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Abstract

Einstein's equations for a 4+n-dimensional inhomogeneous space-time are

presented, and a special family of solutions is exhibited for an arbitrary n.

The solutions depend on two arbitrary functions of time. The time develop-

ment of a particular member of this family is studied. This solution exhibits

a singularity at t = 0 and dynamical compacti�cation of the n dimensions.

It is shown that the behaviour of the system in the 4-dimensional (i.e. post-

compacti�cation) phase is constrained by the way in which the compacti�ed

dimensions are stabilized. The uid that generates this solution is analyzed

by means of the energy conditions.
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I. INTRODUCTION

Over the last two decades, increasing attention has been paid to theories that unify the

fundamental interactions in more than three spatial dimensions. The story of this kind of

theories started in the 20's, when Kaluza [1] and Klein [2] augmented the dimensionality

of space to describe both gravity and electromagnetism as manifestations of geometry,

using the degrees of freedom available from the 5-dimensional metric tensor [3]. The idea

was renewed in the 60's by deWit [4] who tried to incorporate non-abelian interactions

into the scheme. The original idea of Kaluza and Klein turned out to be incomplete for

several reasons, but it still pervades in one way or another many of the unifying schemes

currently thought to be viable (most notably in the case of string theory. See for instance

[5]). However, if we are willing to accept any of these theories in which space has more than

three dimensions, we are faced with several questions, particularly on the cosmological

side. Perhaps the most obvious one is related to the fact that we live in a 4-dimensional

space-time, so every theory formulated in more than 4 dimensions must say something

about the fate of the extra dimensions. A convenient working hypothesis would be to

assume that they have been compacti�ed up to some small size. From a theoretical point

of view, the most satisfactory way to achieve the compacti�cation of the extra dimensions

would be the dynamical one. This means that the theory has solutions in which the size

of the extra dimensions diminishes as the universe evolves. Solutions of this type have

been found for the more symmetric cases both in 4+1 and 4+n dimensions [3], but only

a few with some degree of inhomogeneity can be found in the literature, and always for

the 4+1 case (see [6] and references therein). Here instead a 4 + n dimensional model

with arbitrary n will be studied. This case may have a paramount importance, as shown

by the recent work of Arkani-Hamed et al [7], in which the existence of n sub-millimeter

dimensions (with n � 2) yields a new framework for solving the hierarchy problem,

which does not rely on supersymmetry or technicolor. The central idea of this scheme

is that the existence of these extra dimensions brings quantum gravity to the Tev scale

through the relationship between the Planck scales of the 4 + n dimensional theory and

the long-distance 4-dimensional theory. It must be remarked that the extra dimensions

are supposed to have a characteristic length of less than a millimeter, in accordance with
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the lower bound at which gravity has been tested up to date [8]. In this framework, the

�elds of the Standard Model are localised on a 3-brane in the higher dimensional space.

Some of the important consequences of these ideas in phenomenology, astrophysics, and

cosmology can be found in [9].. Many papers related to these matters have appeared

lately; we mention here only a few. Argyres et al [10] have studied the properties of

black holes with Schwarszchild radius smaller than the size of the extra dimensions, and

concluded that the spectrum of primordial black holes in a 4+n dimensional spacetime

di�ers from the usual one. Moreover, these primordial black holes would provide dark

matter candidates and seeds for early galaxy and QSO formation. Mirabelli et al [11]

have recently analyzed the missing-energy signatures that should be present in high-

energy particle collisions due to the radiation of gravitons if gravity is important at TeV

scale. They argue that collision experiments provide the strongest present constraint on

the size of the extra dimensions. Nath and Yamaguchi [12] have explored the e�ect of the

excitations associated with extra dimensions on the Fermi constant. They give stringent

constraints on the compacti�cation radius from current precision determinations of the

Fermi constant, of the �ne structure constant, an of the mass of the W and the Z bosons.

A salient feature of the model we propose here is its inhomogeneity. This type of

models might describe an early phase of the universe, or may be of use on a super-horizon

scale, as suggested by chaotic ination [13]. Besides, the work of Mustapha et al [14]

indicates that there is no unquestionable observational evidence for spatial homogeneity.

