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Abstract

We study here some consequences of the nonlinearities of the electromagnetic �eld acting as a source
of Einstein's equations on the propagation of photons. We restrict to the particular case of a \regular
black hole", and show that there exist singularities in the e�ective geometry. These singularities
may be hidden behind a horizon or naked, according to the value of a parameter. Some unusual
properties of this solution are also analyzed.

I. INTRODUCTION

It is a well-known fact that some of the most important
solutions of Einstein's �eld equations (e.g. Friedmann-
Robertson-Walker and Schwarzschild) are singular. How-
ever, our understanding of the nature of these singulari-
ties is still incomplete. For instance, the cosmic censor-
ship conjecture was put forward by R. Penrose in 1969
[1], but there is still no general proof of it. As a conse-
quence of this lack of understanding, solutions that are
everywhere regular and share some of the properties of
singular solutions deserve attention. This is precisely the
case of the \regular black hole" spacetimes recently ex-
hibited in [2{4]. These solutions were obtained for a very
special type of source: an electric �eld that obeys a non-
linear electrodynamics. The authors of [2] analyzed some
of the features of the solution, but left aside others that
are relevant. We shall re-examine this solution in de-
tail. More importantly, we shall show in this particular
example the far-reaching consequences of the fact that
in nonlinear electromagnetism photons do not propagate
along null geodesics of the background geometry. They
propagate instead along null geodesics of an e�ective ge-
ometry, which depends on the nonlinearities of the the-
ory. This result, derived by Pleba�nsky for Born-Infeld
electrodynamics [5], was generalized for any nonlinear
theory by Guti�errez et al [6], and later independently re-
discovered by Novello et al [7]. Let us mention that the
propagation of photons beyond Maxwell electrodynam-
ics has been studied in several di�erent situations. It has
been investigated in curved spacetime, as a consequence
of non-minimal coupling of electrodynamics with gravity
[8{10], and in nontrivial QED vacua as an e�ective modi-
�cation induced by quantum 
uctuations [11{13]. Nearly
always, these analysis have had some unexpected results.
As an example, let us mention the possibility of faster

and slower-than-light photons [11].

�Electronic mail: novello@lafex.cbpf.br

Our main concern in this article will be then to show
that one must consider the modi�cations on the trajec-
tories of the photons induced by the nonlinearities of the
electromagnetic theory in order to give a complete char-
acterization of spacetimes with a nonlinear electromag-
netic source. The structure of the paper is the following.
A summary of the the solution given in [2] and the prop-
erties studied there will be given in Section II, along with
some interesting properties that went unnoticed before.
In Section III we brie
y review the origin of the e�ective
geometry for photons in nonlinear electrodynamics. We
shall use in Section IV the method of the e�ective geom-
etry to study the features of the structure that photons
see when travelling in the geometry given in [2]. We close
with some conclusions.

II. DETAILS OF THE SOLUTION

Ay�on Beato and Garc��a [2] have found an exact solu-
tion of Einstein's equations in the presence of a nonlinear
electromagnetic source. The relevant equations are de-
rived from the action [14]

S =

Z
d4x

�
1

16�
R� 1

4�
L(F )

�
; (1)

where R is the curvature scalar and L is a nonlinear func-
tion of F � 1

4F��F
��. Following [5] and [2] this system

could also be described using another function obtained
by means of a Legendre transformation:

H � 2FLF �L: (2)

(LF denotes the derivative of L w.r.t. F ). With the
de�nition

P�� � LFF�� ; (3)

it can be shown that H is a function of P � 1
4P��P

�� =
(LF )2F , i.e., dH = (LF )�1d((LF )2F ) = HP dP . With
the help of H one could express the nonlinear electro-
magnetic Lagrangian in the action (1) as L = 2PHP�H,
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which depends on the anti{symmetric tensor P��. The
solution of Einstein's equations coupled to nonlinear elec-
trodynamics obtained in [2] was derived from the follow-
ing source:

H(P ) = P

�
1� 3

p
�2 q2P

�
�
1 +

p
�2 q2P

�3 � 3

2 q2s

 p
�2 q2P

1 +
p
�2 q2P

!5=2

;

(4)

where s = jqj=2m and the invariant P is a negative quan-
tity. The corresponding Lagrangian is given by

L = P

�
1� 8

p
�2 q2P � 6 q2P

�
�
1 +

p
�2 q2P

�4 �

3

4 q2s

(�2 q2P )5=4
�
3� 2

p
�2 q2P

�
�
1 +

p
�2 q2P

�7=2 : (5)

From Eq.(1) we get the following equations of motion:

G �
� = 2(HPP��P

�� � � �
� (2PHP �H)); (6)

r�P
�� = 0: (7)

This system was solved in [2], and the explicit form of
the solution is the following:

ds2 =

�
1� 2mr2

(r2 + q2)3=2
+

q2r2

(r2 + q2)2

�
dt2 �

�
1� 2mr2

(r2 + q2)3=2
+

q2r2

(r2 + q2)2

��1

dr2 � r2d
2; (8)

Er = q r4
�
r2 � 5 q2

(r2 + q2)4
+

15

2

m

(r2 + q2)7=2

�
: (9)

By means of the substitution x = r=jqj we can rewrite
gtt and Er as follows

gtt = A(x; s) � 1� 1

s

x2

(1 + x2)3=2
+

x2

(1 + x2)2
; (10)

Er =
x4

q

�
x2 � 5

(x2 + 1)4
+

15

4s

1

(x2 + 1)7=2

�
: (11)

The result of the analysis made in [2] is that this metric
describes a regular black hole. The position of the hori-
zons was identi�ed there with the values of the coordinate
x for which gtt is zero. These are given by

s =
x2
p
x2 + 1

x4 + 3x2 + 1
: (12)

Accordingly, the solution has two horizons (for 0 < s <
0:317), one horizon (for s = 0:317), or no horizons (for
s > 0:317). It was also stated that this solution is regular,
on the basis of the �niteness of the three invariants R,
R��R

�� , and R����R
���� 1.

Let us point out now some features of the solution
described by Eqns.(10) and (11) that were not noticed in
[2]. First, the behaviour of the radial component of the
electric �eld depends on the value of s. Speci�cally, Er

may have a zero; its position is given by

s = �15

4

p
x2 + 1

x2 � 5
: (13)

Consequently, Er does not have zeros for 0 < s < 3=4.
For s � 3=4, Er has one zero located in the interval
(0;
p
5) of the coordinate x. These features of the electric

�eld are depicted in Figure 1 2 .
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FIG. 1. Electric �eld times the electric charge q as a func-
tion of x for di�erent values of s.

Another salient feature of Er is that its energy density,
calculated as the Gt

t component of the Einstein tensor
3 may be negative for some interval of x. In fact, the
expression

Gt
t = � =

1

sq2
s
p
1 + x2 (x2 � 3) + 3(x2 + 1)

(1 + x2)7=2
(14)

is zero for

s = �3
p
1 + x2

x2 � 3
: (15)

For s < 1, the energy is always positive, but for s � 1
it has a zero given by Eq.(15). Figure 2 illustrates the
situation.

1We have checked that all the components of RABCD and
CABCD w.r.t a static observer are �nite at r = 0.
2The plots in this paper have been done with gnuplot [15].
3This and other calculations in this paper were done with

the package Riemann [16].
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FIG. 2. Energy density of the electric �eld times q2 as a
function of x for di�erent values of s.

