
CBPF-NF-036/02

Constraints on the generalized Chaplygin gas from supernovae observations�

Mart��n Makler1;2, S�ergio Quinet de Oliveira2 and Ioav Waga2

1Centro Brasileiro de Pesquisas F��sicas
Rua Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, RJ, Brazil

2Universidade Federal do Rio de Janeiro,
Instituto de F��sica,

CEP 21945-970 Rio de Janeiro, RJ, Brazil

Abstract

We explore the implications of type Ia supernovae (SNIa) observations on at cosmological models
whose matter content is an exotic uid with equation of state, p = �M4(�+1)=��. In this scenario,
a single uid component may drive the Universe from a nonrelativistic matter dominated phase to
an accelerated expansion phase behaving, �rst, like dark matter and in a more recent epoch as dark
energy. We show that these models are consistent with current SNIa data for a rather broad range of
parameters. However, future SNIa experiments will place stringent constraints on these models, and
could safely rule out the special case of a Chaplygin gas (� = 1) if the Universe is dominated by a
true cosmological constant.
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1 Introduction

According to the standard cosmological scenario (�CDM, QCDM) that has emerged at the end of the
last century, the Universe is dominated by two unknown components with quite di�erent properties:
pressureless cold dark matter (CDM), which is responsible for the formation of structures, and negative-
pressure dark energy, that powers the accelerated expansion. There are several candidates for these
two components. For the CDM, the leading particle candidates are the axion and the neutralino, two
weakly interacting massive particles. The preferred candidates for dark energy are vacuum energy - or a
cosmological constant � - and a dynamical scalar �eld (quintessence) [1]. At the cosmological level, the
direct detection of each of these two components involves observations at di�erent scales. Since it is not
supposed to cluster at small scales, the e�ect of dark energy can only be detected over large distances,
where the accelerated expansion is observed. On the other hand, the CDM can be detected by its local
manifestation on the motion of visible matter or through the bending of light in gravitational lensing.

An interesting question that arises is: could this two phenomena - accelerated expansion and clustering
- be di�erent manifestations of a single component? In principle the answer is yes, if, for instance, the
Universe is dominated by a component with an appropriate exotic equation of state (EOS). We will
generically refer to any kind of such unifying dark matter-energy component as UDM. 1

The above question has been addressed in some works recently [2, 3, 4, 5]. For instance, in Ref. [5]
it was investigated the possibility that a tachyonic �eld, with motivation in string theory, could unify
dark energy and dark matter and explain cosmological observations in small and large scales. Here we
investigate observational limits on a simple realization of UDM: a uid with the following equation of
state [3, 6, 7, 8],

p = �M
4(�+1)

��
: (1)

The particular case � = 1 is known as Chaplygin gas and its cosmological relevance, as an alternative to
quintessence, has been pointed out in [8]. In [3], it has been shown that the inhomogeneous Chaplygin
gas represents a promising model for dark matter-energy uni�cation. Some possible motivations for this
scenario from the �eld theory point of view are discussed in [8, 3, 7]. The Chaplygin gas appears as an
e�ective uid associated with d-branes [8, 9]. The same EOS is also derived from a complex scalar �eld
with appropriate potential and from a Born-Infeld Lagrangian [3]. More recently, by extending the work
of Bili�c et al. [3], Bento et al. [7] also discussed the particle physics motivation for the EOS (1). The
uid given by this EOS is sometimes called generalized Chaplygin gas (GCG).

It is interesting to notice that this model can also be obtained from purely phenomenological argu-
ments, by requiring that an exotic uid uni�es the dark-matter/dark-energy behavior as a function of its
density and that it is stable and causal [6]. The simplest EOS satisfying this criteria is given by eq. (1).

