1�0 is the Lagrange multiplier �xing the zero-mode of  . Morover, 1�1
�xes the zero-mode of �1�b2,

0�0 that of
0 � 1. Finally,

0 � 1 �xes the zero-mode of 0b2 and
�1 � 0 that of

1�1.

This action corresponds to a generalized \Landau gauge" �xing. However, it is still
possible to add one invariant term quadratic in the Lagrange multipliers without spoiling
gauge invariance, supersymmetry and SUSY-number conservation. It reads

~Q Tr

Z
�

2
�2 � 2 � 0b2 = Tr

Z
�

2

�
0b2 � 0b2 +

�2 � 2 � [ �2 � 2; �]
�
: (2.6)

In this case, which corresponds to a generalized Feynman gauge, the Lagrange mmultiplier
0b2 becomes an auxiliary �elds, whose elimination through its equation of motion gives rise,
for � = 1, to the original action of Witten [1], which describes selfdual con�gurations when
choosing the Lagrange multiplier 0b2 and its corresponding \antighost" as anti-selfdual
2-forms.
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2.2 Observables

According to Witten, the algebra of observables of the theory is generated by sets of gauge
invariant forms w(n)

p (0 � p � 4, n integer) obeying "descent equations"

~Qw(n)
p + dw

(n)
p�1 = 0 (4 � p � 1) ; ~Qw

(n)
0 = 0 ; (2.7)

and are uniquely �xed up to total derivatives by

w
(n)
0 = C(n)(�) ;

where C(n)(�) is an invariant corresponding to a Casimr operator C(n) of the gauge group.
Each p-form wn

p being then integrated on some p-dimensional submanifold Mp, represents
an equivariant cohomology class and de�nes a basis element of the algebra of observables.

3 NT -Extended Supersymmetry

Our purpose in this section is to review and develop a superspace formalism describing
topological theories such as Wittens's theory described in section 2 and generalizations of
it for more than one supersymmetric generators and for any space-time dimension, starting
from the formalism described in [2, 4, 7].

3.1 NT Superspace formalism

NT supersymmetry is generated by the fermionic charges QI , I = 1; : : : ; NT obeying the
Abelian superalgebra 2

[QI ; QJ ] = 0 ; (3.1)

commuting with the space-time symmetry generators and the gauge group generators. The
gauge group is some compact Lie group.

A representation of supersymmetry is provided by superspace, a supermanifold with D
bosonic and NT fermionic dimensions3. The respective coordinates are denoted by (x�,
� = 0; : : : ; D � 1), and (�I , I = 1; : : : ; NT ). A super�eld is by de�nition a superspace
function F (x; �) which transforms as

QIF (x; �) = @IF (x; �) � @

@�I
F (x; �) (3.2)

under an in�nitesimal supersymmetry transformation.

2The bracket is here an anti-commutator.
3Notations and conventions on superspace are given in appendix ??.
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An expansion in the coordinates �I of a generic super�eld reads

F (x; �) = f(x) +
NX
n=1

1

n!
�I1:::�InfI1:::In(x) (3.3)

where the space-time �elds fI1:::In(x) are completely antisymmetric in the indices I1:::In.
We recall that all �elds (and super�elds) are Lie algebra valued. We shall also deal with
superforms. A p-superform may be written as


̂p =

pX
k=0


p�k; I1:::Ikd�
I1 � � �d�Ik ; (3.4)

where the coeÆcients 
k�1; I1:::Ik are (Lie algebra valued) super�elds which are space-time
forms of degree (p�k). They are completely symmetric in their indices since, the coordinates
� being anti-commutative, the di�erentials d�I are commutative. The superspace exterior
derivative is de�ned as

d̂ = d+ d�I@I ; d = dx�@� ; (3.5)

and is nilpotent: d̂ 2 = 0.

The basic super�eld of the theory is the superconnection Â, a 1-superform:

Â = A+ EId�
I ; (3.6)

with A = A�(x; �)dx
� a 1-form super�eld and EI = EI(x; �) a 0-form super�eld. The

superghost C(x; �) is a 0-superform. We expand the components of the superconnection
(3.6) as

A = a(x) +
NX
n=1

1

n!
�I1 :::�InaI1:::In(x) ; (3.7)

where the 1-form a is the gauge connection, and the 1-forms aI1:::In its supersymmetric
partners. The expansions of EI and of the ghost super�eld C read

EI = eI(x) +
NX
n=1

1

n!
�I1 :::�IneI;I1:::In(x) ;

C = c(x) +
NX
n=1

1

n!
�I1:::�IncI1:::In(x) :

(3.8)

The in�nitesimal supergauge transformations of the superconnection are expressed as the
nilpotent BRST transformations

SÂ = �d̂C � [C; Â] ; SC = �C2 ; S2 = 0 : (3.9)

In terms of component super�elds we have

SA = �dC � [C;A] ; SEI = �@IC � [C;EI] ; SC = �C2 : (3.10)
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The supercurvature

F̂ = d̂Â+ Â2 = F (A) + 	I d�
I + �IJ d�

Id�J (3.11)

transforms covariantly:
SF̂ = �[C; F̂ ] ;

as well as its components

F (A) = dA+ A2 ; 	I = @IA+D(A)EI ; �IJ =
1

2
(@IEJ + @JEI + [EI ; EJ ]) ; (3.12)

where the covariant derivative is de�ned by D(A)(�) = d(�) + [A; (�)]
For further use and comparisons with the literature, let us give the explicit examples of

NT = 1; 2.