III. EFFECTIVE GEOMETRY FOR PHOTONS

In this section we give a summary of the method of
the e�ective geometry [7]. We will deal here only with
the case in which the Lagrangian of the nonlinear elec-
tromagnetic theory is a function of F only. The general
case in which L depends also on G = 1

2F
�������F�� is

analyzed in [7]. Based on the framework introduced by
Hadamard [17], Novello et al showed that the discontinu-
ities of the electromagnetic �eld propagate according to
the equation

(LF��� � 4LFFF��F�
�) k�k� = 0; (16)

where ��� is the (
at) background metric, and k� is the
propagation vector. This expression suggests that the
self-interaction of the �eld F�� can be interpreted as a
modi�cation on the spacetime metric ���, leading to the
e�ective geometry

g��(e�) = LF ��� � 4LFF F�
� F

��: (17)

Note that only in the particular case of linear Maxwell
electrodynamics the discontinuities of the electromag-
netic �eld propagate along the null cones of the
Minkowskian background.
The general expression of the e�ective geometry can be

equivalently written in terms of the energy-momentum
tensor, given by

T�� � 2p�

� �

� 
��
; (18)

where � is the e�ective action

�
:
=

Z
d4x

p�
 L; (19)

and 
�� is the Minkowski metric written in an arbitrary
coordinate system; 
 is the corresponding determinant.
In the case of one-parameter Lagrangians, L = L(F ); we
obtain

T�� = �4LF F�
� F�� �L ���; (20)

where we have chosen an Cartesian coordinate system
in which 
�� reduces to ��� : In terms of this tensor the
e�ective geometry (17) can be re-written as

g��(e�) =

�
LF +

LLFF
LF

�
��� +

LFF
LF T�� : (21)

It is shown in [7] that the �eld discontinuities propagate
along the null geodesics of the e�ective geometry given by
Eq.(21). This equation explicitly shows that the stress-
energy distribution of the �eld is the true responsible for
the deviation of the geometry felt by photons, from its
Minkowskian form 4.
We will show now that the modi�cation of the under-

lying spacetime geometry seen by photons due to non-
linear electrodynamics can be also described as if pho-
tons governed by Maxwell electrodynamics were propa-
gating inside a dielectric medium. In this last case, the
electromagnetic �eld is represented by two antisymmet-
ric tensors, the electromagnetic �eld F�� and the polar-
ization �eld P�� . For electrostatic �elds inside isotropic
dielectrics it follows that P�� and F�� are related by

P�� = �(E)F�� : (22)

where � is the electric susceptibility. Comparing with
Eq.(3) we see that we can make the identi�cation

LF �! �; (23)

which implies

LFF �! � �0

4E
; (24)

in which �0 � d �=dE and E2 � �E�E
� > 0: Therefore,

every Lagrangian L = L(F ) which describes a nonlin-
ear electromagnetic theory may be used as a convenient
description of Maxwell theory inside isotropic nonlinear
dielectric media. Conversely, results obtained in the lat-
ter context can be restated in terms of Lagrangians of
nonlinear theories. Using this equivalence, the e�ective
geometry can be rewritten as

g��(e�) = � ��� � �0

E

�
E� E� �E2 ��t �

�
t

�
: (25)

In other words,

gtt(e�) = �+ �0E; (26)

gij(e�) = � � �ij � �0

E
EiEj : (27)

4For T�� = 0, the conformal modi�cation in (21) clearly
leaves the photon paths unchanged.
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This shows that the discontinuities of the electromagnetic
�eld inside a nonlinear dielectric mediumpropagate along
null cones of an e�ective geometry (given by Eqn.(25))
which depends on the characteristics of the medium.
Although in [7] the background was 
at, the method

can also be used in a curved background. The reason is
that the equations given in [7] are valid locally in any
curved spacetime. Then from the Equivalence Principle
follows that the only change in Eq.(17) is that of ��� by
g�� .