Let us consider the homogeneous case of the GCG Universe. The energy conservation can be written
as

d� = �3 (�+ p)
da

a
; (2)

where a is the scale factor. By solving this equation we may express the energy density in terms of the
scale factor:

� = M4

�
B
�a0
a

�3(�+1)
+ 1

�1=(�+1)
; (3)

where a0 is present value of scale factor and B is an integration constant. When a=a0 � 1, we have
� / a�3 and the uid behaves as CDM. For late times, a=a0 � 1, and we get p = �� = �M4 = const: as
in the cosmological constant case. There is also an intermediate phase where the e�ective EOS is p = ��
[8]. Once we have � as a function of the scale factor it is simple to �nd the Hubble parameter. Since

1Following the current jargon, another possible denomination for UDM would be \quartessence" since in this scenario
we have only one additional component, besides ordinary matter, photons and neutrinos, and not two like in �CDM and
QCDM.
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observations of anisotropies in the cosmic microwave background (CMB) indicate that the Universe is
nearly at [10], here we restrict our attention to the zero curvature case. We also neglect radiation, that
it is not relevant for the cosmological tests we discuss in this work.

From the Friedmann equation with k = 0 we have

H2 (z) = H2
0

h

�M (1 + z)

3(�+1)
+ (1� 
�M )

i1=(�+1)
; (4)

where z = a0=a� 1 is the redshift, and we have conveniently de�ned 
�M = B=(B + 1), or equivalently

B =

�M

1�
�M
: (5)

Further, we also have

M4 = �c0 (1� 
�M )
1

(�+1) ; (6)

where �c0 is the present value of the critical density. For these models the deceleration parameter can be
written as

q = �
:

H

H2
� 1 =


�

M

2 � (1� 
�M) (1 + z)
�3(1+�)


�M + (1� 
�M ) (1 + z)�3(1+�)
; (7)

and the redshift z�, at which the Universe started its accelerating phase is given by,

1 + z� =

�
2 (1� 
�M)


�M

� 1
3(�+1)

: (8)

An accelerating Universe at present time (q0 < 0) implies that 
�M < 2=3, and from (5) we have 0 < B < 2;
the lower limit follows from the fact that we assume 
�M > 0. Moreover, if � is not very close to �1, from
(6), we obtain M � 10�3 eV. It would be desirable that a fundamental theory, aimed to describe the
UDM, sheds some light on the origin of this mass scale. Thus, at this point this model is not free of some
tuning. However, once the origin of the above mass scale is explained, the so called dark matter-energy
\coincidence problem" is not present in this scenario.

In a GCG Universe, if the parameter � is positive, the adiabatic sound velocity, cs2 = dp=d� =
��p=�, is real and therefore, the uid component is stable. If � is negative and there is only adiabatic
pressure uctuations, they accelerate the collapse producing instabilities that turn the model for structure
formation unacceptable [11, 12]. Moreover, to obey causality, the sound velocity in this medium has to
be less or equal than the light velocity. Since the maximum allowed sound velocity of this uid (which
occurs in the regions where p! ��) is given by

p
�, this condition imposes � � 1. The Chaplygin gas,

� = 1, is the extreme case, where the sound velocity can be nearly the speed of light. The case � = 0
is equivalent to �CDM and is, of course, well motivated. In this paper, we discuss the GCG model from
a phenomenological point of view. Hence, although we are aware that most likely 0 � � � 1, we also
include in our analysis the region where � is negative, but larger than �1. If � = �1 we obtain a de
Sitter Universe. The situation � < �1 seems unphysical, since the energy density of UDM would be
increasing with the expansion of the Universe. In fact, as we shall see, age constraints can safely exclude
regions in the parameter space with very negative values of �.

In the forthcoming section we will see what constraints to the model described above are set by present
and future SNIa observations. Recently, some constraints from SNIa on related models where obtained
in Ref. [13]. The work presented here di�ers from [13] in the following aspects: a) Following the idea
of uni�cation, we have not included an additional dark matter component and we have considered the
more general case in which � is not necessarily equal to unity. b) When analyzing current SNIa data we
perform a Bayesian approach in which the intercept is marginalized c) We also investigate the predicted
constraints on the models from future SNIa observations.
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2 Type Ia Supernovae Experiments

The luminosity distance of a light source is de�ned in such a way as to generalize to an expanding and
curved space the inverse-square law of brightness valid in a static Euclidean space,

dL =

�
L

4�F

�1=2
= (1 + z)