This makes worthwhile analysing models that are isotropic but exhibit some degree of

inhomogeneity [15].

The aim of this paper is then to show the existence of analytical solutions in inhomo-

geneous cosmological models in 4 + n dimensions. Although some exact solutions for the

4+1 dimensional inhomogeneous case have been worked out [6] [16], the case dealt with

here has not been studied previously. Due to the complexity of the equations of motion

(which have not been displayed before in the literature in the case of an arbitrary n), the

inhomogeneity has been restricted to the n internal dimensions. It will be shown here

that there exist solutions for which the 4-dimensional spacetime is expanding while the

extra dimensions conpactify due to the evolution of the system. Also, some remarks will
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be made on the dependence of the evolution of the system after the compacti�cation on

the stabilization of the extra dimensions. Finally, the matter content of the system in the

multidimensional phase will be characterized by the study of the strong and weak energy

conditions (SEC and WEC respectively).

II. FIELD EQUATIONS AND SOLUTIONS

The starting point is the 4 + n dimensional metric, given by

ds2 = �dt2 + e2�(t;r)(dr2 + r2 d
2) + e2�(t;r)dy2; (1)

where d
2 is the surface element on the 2-sphere, and dy2 �
Pn

i=4 dy
2
i . For simplicity

we will work with a plane 3-space, and we assume a single scale factor for the internal

dimensions.

We adopt the following stress-energy tensor for the matter content of the model:

T�� = diag(�;�p3;�p3;�p3;�pn; :::;�pn); (2)

with pn the internal pressure. The nonvanishing �eld equations in this 4 + n dimensional

space-time are then

�2 _�0 � n _�0 + n _��0 � n _��0 = 0; (3a)

2�� + 3 _�2 + 2n _� _�+ n�� +
n(n+ 1)

2
_�2 � e�2�

�
2�0

r
+

2n

r
�0 + 2n�0�0 + �02 �

n(1� n)

2
�02
�
= �8�p3;

(3b)

2�� + 3 _�2 + 2n _� _�+ n�� +
n(n+ 1)

2
_�2 � e�2�

�
�00 +

�0

r
+ n�00 +

n

r
�0 +

n(n+ 1)

2
�02
�
= �8�p3;

(3c)

(n� 1)�� +
n(n� 1)

2
_�2 + 3(n � 1) _� _�+ 3�� + 6 _�2 � e�2� [(n� 1)�0�0+

(n � 1)�00 +
n(n � 1)

2
�02 +

2(n � 1)

r
�0 + 2�00 +

4

r
�0 + �02

�
= �8�pn; (3d)
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3 _�2 +
n(n� 1)

2
_�2 + 3n _� _�� e�2�

�
2�00 + n�00 +

4

r
�0 + n�0�0+

n(n + 1)

2
�02 +

2n

r
�0 + �02

�
= 8�� (3e)

(as usual, a dot denotes derivative with respect to time, and a prime, with respect to the

radial coordinate).

The restriction to the case � = �(t) gives the following equations of motion:

� _�0 + _��0 � _��0 = 0; (4a)

2�� + 3 _�2 + 2n _� _�+ n�� +
n(n+ 1)

2
_�2 � e�2�

�
2n

r
�0 �

n(1 � n)

2
�02
�
= �8�p3; (4b)

2�� + 3 _�2 + 2n _� _�+ n��+
n(n + 1)

2
_�2 � e�2�

�
n�00 +

n

r
�0 +

n(n+ 1)

2
�02
�
= �8�p3; (4c)

(n � 1)�� +
n(n� 1)

2
_�2 + 3(n� 1) _� _�+ 3�� + 6 _�2 � e�2� [(n� 1)�00

+
n(n� 1)

2
�02 +

2(n� 1)

r
�0
�
= �8�pn; (4d)

3 _�2 +
n(n� 1)

2
_�2 + 3n _� _� � e�2�

�
n�00 +

n(n+ 1)

2
�02 +

2n

r
�0
�
= 8��: (4e)

In the case n = 1, these equations reduce to the ones given in Chaterjee et al [6].