IV. ANALYSIS OF THE \REGULAR BLACK

HOLE"

Using Eqns.(26) and (27) it follows that the e�ective
metric associated to a spherically symmetric solution of
Einstein's equations is given by

ds2 =
1

�(r)

�
A(r)dt2 � A(r)�1dr2

�� r2

LF d

2; (28)

where

� = �+
d�

dEr
Er = �2q

r3
1

dEr

dr

(29)

and

� =
1

Er

r
�P��P��

2
: (30)

For the case dealt with in the previous section, the func-
tion � takes the form

�(x; s) =

8(x2+1)5s

x6(8x4s�104sx2+80s+45x2
p
x2+1�60

p
x2+1)

: (31)

From Eq.(28) we see that the tt coe�cient of the e�ec-

tive metric is given by the quotient g
(e�)
tt = A=�. The

function ��1 has real zeros for

s = �15

8

p
x2 + 1 (3x2 � 4)

x4 � 13x2 + 10
: (32)

Taking into account that s must be positive, we conclude
from Eqn.(32) that the function ��1 has one zero for
s < 3=4 and two zeros for s � 3=4. In both cases the
zeros are in the interval (0; 3:49) of the coordinate x.
It was shown in [2] that the metric coe�cient gtt given

by Eq.(10) has two zeros for s < 0:317, one zero for
s = 0:317, and no zeros for s > 0:317. The zeros in gtt
were identi�ed in [2] with horizons . We see that due to
the e�ective metric, the geometry seen by the photons is
more complex than the geometry seen by ordinary mat-
ter. Taking into account the zeros of A and those of ��1

we conclude that g
(e�)
tt has 3 zeros for s < 0:371, two

zeros for s = 0:371, one zero for 0:317 < s < 3=4, and
again two zeros for s � 3=4.

To determine the nature of the new zeros in the metric,
it is useful to study the e�ective potential that is felt
by the photons. The symmetries of the metric imply
that there are two Killing vectors and consequently, two
conserved quantities:

E0 = gtt _t; and h0 =
r2

LF
_� (33)

(the overdot means derivative w.r.t the a�ne parameter).

Standard calculations (see for instance [18]) using g
(e�)
��

show that the e�ective potential for photons is given by

Ve� = (1 ��2)
E2
0

2
+
h20
x2
LFA� (34)

The explicit form of the e�ective potential is too involved
to be displayed here. However, we note that Ve� has
poles. One of them is at x = 0, and the others are given
by the expression of the poles of � (see Eq.(32)), and
those of LF which are given by Eq.(13). LF has no poles
for 0 < s < 3=4, and one pole for s � 3=4. Leaving
aside the pole at x = 0, it follows that for s < 3=4, the
e�ective potential has only one pole, and for s � 3=4, it
has three poles. Those that originate in the singularities
of the function � are in agreement with the extrema of
the electric �eld, as shown by Eq.(31). We give in Figs.
3, 4 and 5 plots of Ve� for di�erent values of the relevant
parameters.
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FIG. 3. E�ective potential Ve�=E
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the next �gure.
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FIG. 5. E�ective potential Ve�=E2
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values of b. The singularity seen in this plot comes from the
pole of LF .

Several comments are in order. The singularities in the
potential suggest that the e�ective geometry itself may be
singular. This is con�rmed by the expression of the scalar
curvature R(e�), which diverges in the values of x given
by Eqs.(13) and (32). Let us analize the relative position
of these singularities felt by the photons and those of
the metric coe�cient gtt(x; s), given by Eq.(12). The
information is conveniently summarized by the following
plot:
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FIG. 6. Position of the zeros of the metric and spacetime
singularities for a given s.

We see that for a �xed s � 0:317 the singularities are
situated inside the �rst horizon. However, for s > 0:317
the singularities are not anymore hidden behind a hori-
zon: we are then in the presence of naked singularities.
We must remark that these singularities are only felt by
photons. The rest of the matter follows geodesics of the
regular spacetime given in [2].
It can also be seen from the plot that for s < 0:371 the

coordinate distance between the two horizons decreases
for increasing s, up to s = 0:371, where the two horizons
coalesce.
Before analyzing the path of a photon coming from