Z z

0

dy

H(y)
: (9)

In (9) L is the absolute luminosity and F is the measured ux.
For a source of absolute magnitudeM , the apparent bolometric magnitude m(z) can be expressed as

m(z) =M+ 5 logDL; (10)

where DL = DL(z; �;
�M) is the luminosity distance in units of H�1
0 , and

M = M � 5 logH0 + 25 (11)

is the \zero point" magnitude (or Hubble intercept magnitude).
In our computations we follow the Bayesian approach of Drell, Loredo and Wasserman [14] (see also

[15]) and we direct the reader to these references for details. We consider the data of �t C, of Perlmutter
et al. [16], with 16 low-redshift and 38 high-redshift supernovae. In our analysis we use the following
marginal likelihood,

L(�;
�M) =
s
p
2�

��
e�

q
2 : (12)

Here

q(�;
�M) =
16X
i=1

(�5 logDL � ni +mcorr
Bi )2

�2low;i
+

38X
i=1

�
�5 logDL � ni +meff

Bi

�2
�2high;i

; (13)

where

ni(�;

�

M) = s2(
16X
i=1

5 logDL(zi; �;

�

M) �mcorr
Bi

�2low;i
+

38X
i=1

5 logDL(zi; �;

�

M) �meff
Bi

�2high;i
) ; (14)

s2 =

 
16X
i=1

1

�2low;i
+

38X
i=1

1

�2high;i

!
�1

; (15)

�2low;i = �2mcorr
B;i

+

�
5 loge

zi
�zi

�2
(16)

and
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�2high;i = �2
meff

B;i

+

�
5 log e

zi
�zi

�2
: (17)

The quantities mcorr
B , meff

B , �mcorr
B

, �meff

B

and �z are given in Tables 1 and 2 of Perlmutter et al. [16].

The results of our analysis for the GCG Universe are displayed in Fig. 1. In this �gure we show 68
and 95 con�dence level contours, in the (�; 
�M )-plane. We observe that current SNIa data constrain

�M to the range 0:15 . 
�M . 0:4 , but do not strongly constrain the parameter � in the considered
range. Other tests may impose further constraints. For instance, in Ref. [17] it shown that CMB alone,
imposes T0 = 14 � 0:5 Gyr (1�) for the age of the Universe. If we also assume the HST Key Project
result, H0 = 72� 8 [18], and that H0 and T0 measurements are uncorrelated, we obtain for the product
H0T0, the following range: 0:79 < H0 T0 < 1:27, at the 2� con�dence level. The central value occurs at
H0T0 = 1:03. In Fig. 1, we also display the contours H0T0 = 0:79 and H0T0 = 1:27. As remarked before,
we can see that negative values of � close to �1, are disfavored. We have also checked that, keeping
all other parameters �xed, the position of the �rst Doppler peak decreases as � increases. It would be
interesting to investigate the constraints imposed by cosmic microwave observations on GCGmodels, but
we leave this for future work.

Finally we consider how well the proposed Supernova Acceleration Probe (SNAP) [19], may constrain
the parameters � and 
�M . Following previous investigations [20], we assume, in our Monte Carlo
simulations, that a total of 2000 supernovae (roughly one year of SNAP observations) will be observed
with the following redshift distribution. We consider, 1920 SNIa, distributed in 24 bins, from z = 0
to z = 1:2. From redshift z = 1:2 to z = 1:5, we assume that 60 SNIa will be observed and we
divide them in 6 bins. From z = 1:5 to z = 1:7 we consider 4 bins with 5 SNIa in each bin. All the
supernovae are assumed to be uniformly distributed with �z = 0:05. In our simulations, we assume that
the errors in magnitude are Gaussian distributed with zero mean and variance �m = 0:16. This includes
observational errors and intrinsic scatter in the SNIa absolute magnitudes. We neglect, in our simulations,
uncertainties in the redshift. We also investigated the e�ect of a redshift dependent systematic error of
the kind �m = �(0:02=1:5) z. This kind of systematic error slightly shifts the \ellipses" up or down -
depending if the signal in �m is plus or minus - but not along the major axis of the \ellipses". We have
not considered in this work the systematic e�ect of lensing [21]. This important e�ect, is not expected
to change qualitatively our conclusions, unless the Universe contains a signi�cant fraction of compact
objects [22]. In this case, a more detailed analysis is required [23].