Example 1 { Case NT = 1

The superconnection (3.6) and the expansions (3.7 - 3.8) read

A(x; �) = a(x) + � (x) ; E(x; �) = �(x) + ��(x) ; C(x; �) = c(x) + �c0(x) : (3.13)

The BRST transformations of the component �elds are

Sa = �D(a)c ; S = �[c;  ]�D(a)c0 ; S� = �[c; �]� [�; c0] ; S� = �[c; �]� c0 ;

Sc = �c2 ; Sc0 = �[c; c0]
(3.14)

As for the supersymmetry transformations de�ned by (3.2), we have:

Qa =  ; Q = 0 ; Q� = � ; Q� = 0 ; Qc = c0 ; Qc0 = 0 : (3.15)

The supercurvature components (3.12) read

F (A) = F (a)� �D(a) ;

	 =  +D(a)�� � (D(a)�� [ ; �]) ;

� = �+ �2 + �[�; �] :

(3.16)

Example 2 { Case NT = 2

The superconnection (3.6) and the expansions (3.7 - 3.8) now read (with I = 1; 2)

A(x; �) = a(x) + �I I(x) +
1
2
�2� ; EI(x; �) = �I(x) + �I�IJ(x) +

1
2
�2�I ;

C(x; �) = c(x) + �IcI(x) +
1
2
�2cF :

(3.17)
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The BRST transformations of the component �elds are

Sa = �D(a)c ; S I = �[c;  I ]�D(a)cI ; S� = �[c; �]�D(a)cF + �IJ [cI ;  J ] ;

S�I = �[c; �I ]� cI ; S�IJ = �[c; �IJ ]� �IJcF + [�I ; cJ ] ;

S�I = �[c; �I ]� [cF ; �I ] + �JK [cJ ; �IK] ;

Sc = �c2 ; ScI = �[c; cI ] ; ScF = �[c; cF ] + 1
2
�IJ [cI ; cJ ] :

(3.18)
The supersymmetry transformations read

QIa =  I ; QI J = ��IJ� ; QI� = 0 ;

QI�J = �JI ; QI�Jk = ��IK�J ; QI�J = 0 ;

QIc = cI ; QIcI = ��IJcF ; QIcF = 0 :

(3.19)

The supercurvature components (3.12) read now

F (A) = F (a)� �ID(a) I +
1
2
�2(D(a)�� 1

2
�IJ [ I ;  J ]) ;

	I =  I +D(a)�I + �J(�IJ��D(a)�IJ + [ J ; �I])

+ 1
2
�2(D(a)�I � �KJ [ K ; �IJ ] + [�; �I ]) ;

�IJ =
1

2

�
�IJ + �JI + [�I ; �J ] + �K(�IK�J + �JK�I + [�JK; �I ] + [�IK; �J ])

+ 1
2
�2([�I ; �J ] + [�I ; �J ]� �KL[�IK; �JL])

�
:

(3.20)

Counting the number of degrees of freedom:

The numbers of degrees of freedom, i.e. the numbers of component �elds { remembering that
a p-form has D!=[p!(D� p!)] components { are shown in Table 1. If we were considering the

Fields: aI1���In(x) A(x; �) eI;I1���In(x) EI(x; �) cI1���In(x) C(x; �)

Numbers
of �elds:

D
�
NT

n

�
D 2NT NT

�
NT

n

�
NT 2NT

�
NT

n

�
2NT

Table 1: Numbers of component �elds. D = space-time dimension, NT = number of super-
symmetry generators.

present theory as a usual supersymmetric gauge theory, with (super)gauge invariance de�ned
by the BRST transformations (3.10), the number of physical degrees of freedom would be
given by the total number of components of the forms A and EI minus the number of
components of the superghost C. However, considering it as a topological theory we have to
treat supersymmetry as a local invariance, too, all �elds excepted the Yang-Mills connection
a being ghosts or ghosts of ghosts, as in the example shown in section 2. The SUSY-number
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s is thus a ghost number as well as the usual ghost number4 g. Thus the e�ective ghost
number is equal to s + g and, in the counting of the physical degrees of freedom, we must
therefore assign a sign (�)s+g to the number of degrees of freedom of a �eld, as shown in
Table 2. One sees that there is a complete cancellation of the local degrees of freedom, as it

Fields: aI1���In A eI;I1���In EI cI1���In C

SUSY #: n 0 n + 1 1 n 0
Ghost #: 0 0 0 0 1 1
Degrees of
freedom:

(�1)nD�NT

n

�
0 (�1)n+1NT

�
NT

n

�
0 (�1)n+1

�
NT

n

�
0

Table 2: Numbers of physical degrees of freedom. D = space-time dimension, NT = number
of supersymmetry generators.

should in a topological theory.

3.2 Wess-Zumino gauge

The contact with the formalism described in section 2 is made by choosing a special gauge
�xing [4] of the Wess-Zumino type [10]. The BRST transformations of the component �elds
can be calculated from the super�eld expressions (3.10). They are explicitly given, for
NT = 1 and 2, by (3.14,3.18). We shall only write explicitly the linear part { or Abelian
approximation { of the transformations in the general case, which will be suÆcient for our
argument:

Sa = �dc+ � � � ; SaI1:::IN = �dcI1:::IN + � � � ;
SeI = �cI + � � � ; SeI;I1:::IN = �cII1:::IN + � � � ;
Sc = � � � ; ScI1:::IN = � � � ;

(3.21)

where the dots represent nonlinear terms. These transformaions indicate that eI(x) and the
completely antisymmetric part of the �elds eI;I1:::In(x) are pure gauge degrees of freedom. A
possible gauge �xing is therefore of setting these �elds to zero. This de�nes the Wess-Zumino
(WZ) gauge:

eI = 0 ; e[I;I1:::In] = 0 (1 � n � NT ) : (3.22)

This �xes the gauge degreees of freedom corresponding to the ghosts cI1:::In (1 � n � NT ).
The remaining gauge degree of freedom parametrized by the ghost c, which is of the usual
Yang-Mills type, can be �xed in a usual way.

The WZ gauge condition (3.22) is not stable under supersymmetry transformations, but
one can rede�ne the generators QI into new generators ~QI , compatible with the WZ condi-
tion, resulting from a combination of QI and of a �eld dependent supergauge transformation.

