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Abstract

We present a general relativistic exact model for the spacetime external to an axisym-

metric bounded distribution of collapsing matter whose rate of mass decrease is a constant

which, when vanishing yields Schwarzschild solution. Einstein's �eld equations actually

requires the existence of a timelike shell in the equatorial plane, whose stress-energy ten-

sor is constituted by two independently conserved terms, corresponding to the emission of

neutrinos and strings on the shell. An extension of this model can be achieved to include

the emission of gravitational waves, that provides a mechanism by which the rate of mass

decrease goes to zero with the formation of a Schwarzschild black hole.
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Gravitational collapse is undoubtedly one of the most exciting areas of research in gen-

eral relativity. The �nal con�guration of the realistic gravitational collapse of a su�ciently

massive body is assumed to be represented by black holes, since the cosmic censorship

hypothesis (CCH) is considered correct[1]. Such �nal con�gurations, according to the no-

hair theorem[2], are characterized by only three parameters: mass, angular momentum

and charge.

The majority of analytical and numerical studies deals with spherically symmetric

collapse, and the main objective is to look for physical counterexamples to the CCH.

Nearly spherical collapse was �rst analyzed, in great detail, by Price[4], who showed that,

from the viewpoint of an external observer, all zero-rest-mass integer-spin perturbations

(scalar, electromagnetic, gravitational, etc) are radiated away or swallowed by the black

hole, leaving only the three aforementioned properties. This conclusion was partially

extended by Hartle[3] to include neutrino �elds. Indeed, these are the mechanisms to

support the no-hair theorem. On the other hand, exact nonspherical models are not so

easily found in the literature; the �eld equations become rather complex to allow almost

only numerical integration, besides the own fact that gravitational radiation has to be

properly taken into account.

In this work, we exhibit an exact analytical model of nonspherical collapse, to the

e�ect that the spacetime admits only one (rotational) Killing vector �eld. A remarkable

feature of the model is that the �eld equations demand a 
ow of matter in the equatorial

plane, which 
ow may be identi�ed with neutrinos and strings ejected outward from the

star. Notwithstanding, there are no gravitational waves, and their inclusion is necessary

for a more complete and realistic model. We argue, in this way, that the exact model

represents an intermediate stage of such a realistic collapse.

Our starting point will be to consider a family of Robinson-Trautman spacetimes[5]

whose metric is given by (the units are such that c = 8�G = 1)

ds2 = �2(u; r; �)d u2 + 2d u d r �K2(u; �)r2
�
d �2 + sin2 � d �2

�
: (1)

The components G22 = 0 and G33 = 0 of Einstein's equations in vacuum together with

G02 = 0 = G12, allows us to write

�2(u; r; �) = �(u; �) +
B(u)

r
+ 2

_K(u; �)

K(u; �)
r; (2)
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where a dot denotes @=@u, and � and K are arbitrary functions of u and �, and B is an

arbitrary function of u. The remaining vacuum equations G00 = G01 = G11 = 0 suggest

that we choose the arbitrary function �(u; �) as

�(u; �) =
1

K2
� K��

K3
+
K2

�

K4
� K�

K3
cot �; (3)

where a subscript � denotes now @=@�, yielding

3B(u)
_K

K
+ _B(u) +

(�� sin �)�
2K2 sin �

= 0: (4)

Equations (3) and (4) are the basic ones. To integrate these equations we employ the

following separation Ans�atze: �(u; �) � h(u)g(�) and K(u; �) � f(u)k(�), whereby we

obtain

h(u)f2(u) = c1 =
1

k2(�)g(�)

"
1� 1

sin �

 
sin �k�(�)

k(�)

!
�

#
; (5)

 
3B(u) _f(u)

f(u)
+ _B(u)

!
f2(u)

h(u)
= c2 = �(g�(�) sin �)�

2k2(�) sin �
; (6)

with c1 and c2 arbitrary separation constants. It will prove extremely useful furthermore

to perform a change to new timelike � and radial null l coordinates given by

l2 := r2f2(u); and d� :=
du

f(u)
: (7)

The line element is thus cast into the form

ds2 =

"
c1g(�) +

X(�)

l

#
d�2 + 2d�dl � l2k2(�)

�
d�2 + sin2 �d�2

�
; (8)

where we have de�ned X(�) := B(u(�))f3(u(�)). An exact expression for such a function

is easily obtained in terms of the new variable � by integrating the lhs of eq. (6):

X(�) = c� � 2m: (9)

Here, c := c1c2 and m is an integration constant. The function g(�) can be rescaled such

that we can set c1 = 1 without any loss of generality. In the remainder of the paper we

assume that, when c = 0, g(�) and k(�) are equal to 1, so as to eliminate the possibility

that the �nal static con�guration be a black hole with a string. We note that, for c 6= 0,
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the spacetime is asymptotically 
at (in the physical frame of Ref.[13], the curvature tensor

goes to zero as l!1) but not asymptotically Minkowskian.