in�nity, let us remark that there is a low potential barrier
extending to the right of the outermost singularity for
any value of the parameters. This barrier can be seen in
Fig.3, and it is also present to the right of Fig.4. A low-
energy photon incident from the right will �nd then this
barrier, and will be de
ected back to large values of x.
This de
ection will be more pronounced with increasing
energy. When the energy of the photon is aproximately
that of the height of the barrier, the photon can orbit
around the center of the �eld in an unstable orbit. Finally
an incident photon with energy greater that the height of
the barrier will inevitably encounter the �rst singularity.
It is easily seen from Eq.(34) that the potential goes

to zero for large values of x. We have also analyzed the
e�ective potential for the case of a negative q, but the
only quantitatively di�erent result is a small increment
of the innnermost local maximum seen in Figs.3 and 4.
We move now to another peculiar feature of the e�ec-

tive geometry. It is known that the e�ective potential for
the Schwzarschild and Reissner-Nordstrom geometries is
null in the case of photons with h0 = 0. However, from
Eq.(34) we see that in this case Ve� for the e�ective ge-
ometry reduces to

Ve� = (1��2)E2
0 (35)

The dependence of this potential on � is the same as in
Eq.(34), so the behaviour of Ve� with x in this case is
qualitatively depicted in Figs.3 and 4.
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Let us �nally point out some unusual geometrical prop-
erties of the metric seen by the photons. The e�ective
metric has the same symmetries of the original metric
given by Eq.(8). It can be easily shown that the time
Killing vector @=@t is null on the hypersurfaces deter-

mined by the zeros of g(e�)tt .
Another interesting property of these surfaces is asso-

ciated to the redshift of the photons. The redshift z of a
source as measured by an observer with velocity u� can
be de�ned in terms of the frequency by

1 + z =
(u�k�)emitter

(u�k�)observer
: (36)

Considering a static observer for which u� = ��0 =
p
gtt

this expression can be written as

1 + z =

"p
gtt

g
(e�)
tt

#
em

"
g
(e�)
ttp
gtt

#
obs

(37)

Using the expression of the e�ective metric, and if the
observer is at in�nity,

1 + z =
�p
A

(38)

We conclude then that the redshift diverges in two cases:
when A is zero, and when � diverges (see Fig.(6)).

V. CONCLUSION

The remarkable fact that in nonlinear electrodynam-
ics the trajectories of photons are modi�ed by the non-
linearities of the �eld equations has not been addressed
frequently in the literature. The photons do not prop-
agate following the null cones of the background metric
but those of the e�ective metric. We have shown here the
dramatic consequences that this has in a so-called regular
black hole. In this case, there are singularities that are
seen only by the photons. These singularities can either
be hidden behind a horizon or naked, according to the
value of the ratio q=2m. Let us remark that the existence
of singularities in these type of solutions is a direct con-
sequence of the existence of extrema of the electric �eld,
as Eq.(29) shows. This is a general property which will
always be present in any static and spherically symmet-
ric solution of the system of equations (6) and (7) when
the electromagnetic theory is nonlinear.
We have also shown that the e�ective potential to

the right of the outermost singularity resembles that of
Schwarzschild and Reissner-Nordstrom. However, con-
trary to what happens in Maxwell theory, photons with
zero angular momentum travel under the in
uence of an
e�ective potential that is di�erent from zero.
We also exhibited some unusual properties of the solu-

tion found in [2]. The electric �eld may have one or two
extrema depending on the value of s. In the second case,

it has a zero. Also, for certain values of s the energy
of the electric �eld is negative in some coordinate range.
There are at least two more properties, geometrical in
origin, that are worth of notice. First, the time Killing
vector of the e�ective geometry is null in the surfaces
where the function � diverges. Second, the redshift mea-
sured by an observer far from the source diverges on the
same surfaces. It is important to remark that these geo-
metrical properties will be present in every solution with
the same symmetries if the electric �eld has extrema.
To close, we would like to emphasize that ordinary

matter follows geodesics of the background metric. How-
ever, the modi�cations of the metric induced by the non-
linearities of the electromagnetic �eld must always be
taken into account when studying the propagation of
photons. The abovementioned properties are nothing but
a consequence of the nonlinearities of the electromagnetic
theory.
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