4s and g are de�ned by attributing s = g = 0 to the gauge connection a(x), s = 1; g = 0 for the
supersymmetry genrators QI { hence s = �1 to �I { and s = 0; g = 1 for the BRST generator S .
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Thus, let us combine an in�nitesimal supersymmetry transformation of constant commuting
parameters �I with a supergauge transformation Æ� of anticommuting parameters (fermionic
super�eld) �(x; �):

~Q = �IQI + Æ� � �I ~QI : (3.23)

Æ� is in fact a BRST transformation (3.14), with C substituted by �. This will de�ne the
modi�ed supersymmetry generator ~QI , provided we choose � in such a way to preserve the
WZ gauge condition (3.23). It is convenient to rewrite the WZ condition in a superspace
way:

�IEI(x; �) = 0 ; (3.24)

where EI is the d�-part of the superconnection (3.6). We shall denote by ~EI the solution of
this condition, and by ~e[I;I1:::In] (0 � n � NT ) the components of its �-expansion { which are

therefore solutions of (3.22). The latters are tensors with mixed symmetry. Applying ~Q to
(3.24) we �nd, after some integration by part in �:

~Q(�IEI) = ��I ��J@JEI � @IC � [C;EI ]
�
= ��IEI+�

I@I�+@J(�
J�IEI)+[�IEI ;�] ; (3.25)

which shows that the WZ condition (3.24) is stable if, and only if, � obeys the equation

�I@I� = �IEI : (3.26)

The solution reads

� = �I
NTX
n=1

1

n!n
�I1 � � � �In~eI;I1:::In(x) ; (3.27)

where the functions ~eI;I1:::In(x) are the coeÆcients of the super�eld expansion of ~EI , solution
of (3.24).

One can now check that the superalgebra now closes up to �eld dependent gauge trans-
formations Æ~eIJ :

[ ~QI ; ~QJ ] = �2Æ~eIJ :

Physical degrees of freedom in the WZ gauge:

The numbers of component �elds are now given in Table 3. Remember that the only re-
maining ghost is c(x), since the cI1:::In for n � 1 correspond to the gauge degrees of freedom
which have been �xed. In order to count the physical degrees of freedom we must again take

Fields: aI1���In(x) A(x; �) eI;I1���In(x) EI(x; �) c(x)

Numbers
of �elds:

D
�
NT

n

�
D 2NT

�
NT+1
n+1

�
n (NT � 1)2NT + 1 1

Table 3: Numbers of component �elds in the WZ gauge. D = space-time dimension, NT =
number of supersymmetry generators.
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Fields: aI1���In(x) A(x; �) eI;I1���In(x) EI(x; �) c(x)

SUSY #: n 0 n+ 1 1 0
Ghost #: 0 0 0 0 1
Degrees of
freedom:

(�1)nD�NT

n

�
0 (�1)n+1

�
NT+1
n+1

�
n 1 �1

Table 4: Numbers of physical degrees of freedom. D = space-time dimension, NT = number
of supersymmetry generators.

into account the sign (�)s+g characterizing the ghost nature of each �eld, thus obtaining
the results shown in Table 4. There is again a complete cancellation of the local degrees of
freedom, as it should.

Let us consider more explicitly the cases of NT = 0 and 1.

Example 3 { Case NT = 1

The WZ gauge condition reads � = 0, we have

~E(x; �) = ��(x) ;

and the parameter � of the compensating supergauge transformation is given by

� = � �� :

In 4 dimensions we recover the Donaldson-Witten theory of section 2. In particular, the
modi�ed supersymmetry transformations are those given by (2.1). It is moreover easy to
check the nilpotency of ~Q modulo a �-dependent gauge tansformation Æ�:

~Q2 = Æ� :

Example 4 { Case NT = 2

In terms of the component �elds de�ned by (3.17), the WZ gauge condition reads

�I = 0 ; �IJ � �JI = 0 ;

so that
~EI = �J�(IJ) +

1

2
�2�I ; with �(IJ) =

1

2
(�IJ + �JI) :

The parameter � of the compensating supergauge transformation is given by

� = �I
�
�J�(IJ) +

1

4
�2�I

�
;
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and the modi�ed supersymmetry transformations are

~QIa =  I ; ~QI J = �D(a)�IJ � �IJ� ; ~QI� = �JK [�IJ ;  K] +D(a)�I ;

~QI�JK =
1

2
(�IJ�K + �IK�J) ; ~QI�J = �KL [�IK; �JL] :

The superalgebra closes on the � dependent gauge transformations Æ�(IJ):

[ ~QI ; ~QJ ] = �2Æ�(IJ) :

4 Actions

4.1 Action for NT = 1 in D-dimensions

4.1.1 The geometrical sector

We follow here [2, 3, 4, 11]. In such theories, the action is purely of gauge �xing type, the
gauge condition being that of zero Yang-Mills curvature { or possibly of selfdual curvature,
in four dimensions, as in the original Witten's paper [1]. The \gauge invariance" which has
to be �xed is the local shift supersymmetry expressed by the nilpotent operator Q (or ~Q in
the WZ gauge). For this we have to introduce a Lagrange multiplier �eld5 0b0D�2 and an
associated \antighost" �1�b0D�2. In the case of a selfduality condition in D = 4 dimensions,
both 0b0D�2 and

�1�b0D�2 are to be taken as anti-selfdual 2-forms. One has still to introduce
the Lagrange multiplier �2 ��00 and its associated \antighost" �1�00 in order to �x the zero
mode of the 1-form �eld 1 0

1 . \Antighosts" and Lagrange multipliers transform as

Q �1�b0D�2 =
0b0D�2 ; Q 0b0D�2 = 0 ;

Q �2 ��00 =
�1�00 ; Q �1�00 = 0 :

(4.1)

The best way to write down an invariant action is to use the superspace formalism, intro-
ducing the two \Lagrange multiplier super�elds"

�1B0
D�2 =

�1�b0D�2 + � 0b0D�2 ;
�2�

0

0 =
�2 ��00 + � �1�00 ;

corresponding to the transformation rules (4.1). One must impose the anti-selduality con-
dition P+

�1B0
D�2 = 0 if one is interested in the instanton con�gurations (see (A.6) for the

de�nition of the (anti-)selfduality projectors). An action which �xes local shift supersym-
metry may be given by the following supergauge invariant and supersymmetric expression,

5Recall that the indices p and s in s'g
p respectively denote the form degree and the SUSY-number. The

indice g denotes the ghost number associated to the BRST invariance de�ned by (3.9) { or (2.2), in the WZ
gauge.
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written as a superspace integral:

Sinv = Tr

Z
d1�

�
�1B0

D�2 F (A) +
�2�

0

0 D(A) �	
�

= Tr

Z �
0b0D�2 F (a) +

�1�00 D(a) � ( +D(a)�) + (�1)D�1 �1�b0D�2 D(a) 

+ �2 ��00

�
� D(a) � (D(a)�+ [ ; �]) + [ ; �( +D(a)�)]

��
;

(4.2)

where * is the Hodge duality symbol. In the second term of the �rst line, we have used
the supercurvature component 	 given in (3.16) instead of  for the sake of supergauge
invariance. In the WZ gauge, � = 0, we have

Sinv = Tr

Z �
0b0D�2 F (a) +

�1�00 D(a) �  + (�1)D�1 �1�b0D�2 D(a) 

� �2 ��00 D(a) �D(a)�+ [ ; � ]
�
:

(4.3)

Beyond the zero-mode of the connection super�eld A due to super-Yang-Mills invariance
(3.10), there still remains 0-modes for the (D � 2)-form super�eld �1B0

D�2, due to an
invariance under local transformations of the form

Æ �1B0
D�2 = D(A) �1�0

D�3 : (4.4)

Before describing our way of �xing these zero-modes, let us briey remind of the scheme
introduced in [4].