It is easy to show that Eq.(4a) can be rewritten as

�00 + �
02 +

1

2
�0�(r) = 0; (5)

where �(r) is an arbitrary function. Besides, by substracting Eq.(4b) to Eq.(4c) we get

�00 + �02 �
1

r
�0 = 0: (6)

So for the last two equations to be compatible we must choose �(r) = �
2
r
. Eq.(6) is

integrable and the result is

e�(t;r) = �(t)r2 + (t); (7)
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where �(t) and (t) are arbitrary functions of time. Now from Eqs.(4a) and (7) we get

_� =
_�
�
, which yields

e�(t) =
1

b
�(t); (8)

where b is an arbitrary constant. This solution is a generalization of the one obtained by

Chatterjee et al for the case n = 1 [6]. However, it should be emphasized that due to

the presence of an additional term (proportional to 1 � n) in Eq.(4b) for the case of an

arbitrary n, this generalization is by no means trivial.

Let us remark at this point that very little is known about the behaviour of matter at

extreme conditions of density and pressure in a multidimensional spacetime. So instead

of adopting any particular and arbitrary equation of state, Eqs.(4b), (4d), and (4e) shall

be taken as de�nitions of p3(t; r), pn(t; r), and �(t; r), respectively. The type of matter

requires to achieve dynamical compacti�cation in the case under consideration shall be

discussed below.

The model may display several di�erent features according to the explicit form of the

functions � and . In the following a particular expression for these functions will be

chosen, but �rst certain quantities that will be of interest in the subsequent analysis are

listed: the scalar curvature of the 3 + n space, the Kretschmann scalar, the expansion

scalar, and the shear scalar.

R(3+n) = �9�� � 21 _�2 � 3n�� � n(2n + 1) _�2 � 12n _� _� + ne�2�
�
2�00 + (1 + n)�0

2
+

4

r
�0
�
;

(9)

K = 24 _�4 + 24�� _�2 + 12n _�2 _�2 + 2n(n+ 1) _�4 + 12��2 + 4n��2 + 8n�� _�2 + e�2�
h
�8n _�2�02+

16n _�0 _��0 � 16n _�0 _��0 �
16n

r
_� _��0 � 8n _�02 � 4n(n + 1) _�2�02 + 8n�02 _��0 � 8n�00 _� _�

�
+

e�4�
�
8n

r2
�02 + 2n(n + 1)�04 + 4n�2

00

+ 8n�00�02
�
; (10)

� = 3 _� + n _�; (11)

�2 = ����
�� = (n+ 4) _�2 + n

n(n+ 1) + 9

9
_�2 + 2

n(n + 1)

3
_� _�: (12)
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The scalar curvature of the 3 + n space was calculated by means of the expression [17]

R�
� = R(3+n) + _� + �2 � 2!2

� _v�;� (13)

(It can be seen that in this model the last two terms of this expression are null).

We would like the model to describe a 4-dimensional \macroscopic" expanding space-

time plus n \microscopic" dimensions. We must impose in consequence the conditions

_� > 0, and _� < 0 on the metric functions (the latter must be valid at least for some part

of the evolution of the universe). This can be easily achieved by taking advantage of the

freedom in the arbitrary functions � and . Let us take as an example

�(t) = �b ln(1 + t�); (t) = a ln(1 + t�)� kt�: (14)

With this choice, the functions appearing in the metric are

e� = ln(1 + t�); e� = (a� br2) ln(1 + t�)� kt� (15)

Note that the constant b is a measure of the inhomogeneity of the model. The positively

de�ned and arbitrary constants a, b, k, �, and � are to be chosen in a convenient way.

Next, some comments on the behaviour of the scale factors. Due to the election made

for �(t) and (t), the big bang is synchronous for both scales. Besides, in order that _� be

negative from some point of the evolution onwards, we have to demand that a� br2 > 0.