In Fig. 2 we display the results of our simulation assuming a �ducial model with 
�M = 0:3 and � = 0.
For the �gure the Hubble intercept is assumed to be exactly know. In Fig. 3, we considered the case
in which the intercept M is not known, and we marginalized over it following Goliath et. al. [20]. In
Fig. 4 the �ducial model has 
�M = 0:3 and � = 1, and again the intercept is not assumed to be known.
From the �gures it is clear that SNAP will be able to rule out the Chaplygin gas model (� = 1) if the
Universe is dominated by a true cosmological constant. Alternatively, if the Universe is dominated by
the Chaplygin gas a cosmological constant can be ruled out.

3 Summary

We derived constraints, from current and future SNIa observations, in a scenario where both the accel-
erated expansion and CDM are manifestations of a single component. We considered the special case
of a generalized Chaplygin gas. For the homogenous model, an important di�erence between UDM and
models with � or scalar �elds is that in the former there is a transformation of e�ective CDM into e�ective
dark energy that produces the accelerated expansion.

Our results show that the GCG is consistent with current SNIa data, for any value of � in the
considered range, although values of � � 0:4 are favored. If the accelerated expansion is caused by
a cosmological constant, than SNAP data should be able to rule out the Chaplygin (� = 1) gas and
alternatively, if the Universe is dominated by the Chaplygin gas a cosmological constant would be ruled
out with high con�dence.

For simplicity, we have discussed in this letter the case of a Universe composed of UDM only. Of
course, one should also include the baryonic component, whose energy density scales di�erently from the
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Figure 1: In the �gure 68 and 95 con�dence level contours, in the (�, 
�M )-plane, are displayed. For
the �gure we use �t C, of Perlmutter et al. [16]. The point in the �gure, with coordinates (0:43; 0:26),
represents the best �t value. Constraints from the age of the Universe give 0:79 < H0 T0 < 1:27 (at the
2� con�dence level), the dashed lines represent these two limits.
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Figure 2: Predicted 68 and 95 con�dence level contours for the SNAP mission are shown. We considered
a �ducial model with 
�M = 0:3 and � = 0. For the �gure the Hubble intercept is supposed to be known.
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Figure 3: Predicted 68 and 95 con�dence level contours for the SNAP mission are shown. We considered
a �ducial model with 
�M = 0:3 and � = 0. For the �gure the Hubble intercept is not supposed to be
known.
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Figure 4: Predicted 68 and 95 con�dence level contours for the SNAP mission are shown. We considered
a �ducial model with 
�M = 0:3 and � = 1. For the �gure the Hubble intercept is not supposed to be
known.

UDM. When baryons are included in the Hubble parameter the picture does not change, although some
details do. For instance, if we introduce 
b and perform the analysis with the current supernovae data,
the results for 
�M stay almost unchanged, but the best �t value for � decreases (� � 0:15 for 
b � 0:04,
instead of � � 0:4 for 
b = 0). Also, the age constraints on � are weaker. For instance, for 
b = 0:04
we can exclude negative values of � close to �1 only for 
�M . 0:3. In the case of the data expected
from SNAP, we redid the analysis of the preceding section for 
b = 0:04� 0:004, assuming a Gaussian
distribution. We marginalized over 
b and noticed that the contours increase only slightly.

The GCG seems to be a promising model for unifying dark matter and dark energy. More generically,
the idea of UDM (\quartessence") has to be explored further, both from the particle physics point of
view - to provide a fundamental theory to it -, as well as from the observational side, to constrain UDM
models guiding us to unveil its nature.

Note added: After this manuscript was submitted for publication, another paper using the GCG
and SNIa obervations appeared on the web [24]. Their results are similar to ours, although they do not
set constraints on the parameter � of the GCG equation of state.
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