4.1.2 The Blau-Thompson gauge �xing

The �xing of the zero-modes of �1B0
D�2 by the authors of [3, 4, 11] is based on the Batalin-

Vilkovisky procedure [12], adapted to the case where gauge invariance is the shift symmetry,
with a corresponding system of ghosts for ghosts, antighosts and Lagrange multipliers. The
result is rather cumbersome and redundant, but the authors of [4] succeeded to construct
a reduced procedure with a minimum number of �elds. The reduced procedure amounts to
introduce a set of super�elds, which we shall denote by

0	
0

D�3 ;
�1	

0

D�4 ;
0	

0

D�5 ; � � � ; �k	
0

0 ; with k = 1
2

�
1 + (�1)D� ; (4.5)

and to add to the action (4.2) the terms

SBT = Tr

Z
d1�

�
0	

0

D�3 D(A) � �1B0
D�2 + �1	

0

D�4 D(A) � 0	
0

D�3

+ 0	
0

D�5 D(A) � �1	
0

D�4 + � � �+ �k	
0

0 D(A) � k�1	
0

1

�
;

(4.6)
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which by construction is a Q-variation. If supplemented by a gauge �xing action for the
Yang-Mills supergauge invariance, the �xing of the zero-modes is complete, propagators are
well de�ned and the quantum theory may be calculated. However, the latter is not de�ned
unambiguously. This can be seen, at the perturbative level, from the possible occurrence of
gauge invariant and supersymmetric counterterms di�erent from the terms already present
in the action. For instance, in D = 4 dimensions, possible such counterterms are given by
superspace integrals of traces of expressions such as

0	
0

1D(A) �1B0
2 ;

0	
0

1
�2�

0

0 �	 ; �1	
0

1
�2�

0

0 �� ; �1B0
2

�
@�

�1B0
2 + [E; �1B0

2 ]
�
; etc.
(4.7)

This fact may jeopardize the stability of the theory under radiative corrections.

Let us remind that there is an alternative way [2], which may be used in the instanton
con�guration case, in D = 4 dimensions. It consists in adding to the action (4.3), instead of
the terms (4.6), a term quadratic in the Lagrange multiplier �1B0

D�2:

1

2
Tr

Z
d1�

�
�1B0

2 � �@� �1B0
2 + [E; �1B0

2 ]
��

; (4.8)

equal to
1

2
Tr

Z �
0b02 � 0b02 +

�1�b02[
�1�b02; �]

�
; (4.9)

in the WZ gauge, and substituting the now auxiliary �eld 0b02 by its equation of motion
0b02 = P�F (a), where P� is the anti-selfduality projector de�ned in (A.6). This leads to the
term

SH =
1

2
Tr

Z
(P�F (a))

2 ;

as pointed out in [2], thus leading to Witten's original action6. This alternative way is
analogous to the way leading from a gauge �xing of the Landau type to one of the Feynman
type in usual gauge theories. We note that the action Sinv+SH represents a complete gauge
�xing, too, since the BF -type gauge invariance is explicitly broken. Moreover, it is stable
under the radiative corrections, to the contrary of the action Sinv + SBT. However, this
alternative procedure appears unsuitable for generalization to higher dimension and higher
supersymmetry.

On the other hand, the reduced Blau-Thompson procedure may be easily generalized to
higher dimension and higher NT shift supersymmetry: this has been done in [4] for D = 3
and 4, NT = 1 and 2. However the same problem of unstability will persist.

4.1.3 The super-BF gauge �xing

Our proposal is to treat the theory as a supersymmetric theory with supergauge invariance,
and to eliminate the zero-modes of the super�eld �1B0

D�2 by explicitly using the supergauge

6This point is discussed in [13] together with an argument indicating the equivalence of both versions.
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invariance of the type encountered in topological BF theories and �xing it accordingly to
the Batalin-Vilkovisky (BV) prescription [12], as in BF theories. Implementing this new
gauge invariance within the BRST algebra, we �rst introduce a ghost �1B1

D�3 as well as a
series of ghosts for ghost �1Bg

D�2�g, g = 2; : : : ; D � 2, and the BRST transformation rules

S �1B0
D�2 = �[C; �1B0

D�2]�D(A) �1B0
D�3 ;

S �1Bg
D�2�g = �[C; �1Bg

D�2�g]�D(A) �1Bg+1
D�3�g (g = 1; : : : ; D � 3) ;

S �1BD�2
0 = �[C; �1BD�2

0 ] ;

(4.10)

where we have incorporated the super-Yang-Mills transformations with superghost C. We
note that, if the space-time dimension D is greater or equal to 4, these transformations
hold only on-shell, namely modulo terms linear in the curvature F (A), the latter being an
equation of motion as a consequence of the action (4.2). Indeed, S2 = 0 when applied to all
the �elds, except

S2 �1Bg
D�2�g = � �F (A); �1Bg+2

D�4�g

�
(g = 1; : : : ; D � 3 ; D � 4) : (4.11)

The transformations as written in (4.10) hold in the generic case describing the gauge �eld
con�gurations of null curvature: F (a) = 0. If we are interested in the selfdual con�gurations
in four-dimensional space-time, P�F (a) = 0, the Lagrange multiplier super�eld �1B0

2 has to
be chosen as an anti-selfdual 2-form:

P+
�1B0

2 = 0; ; (4.12)

and the BRST transformations (4.10) must be rede�ned accordingly:

S �1B0
2 = �[C; �1B0

4 ]� P� (D(A) �1B0
1) ;

S �1B1
1 = �[C; �1B1

1 ]�D(A) �1B2
0 ;

S �1B2
0 = �[C; �1B2

0 ] :

(4.13)

One readily veri�es that on-shell nilpotency still holds, F (A) in (4.11) being replaced by
P�F (A), which is now the relevant equation of motion.