In this case, the scale factor of the three space is monotonically increasing, while the scale

factor of the internal dimensions grows until a time tmax, given for each r by

r2 =
a

b
�

k�

b�
t���
max (1 + t�max); (16)

and compacti�es dynamically to zero size at di�erent times t0 for each r, given by

r2 =
a ln(1 + t�0 )� kt�0

b ln(1 + t�0 )
: (17)

We move now to the analysis of the asymptotic behaviour of the model. From the

explicit expression ofK and R it is seen that both of them diverge as t! 0, the �rst one as

t�4, and the second one as t�2. The existence of the initial singularity is con�rmed by the

divergence at t = 0 of �; p3 and pn. At t = t0, all the matter functions, the curvature scalars
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and the shear scalar diverge. It has been argued however [18] that there might exist some

sort of stabilization mechanism (probably due to quantum gravity e�ects) which could

prevent the formation of the �nal singularity [19]. This would allow the evolution of the

ordinary 3-space independently of the internal (and microscopic) space, as can be seen

from the equation of the conservation of the energy. However, one must be careful at this

point. It must be emphasized that no matter which the stabilization mechanism is, the

resulting function �, along with �, must still be a physically sensible solution of the 4+n

dimensional equations of motion after the compacti�cation (see [3] and [18]). For instance,

if we assume that � = �0 = constant after the compacti�cation [18], then the pressure

in the internal space must be constant in the post-compacti�cation phase. However, this

contradicts Eq.(4d) which implies than pn is a function of t if � = �0. Obviously, the

ultimate stabilization mechanism (if any) will be determined by the still elusive quantum

theory of gravitation. In the meantime, any claim about the post-compacti�cation phase

of the system must be in agreement with the physical consequences of the stabilization

mechanism chosen. This fact has been frequently overlooked in the literature on this

subject [20].

Finally we analyze the behaviour of the uid in the light of the strong and weak energy

conditions. In the case of SEC, the quantity of interest is

R��v
�v� =

8�G

2 + n
[(1 + n)�+ 3p3 + npn]; (18)

where R�� is the 4 + n-dimensional Ricci tensor and v� is the velocity of the uid y. To

simplify the calculations, we adopt the particular case in which � = � = 1. In this case,

R��v
�v� =

(n+ 3)(a� br2) ln(1 + t)� 3kt

(1 + t)2 ln(1 + t)
e��: (19)

The fact that this expression is positive for all the values of t in the interval (0; t0) implies

that the matter sats�es SEC for all t and r in the 4 + n-dimensional phase.

In the case of WEC, the important quantity is the matter density, given by

yThe expression (18) plays an important role in the problem of singularities in higher-

dimensional spacetimes. See [21].
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�(r; t) =
[R1(t) r4 +R2(t) r2 +R3(t)] ln(1 + t) + 6k2t2

4(1 + t)2 ln(1 + t)
e�2�; (20)

where

R1(t) = 2b2(n2 + 5n + 6); (21)

R2(t) = �8nb
2(n+ 2) t2 + 2b[2n2(k � 4b) + n(7k � 16b) + 6k] t+ (22)

4b[n2(k � a� 2b) + 2n(k � 5a� 2b)� 6a];

R3(t) = �12nkbt
3 + 2n[12b(a� k) + k2(n + 2)] t2 + 2[2n2k(k � a) + n(24ab + k2 � (23)

7ka� 6bk)� 6ka] t+ 2[n2(a� k)2 + n(12ab+ 5a2 � 4ka� k2) + 6a2]:

To completely avoid WEC violation, the numerator of Eq.(20) must be positive for all

values of the variables r and t. The ful�llment of this conditions depends crucially on

the values of the constants a; b and k. However, we expect that for a given t, the 3 + n-

dimensional space could be resolved in two types of regions, according to whether the

matter in each region satis�es WEC or not. It follows from Eq.(20) that the distribution

of these regions will be inhomogeneous.

III. CONCLUSIONS

It was shown that there exists a family of solutions, parameterized by the functions

� and , for the very complex system of equations corresponding to the case of a 4 + n-

dimensional inhomogeneous model. The matter content of the model satis�es, in the

pre-compacti�cation phase, the SEC for every value of t and r, and the WEC in some

regions of spacetime. A general feature of these solutions is that the time at which dy-

namical compacti�cation of the extra dimensions begins is di�erent for each value of

the r coordinate. The particular example that was analyzed here evolves from a 4 + n-

dimensional into a 4-dimensional spacetime, the features of which depend on the stabi-

lization method. It is worth pointing out again that any claim about the evolution after

the compacti�cation must be consistent with the adopted compacti�cation scheme and

with the higher-dimensional equations of motion.
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