Therefore, a complete characterization of the spacetime is accomplished after solving

Eqs. (5) and (6) for the angular part, now written as

8>>>><
>>>>:

1 � 1
sin �

�
sin �k�(�)

k(�)

�
�
= k2(�)g(�)

(g�(�) sin �)� = �2ck2(�) sin �:
(10)

Such a task turns out to be very di�cult, but crucial physical information can be drawn

without an exact integration of the above system. Based on the theory of di�erential

equations[6], with the assumption that the solutions of (10) are analytic in c, one can

show that these solutions are either singular at � = 0 and/or � = �, for c 6= 0. Just to

provide a concrete example, we exhibit an approximate solution of the system (10) by

imposing c is a very small parameter (jcj � 1) and the following relations

8>>>><
>>>>:
g(�) = 1 + c�(�)

k2(�) = 1 + cL(�)

: (11)

A convenient solution is

8>>>><
>>>>:

��(�) = �1 + 2 ln(1� cos �)

L�(�) = �2 ln(1� cos �)

; (12)

where the + solution is regular at � = 0, and the { solution is regular at � = �. Notice

that, if c = 0, both solutions reduce to the Schwarzschild one.

Let us consider now the exact solution fg(�); k(�)g singular at � = 0, say. Due to the

symmetry of (10) under the change �! ���, the solution fg(���); k(���)g is singular
at � = �. In order to get rid of the undesirable singularities at � = 0 or � = �, we use

the set fg(�); k(�)g for �=2 � � � �, and fg(� � �); k(� � �)g for 0 � � � �=2 to cover

the whole spacetime. This is carried out by matching both sets at the equatorial plane

� = �=2, since they are continuous there. Noticing that the �rst derivatives of the metric

are not continuous at � = �=2, a timelike shell must therefore be present at the equatorial
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plane. Applying the formalism developed by Israel,[7], the surface stress-energy tensor of

the shell is given by

Ŝab =
E(c)

l~�2

0
BBBB@

1 1 0

1 1 0

0 0 0

1
CCCCA +

G(c)

l

0
BBBB@

1 0 0

0 �1 0

0 0 0

1
CCCCA ; (13)

where Ŝab is expressed in a convenient local triad basis,[8] ~�2 := g(�=2) � 2m=l + c�=l,

E(c) := �[g�]
2k(�=2)

and G(c) := [k�]
2k2(�=2)

, with [A] := A+(�=2) � A�(�=2), the jump across

the shell of a given quantity A. In the case of the above approximate solution, E(c) and

G(c) are given by E(c) � G(c) � 2 c. From Eq. (8) we see that the mass function[11]

of the distribution M(�) = 2m�c �
g(�)

decreases if c > 0. We have adequately splitted the

surface stress-energy tensor in two parts so that the �rst one represents a null 
uid[9]. In

addition, both parts are separately conserved. Thus, we have a good indication that the

matter content of the shell may be physically meaningful.

Before going through with the details concerning the nature of the shell, an important

geometrical point is worth calling attention to. The apparent horizon is the outermost

trapped surface of a given matter distribution, i. e., the three-surface in which outgoing

null rays are momentarily stationary[10]. Such a surface is described by

�2 = 0: (14)

For c > 0 the area of the apparent horizon decreases, whereas, for c < 0, it increases.

Then, the former situation means that there is an out
ux of matter taking place in the

equatorial plane. In this way, our model is to be understood as a nonspherically symmetric

collapse where matter of some kind is being ejected on the plane � = �=2. If, at some �xed

time �c, the parameter c is taken equal to zero, the spacetime described by (8) becomes a

black hole of mass m� c�c=2. The formation of this black hole is independent of the rate

of mass ejection determined by c. For c = 0, the apparent horizon degenerates into the

event horizon of the black hole. However, if we consider an interior solution matched to

this spacetime on a surface beyond the apparent horizon, the formation of the black hole

will now depend on the relative rate of mass decrease to the decrease of the radius of the

matching surface.