The �xing of the gauge invariance (4.4) is completed through the addition of antighost

and Lagrange multiplier super�elds sC
g�1

p and s�g
p. The ghosts B and antighosts BC form

together a Batalin-Vilkovisky triangle, whose upper summit is the super�eld �1B0
D�2 and

bottom line is made of 0-forms:
�1B0

D�2

0C
�1
D�3

�1B1
D�3

�1C
0
D�4

0C
�2
D�4

�1B2
D�4

0C
�1
D�5

�1C
1
D�5

0C
�3
D�5

�1B3
D�5

� � � � � � � � � � � � � � �
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The Lagrange multipliers form a smaller triangle corresponding to the antighost subtriangle:

0�0
D�3

�1�1
D�4

0��1
D�4

�0�0
D�5

�1�2
D�5

0��2
D�5

� � � � � � � � � � � �

The set of BRST transformations given by (3.10) for the connection super�elds A and E,
by (4.10) for �1B0

D�2 and its ghosts, is completed by

S sC
g�1

p = s�g
p ; S �1�g

p = 0 ; (4.14)

for the antighost and Lagrange multipliers, and �nally by

S
�2�

0

0 = �[C; �2�
0

0] ; (4.15)

the nilpotency property being preserved. Introducing still the antighost and Lagrange mul-
tiplier super�elds C and � for �xing super-Yang-Mills gauge invariance, we are ready to
write down a complete action. Since the \BF gauge symmetry" algebra is closed only on-
shell, one must use the complete Batalin-Vilkovisky setting, including the introduction of the
anti�elds, demand that the action solves the master equation, thereby obtaining an action
involving terms quadratic in the ghosts. This has been done in quite generality for the usual
BF models [3, 6] and will not be repeated here. We shall only indicate the part, written as
a superspace integral, of the action linear in the ghost �elds, which may be obtained adding
to the invariant action (4.2) a BRST variation:

S(linear part in the ghosts) = Sinv

�S Tr

Z
d1�

�
C d � A+ 0C

�1

D�3 d ��1 B0
D�2 +

0C
�2

D�4 d ��1 B1
D�3

+ �1C
0

D�4 d �0 C
�1

D�3 + � � �
�

= Tr

Z
d1�

�
�1B0

D�2 F (A) +
�2�

0

0 D(A) �	+� d � A� C d � SA
+ 0�0

D�3 d � �1B0
D�2 +

0��1
D�4 d � �1B1

D�3 +
�1�1

D�4 d � 0C
�1

D�3

� 0C
�1

D�3 d � S �1B0
D�2 � 0C

�2

D�4 d � S �1B1
D�3 � �1C

0

D�4 d � S 0C
�1

D�3 + � � �
�
:

(4.16)
In fact, the dependence in the Lagrange multipliers is exact and completely �xed if one
imposes, as it may be done in usual gauge theories [14], the Landau type \gauge conditions"

ÆS

Æ�
= d � A ;

ÆS

Æ 0�0
D�3

= d � �1B0
D�2 ;

ÆS

Æ 0��1
D�4

= d � �1B1
D�3 ;

ÆS

Æ �1�1
D�4

= d � 0C
�1

D�3 ; � � � ;
(4.17)
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which, being linear, are not subject to renormalization.

For the sake of completeness, let us write the expansions of the various super�elds present
in this action:

A = a+ � ; E = �+ �� ; �1Bg
D�2�g =

�1�bgD�2�g + � 0bgD�2�g ;

�2�
0

0 =
�2 ��00 + � �1�00 ; � = �0 + �� ; s�g

p =
s(�0)gp + � s+1�gp ;

sC
g

p =
s(�c0)gp + � s+1�cgp :

(4.18)

Example 5 { Case D = 3

The BRST operator S is strictly nilpotent, and the complete action reads

S = Tr

Z
d1�

�
�1B0

1 F (A) +
�2�

0

0 D(A) �	

+� d � A� C d � SA + 0�0
0 d � �1B0

1 � 0C
�1

0 d � S �1B0
1

�
;

(4.19)

which, in component �elds, yields (see (3.16) for the �-expansion of 	)

S = Tr

Z �
0b01 F (a) +

�1�00 D(a) � ( +D(a)�)� �1�b01 D(a) 

+ �2 ��00 ( D(a) � (D(a)�� [ ; �]) + [ ; �( +D(a)�)])

+ � d � a+ �0 d �  + 1�00 d � �1�b01 � 0(�0)00 d � 0b01

� �c d � Sa� �c0 d � S � 1�c�1
0 d � S �1�b01 + 0(�c0)�1

0 d � S 0b01

�
;

(4.20)

In the WZ gauge � = 0, this gives

S = Tr

Z �
0b01 F (a) +

�1�00 D(a) �  � �1�b01 D(a) + �2 ��00 ( D(a) �D(a)�+ [ ; � ])

+ � d � a + �0 d �  + 1�00 d � �1�b01 � 0(�0)00 d � 0b01

� �c d � Sa� �c0 d � S � 1�c�1
0 d � S �1�b01 + 0(�c0)�1

0 d � S 0b01

�
;

(4.21)
On may observe that the latter action contains the term �0d �  which, compared with the
term �1�00 D(a) �  , shows that the �elds �0 and �1�00 are redundant and the quadratic part
of the action, singular. This redundancy is an artifact of having written the action in the
WZ gauge, where � = 0. In the supersymmnetric gauge yielding the action (4.20), the �eld
�1�00 also couples to �, and there is therefore no redundancy. When restricting to the WZ
gauge, in order to get rid of this redundancy, one has to put �0 = 0, too.
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Example 6 { Case D = 4

Let us consider the case of a selfdual curvature, de�ned by the anti-selfduality condition
(4.12) on the B-�eld and the BRST transformations (4.13). The action is