We shall now prove that the matter distribution described by the �rst term of the rhs
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of (13) may be modelled by a radial 
ux of neutrinos ejected on the shell. To this end,

let us examine the dynamics of massless neutrinos in the (1+3)-spacetime and also in the

(1+2)-shell, which are basically distinct. Neutrinos in interaction with the gravitational

�eld are described by spinor �elds in the curved spacetime via the classic prescription of

Brill and Wheeler[12]. In a convenient local tetrad basis, Dirac's equation for neutrinos

is expressed as[13][14]

� i
A
�
e�(A)@� � �A

�
= 0; (15)

where the �A are the Fock-Ivanenko coe�cients associated to the tetrad �eld. We restrict

our considerations to radial neutrinos only, de�ned by


0 = 
1 ; (16)

such that the null four-current JA := � 
A has components

JA =  y (1; 1; 0; 0): (17)

It is straightforward to check that Dirac's equation (15) for radial neutrinos (16) has

no solution, even as test particles. However, in the (1+2)-spacetime of the shell, radial

neutrinos are admissible and generate the �rst part of the stress-energy of the shell. In the

triad basis of Ref.[8], the general solution for these neutrinos is given by the 2-spinors[15]

 =
1p
l~�

0
B@ �ib(�)

b(�)

1
CA ; (18)

where b(�) is an arbitrary complex function. The corresponding surface stress-energy

tensor,

N T̂ab = i
h
� 
(arb) �r(a

� 
b) 
i
; (19)

associated to (18), reads

N T̂
ab =

2i

~�

�
 y _ � _ y 

�
0
BBBB@

1 1 0

1 1 0

0 0 0

1
CCCCA : (20)
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The above tensor models the �rst part of Ŝab provided we identify

E(c) � �4 i
�
_b�b� b� _b

�
: (21)

As expected, this surface stress-energy tensor is independently conserved, so that these

neutrinos have no interaction with the remaining part of Ŝab.

The second term appearing in the rhs of (13) is very similar to some kind of perfect


uid in which the pressure is negative (tension). Let us consider the following surface

stress-energy tensor[16]

S T̂
ab = �S

�̂ac�̂b
cp�
 ; (22)

that represents a gas of strings with energy density �S . The skewsymmetric tensor �̂ab

represents the kinematics of the gas of strings and must satisfy the normalization condition

�̂ab �̂ab = 2
. As a consequence, the surface stress-energy tensor (22) assumes the form

S T̂
ab = �S

p�


0
BBBB@

1 0 0

0 �1 0

0 0 0

1
CCCCA : (23)

where, due to the symmetry of the shell, we have assumed that �̂01 is the only nonvanishing

component of the tensor �̂ab. Thus, from the normalization condition and taking into

account the conservation law,

r� (�S �
��) = 0; (24)

we get

p�
 �S =
const

l
: (25)

Thus, to obtain the expression we want, it is necessary to identify the above constant to

G(c), whereupon the second term of the rhs of (13) stands for radial strings. The local

triad de�nes a frame which has radial acceleration âc =
�
0; (~�

2):

2~�3
+ (~�2)0

2~�
; 0
�
, so that, if

c > 0, the strings always have a positive radial acceleration.

The limitation of our model rests on the fact that, as long as the parameter c remains

constant, the collapsing con�guration goes on ejecting its mass-energy on the equatorial
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shell and, for su�ciently large retarded time variable �, the spacetime would become a

curved spacetime with a string-like topological defect. Therefore the applicability for the

formation of black holes would be restricted to a �nite interval of �. This limitation could

be circumvented by considering the emission of gravitational waves, which would amount

to altering the linear behavior in � of the mass function X(�)=g(�). This will be the

subject of a forthcoming paper, but we may advance the following qualitative arguments

for small c. We start from (8) and consider the more general con�guration

ds2 =

"
�(�) + �W (�; �) +

X(�) + �Z(�)

l
+

2 l �

k(�)

@Y (�; �)

@�

#
d�2 + 2d�dl

�l2 [k(�) + �Y (�; �)]2 d
2; (26)

where � is a small parameter and Z(�), W (�; �) and Y (�; �) satisfy two coupled dif-

ferential equations similar to (3) and (4). If we examine the Weyl curvature of (26)

in the physical basis of Ref. [13], we �nd out that it has an l�1-term if and only if

(@2=@�@�) [k(�)Y (�; �)] 6= 0. As l ! 1, this term has the expression �
l
N(�; �), where

N(�; �) := 1

2k(�)
p

�(�)

@2[k(�)Y (�;�)]
@�@�

, de�ning a gravitational wave zone. The function N(�; �)

corresponds to the news function[17] of the gravitational wave �eld and is responsible

for the mass variation due to the emission of gravitational waves. The �-dependence of

N determines the function Z(�), and N can in principle be �xed such that M(�) :=

X(�) + �Z(�) have the following behavior: Z(�) = 0 for �0 � � � �1 corresponding

to the phase of pure shell emission (neutrinos and strings); and a subsequent phase of

gravitational wave emission for �1 � � � �2, when N(�; �) 6= 0, leading to a third phase

� � �2 when X(�) + � Z(�) becomes a constant function. This �nal con�guration will

correspond to a black hole of mass m� c
2 �2 +

�
2 Z(�2).
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