S = Tr

Z
d1�

�
�1B0

2 F (A) +
�2�

0

0 D(A) �	

+� d � A+ 0�0
1 d � �1B0

2 � �1C
0

0 d � 0�0
1

�
+ Sghost ;

(4.22)

where Sghost is the part of the action depending on the �elds of ghost number 6= 0, which we
shall not write explicitly. In component �elds, in the WZ gauge � = 0 and7 �0 = 0, this reads

S = Tr

Z �
0b02 F (a) +

�1�00 D(a) �  + �1�b02 D(a) + �2 ��00 ( D(a) �D(a)�+ [ �  ])

+ � d � a+ 1�01 d � �1�b02 + 0(�0)01 d � 0b02

� 0�c00 d � 0(�0)01 � �1(�c0)00 d � 1�01

�
+ Sghost :

(4.23)

We can see from the actions (4.19) and (4.22) given in the two examples above, that the non-
ghost part of the action constructed using the \super-BF gauge �xing" procedure coincides,
in the WZ gauge, with the action (4.2, 4.6) given by the Blau-Thompson procedure. InD = 4
dimensions, for instance, the Blau-Thompson action is given by (2.5) and the super-BF like
action by (4.23). They are almost identical, up to changes in the notation:

1�1 ! 1�01 ;
0 � 1 ! 0(�0)01 ;

0�0 ! 0�c00 ;
�1 � 0 ! �1(�c0)00 ;

and up to the presence of simple derivatives in the latter action instead of covariant deriva-
tives in the former one.

In the latter action the supermultiplets8 f 0(�0)01;
1�01g and f �1(�c0)00;

0�c00g appear nat-
urally as Lagrange multipliers and antighosts within the Batalin-Vilkovisky scheme, with
couplings �xed uniquely by the gauge conditions (4.17). Hence, due to this and to the gauge
invariance of the BF type de�ned by (4.4), the action (4.22) is uniquely de�ned { up to

an irrelevant renormalization of the super�elds �1B0
2 and �2�

0

0, thus guarantying an un-
ambiguous quantum extension of the theory. In contrast, f 0(�0)01;

1�01g and f �1(�c0)00;
0�c00g

appear in the Blau-Thompson approach as independent supermultiplets introduced together
with their couplings in an ad hoc way, with the consequence that the action (4.7) of [4] is not
the most general supersymmetric and gauge invariant one. Indeed, forgetting the BF -type

invariance and the character of Lagrange multiplier and antighost of 0�0
1 and �1C

0

0, one
would have to consider possible (counter)terms involving these �elds, such as those given by

7See the remark at the end of the preceding example.
8Denoted in equations (4.6, 4.7) of [4] by fV; � g and f��; ug, respectively.
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(4.7) { in the notation of subsection 4.1.2 { which are gauge invariant, supersymmetric and
of the same power counting dimension 4 as the action.

Of course, these considerations apply as well to the general case of an arbitrary dimension
and also to the models with an arbitrary number of supersymmetry generators considered
in next subsection 4.2.

Let us also repeat that the action as originally given by Witten [1] in the 4-dimensional
case, would correspond to adding to the action (4.23) the term

1

2
Tr

Z
d1�

�
�1B0

2 @�
�1B0

2

�
=

1

2
Tr

Z �
0b02
�2

; (4.24)

and substituting the now auxiliary �eld 0b02 by its equation of motion 0b02 = �P�F (a),
where P� is the anti-selfduality projector de�ned in (A.6), thus leading to the term

1

2
Tr

Z
(P�F (a))

2 :

This would amount to go from a \gauge �xing" of the Landau type for the local shift
symmetry, to one of the Feynman type. However, such a term (4.24) is not allowed in
our scheme since it is not invariant under the BF type gauge transformation, as we have
discussed above.

4.2 Action for Any NT

The generalization for any number NT of supersymmetry generators is straightforward. The
�-expansions of the super�eld components A and EI of the superconnection Â (3.6) and of
the superghost C are given in (3.7, 3.8). Their BRST transformations are given in (3.9,
3.10). The Lagrange multiplier super�elds, associated to the zero curvature (or selfdual-

ity) condition and to the �xing of the zero mode of  I , read
�NTB0

D�2 and �NT�1(�
I
)00,

respectively. The supersymmetric and supergauge invariant action is given by

Sinv = Tr

Z
dNT �

�
�NTB0

D�2 F (A) +
�NT�1(�

I
)00 D(A) �	I

�
; (4.25)

whith the supercurvature components F (A) and 	I de�ned by (3.12). We shall not spell
out this expression, nor the following ones, in components. The ghosts and ghosts for ghost
of �NTB0

D�2 are shown together with their antighosts in the BV triangle

�NTB0
D�2

0C
�1
D�3

�NTB1
D�3

�NTC
0
D�4

0C
�2
D�4

�NTB2
D�4

� � � � � � � � � � � �
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and the corresponding Lagrange multipliers in the triangle
0�0

D�3

�NT�1
D�4

0��1
D�4

� � � � � � � � �

The BRST transformations (4.14, 4.15) hold, and the total action reads, as much as its
linear part in the ghost �elds is concerned:

S(linear part in the ghosts) = Tr

Z
dNT �

�
�NTB0

D�2 F (A) +
�NT�1(�

I
)00 D(A) �	I +� d � A

� C d � SA+ 0�0
D�3 d � �NTB0

D�2 +
0��1

D�4 d � �NTB1
D�3 +

�NT�1
D�4 d � 0C

�1

D�3

� 0C
�1

D�3 d � S �NTB0
D�2 � 0C

�2

D�4 d � S �NTB1
D�3 � �NTC

0

D�4 d � S 0C
�1

D�3 + � � �
�
;

(4.26)
with F (A) and 	I given by (3.20). The couplings of the Lagrange multipliers are still de�ned
by the gauge conditions (4.17), with the obvious SUSY-number substitution �1 ! �NT in
due place.

Example 7 { Case NT = 2, D = 3

The complete action is

S = Tr

Z
d2�

�
�2B0

1 F (A) +
�3(�

I
)00 D(A) �	I

+� d � A� C d � SA+ 0�0
0 d � �2B0

1 � 0C
�1

0 d � S �2B0
1

�
:

(4.27)

We can write this action in components, in the WZ gauge �I = 0, �IJ � �JI = 0, using the
�-expansions de�ned in (3.17) and by

�1Bg
D�2�g =

�b(x) + �IbI(x) +
1

2
�2b(x) ; �2(�

I
)00 =

��I + �J ��IJ +
1

2
�2 ��IF ;

� = � + �I�I +
1

2
�2�F ; 0�0

0 = �0 + �I�0
I +

1

2
�2�0

F ;

(4.28)

The result is, restricted to the quadratic terms:

Squadr = �Tr
Z �

bf(a)� �IJbId J +�bd� + ��IFd �  I + �JK ��IJd � (�IJ�+ d�IJ) + ��Id � d�I

+ �Fd � a+ �IJ�Id �  J + �d � � + �0
Fd � �b + �IJ�0

Id � bJ + �0d � b
�
:

(4.29)
As in the NT = 1 case, one has redundancy in some of the �elds, which must be eliminated
by putting � = �I = 0.

One can see that this action { like in the examples 5 and 6 { also corresponds to an
action written by Blau and Thompson (eq. (4.5) of [4]).
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5 Examples of Observables

It has been shown in [7] that all the observables for NT = 1, de�ned as BRST cohomology
classes of supersymmetric �eld polynomials, are given from the Chern classes associated
to the superconnection Â (3.6), and that the result is equivalent to the result of Witten
given in subsection 2.2. We shall give here the generalization for any value of NT , however
without proving that this still gives the complete set of observables [15]. The observables
are completely determined from the general solution of the superdescent equations

S
̂D + d̂
̂1
D�1 = 0 ; S
̂1

D�1 + d̂
̂2
D�2 = 0 ; � � � ; S
̂D

0 = 0 : (5.1)

where 
̂D(x; �) are superforms of ghost number 0 and superform degree D which are non-
trivial elements of the cohomology H(Sjd̂) of S modulo d̂ in the space of the superforms,

S
̂ = 0 (modulo d̂) ; but 
̂ 6= S�̂ (modulo d̂) :

Expanding QNT 
̂D = (@�)
NT 
̂D according to the space-time form degree p:

QNT 
̂D =
DX
p=0

wp; I1:::ID�pd�
I1 � � �d�ID�p ; (5.2)

one identi�es the space-time forms wp as the desired solutions. Indeed,

Swp(x) = 0 (modulo d) (n � 1) ; Qw0(x) = 0 ;

which follows from applying the operator QNT to the �rst of the superdescent equations (5.1),
and using the identities QNT d̂ = QNT d = (�1)NT dQNT , which are direct consequences of
the de�nitions.

The general result for (5.1) is [7]


̂D = �CSr1 (Â)fr2(F̂ ) � � � frL(F̂ ) ; with D = 2
LX
i=1

mri � 1 ; L � 1 ; (5.3)

where fr(F̂ ) is the supercurvature invariant of degree mr in F̂ corresponding to the gauge
group Casimir operator of degree mr, and �

CS
r (Â) is the associated super-Chern-Simons form:

d̂�CSr (Â) = fr(F̂ ) : (5.4)

We note that the superform degree of the solution (5.3) is odd.

Example 8 { Maximum degree D = 3

The superdescent equations read as

S
̂3 + d̂
̂1
2 = 0 ; S
̂1

2 + d̂
̂2
1 = 0 ; S
̂2

1 + d̂
̂3
0 = 0 ; S
̂3

0 = 0 :
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The unique nontrivial solution is


̂3 = Tr (Âd̂Â+ 2
3
Â3) ; 
̂1

2 = Tr (Âd̂C) ; 
̂2
1 = Tr (Cd̂C) ; 
̂3

0 = �1
3
TrC3 :

Note that 
̂3 is the Chern-Simons superform associated to the quadratic Casimir operator of
the gauge group. Following (5.1) we get, for NT = 1

w0 = Tr (�2 + 2��2) ; w1 = 2Tr ( �+  �2 + �D(a)�) ;

w2 = Tr ( 2 + 2�F (a) + 2 D(a)a�) ; w3 = 2Tr ( F (a)) :
(5.5)

The observables are the integrals of these forms (and of TrF (a)2) on closed submanifolds of
appropriate dimension.

In the Wess-Zumino gauge � = 0:

w0 = Tr (�2) ; w1 = 2Tr ( �) ; w2 = Tr (2�F (a) +  2) ; w3 = 2Tr ( F (a))

which corresponds to Witten's result up to total derivatives.

For NT = 2 we obtain (in the WZ gauge �I = 0, �[IJ ] = 0):

w0 = 2Tr �(I�JK) ;

w1 = Tr (2��(IJ) + 2 (I�J) + �KL�(IjKD(a)�LjJ)) ;

w2 = 2Tr (� I + F (a)�I + �JK�IJD(a) K) ;

w3 = Tr (2�F (a) + �IJ ID(a) J):

6 Absence of Radiative Corrections

The Feynman rules in the general case are deduced from the action (4.26). It is useful to
work directly in superspace. The nonzero superpropagadores are

hA(1); �NTB0
D�2(2)i ; hA(1);�(2)i ; hC(1); C(2)i ;

hEI(1);
�NT�1(�

I
)00(2)i ; hEI(1);�(2)i ;

h �NTBg
D�g�2(1);

0��g
D�g�3(2)i ; h �NTBg

D�g�2(1);
0C

�g

D�g�2(2)i (g � 0) ;

h 0C
�g

D�g�2(1);
�NT�g

D�g�3(2)i (g � 1) ;

h �NTC
g

D�g�4(1);
0��g

D�g�5(2)i ; h �NTC
g

D�g�4(1);
0��g

D�g�3(2)i (g � 0) ;

h 0C
�g

D�g�4(1);
�NT�g

D�g�5(2)i ; h 0C
�g

D�g�4(1);
�NT�g

D�g�3(2)i (g � 0) ;

etc. ;

(6.1)
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where we are using the notation '(n) for '(xn; �n). With one irrelevant exception shown
hereafter, all these propagators have as factor a �-space Æ-function (�1��2)NT . For instance,
the �rst one reads D

A�(1);
�NTB0

�1����D�2
(2)
E
� ��1 ���1����D�2�@

�Æ(1; 2) ; (6.2)

up to some numerical factor, where ��1 is the inverse of the Laplace operator � = �d � d+
d � d�, and

Æ(1; 2) = ÆD(x1 � x2)
(�1)NT+1

NT !
(�1 � �2)

NT

is the (D;NT )-superspace Dirac distribution. The exception is the propagator

hEI(1); �(2)i � ��1 @

@�I1
Æ(1; 2) ; (6.3)

which is of degree NT�1 in �1��2. However the latter does not contribute to any 1-particule
irreducible (1PI) graph since the Lagrange multiplier super�eld � has no interaction in virtue
of the gauge conditions (4.17).

Now, repeating a well known argument of superspace diagrammatic [10, 16], we observe
that, since all contributing propagators have a factor (�m��n)NT , the integrant of a nontrivial
1PI graph with N vertices will be homogeneous of degree N �NT in the di�erences �Im� �In.
On the other hand, having N �NT independent Grassmann coordinates, we can only form
(N � 1)�NT independent di�erences. Hence, due to the anticommutativity of the �'s, the
integrant will vanish. We thus conclude to the complete absence of radiative corrections.

7 Conclusion

We have developped a general scheme, based on superspace formalism, which allows for a
systematic construction of topological Yang-Mills theories for arbitrary numbers of shift su-
persymmetry generators and space-time dimensions. The main advantage of this scheme,
beyond its systematic character, is that it leads to an unambiguous determination of the
respective actions, thanks to the introduction of a BF theory type supergauge invariance,
which has been �xed accordingly to the Batalin-Vilkovisky prescriptions. Moreover, the
ultraviolet �niteness { in fact the absence of radiative corrections { follows, in the supersym-
metric gauge �xing we have chosen, directly from the superspace Feynman rules.

Acknowledgments. We thank Jos�e Luis Boldo, Fran�cois Gieres, Jos�e Helay�el Neto,
Matthieu Lefran�cois and Jos�e Alexandre Nogueira for many useful discussions.
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Appendices. Notations and Conventions

A Di�erencial calculus

Here, \space-time" is an arbitray D-dimensional smooth manifold, equipped with a Rie-
mannian background metric (g��), of determinant g > 0. Space-time objects are di�erential
forms such as a = a�dx

�, etc. We shall call an object even or bosonic (respectively, odd or
fermionic) if it obeys to commutation (respectively, anticommutation) relations.

The bracket [�; �] in general denotes the graded bracket

[X; Y ] = XY + Y X if both X and Y are odd,

[X; Y ] = XY � Y X otherwise.
(A.1)

The �elds (forms, super�elds, etc.) appearing in this paper are all taken in the Lie algebra
of the gauge group G, which we assume to be compact. A �eld ' is then a matrix 'a�a,
where the generators �a obey the Lie algebra commutation relations and trace property

[�a; �b] = fab
c�c ; Tr �a�b = 2Æab : (A.2)

The Hodge dual of a p-form ! is the (D � p)-form �! de�ned by [17]

�! =
1

(D � p)!
~!�1:::�D�pdx

�1 :::dx�d�p

where ~!�1:::�D�p =
1

p!

1p
g
��1:::�D!

�D�p+1:::�D :
(A.3)

Here and elsewhere in the text, the wedge product symbol has been omitted. Moreover, the
background metric (g��), as well as the totally antisymmetric tensor of Levi-Civita:

��1:::�D = g�1�1 � � � g�D�D��1:::�D ; �1:::D = 1 ; �1:::D = g : (A.4)

The following formulas are quite useful [17]:

� � !p = (�1)p(D�p) !p ; !p � �p = �p � !p : (A.5)

Since the Hodge star operator maps a form of degree p to a form of total degree D � p,
it represents an even operator if the space-time dimension D is even and an odd operator
otherwise. For D = 4, a selfdual or anti-selfdual 2-form !2 is de�ned by the condition
�!2 = �!2. Projectors on selfdual or anti-selfdual 2-forms are given by

P� =
1

2
(1� �) : (A.6)
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B NT - supersymmetry and superspace

(D;NT )-superspace bosonic coordinates are denoted by x�, � = 0; : : : ; D � 1, the fermionic
(Grassmann, or anticommuting) coordinates being denoted by �I , I � 1; : : : ; NT . The NT

supersymmetry generators QI are represented on super�elds F (x; �) by

QIF = @IF � @

@�I
F ;

where, by de�nition, @K�
J = ÆJK . Further conventions and properties about the �-coordinates

are the following:
�NT = �I1���INT �

I1 � � � �INT = NT ! �
1 � � � �NT ;

(@�)
NT = �I1���INT @I1 � � �@INT = NT ! @1 � � �@NT

;

(@�)
NT �NT = �(NT !)

2 ;

where �I1���INT is the completely antisymmetric tensor of rank NT , with the conventions

�1���NT = 1 ; �I1���INT = (�1)NT+1 �I1���INT :

One may de�ne the conserved supersymmetry number { SUSY number { attributing the
value 1 to the generators QI , hence �1 to the �-cordinates. The SUSY number of each �eld
component is then deduced from the SUSY number given to each super�eld.

Superspace integration of a super�eld form 
p(x; �) is de�ned by integralsZ
dNT � 
p(x; �) =

Z
Mp

Z
dNT � 
p(x; �) ;

where the x-space integral is made on some p-dimensional (sub)manifoldMp, and the �-space
integral is the Berezin integral de�ned byZ

dNT � � � � = � 1

(NT !)2
(@�)

NT � � � ; such that

Z
dNT � �NT = 1 :

In the specal case of NT = 2, the antisymmetric tensors �IJ and �IJ may be used for
raising and lowering the indices:

�I = �IJ�
J ; �I = �IJ�J ; �IJ = ��IJ ; �12 = 1 ; �IJ�JK = ÆIK ;

and one has the useful formulas

�2 = �I�I = ��I�I ; �I�J = �1

2
�IJ�2 ; �I�J =

1

2
�IJ�

2 :

NT = 1 and NT = 2 super�elds have the conventional expansions

�(x; �) = �(x) + ��0(x) (NT = 1) ;

�(x; �) = �(x) + �I�I(x) +
1

2
�2�F (NT = 2) :
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