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Abstract

We �nd self-dual vortex solutions in a Maxwell-Chern-Simons model with anomalous
magnetic moment. From a recently developed N=2{supersymmetric extension, we obtain
the proper Bogomol'nyi equations together with a Higgs potential allowing both topolog-
ical and non-topological phases in the theory.
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1 Introduction

A few years ago, it was proposed a Maxwell-Chern-Simons (MCS) gauge theory, with an
additional magnetic moment interaction[1] for which Bogomol'nyi-type self-dual equations
can be derived and vortex-like con�gurations appear, whenever suitable relationships
among the parameters of the model are obeyed [2]. An important issue that comes about is
the claim of a relation between the property of self-duality and the N=2{supersymmetric
extension of the model, accomplished by means of a relationship between the central
charge of the extended model and the existence of topological quantum numbers [3].
Although a fundamental reason for this connection has not been given so far in the
literature, in certain cases it appears to be unavoidable to �nd the N = 2{supersymmetric
extension of a given bosonic model in order to obtain the proper Higgs potential and self-
dual conditions compatible with the Euler-Lagrange equations.

In this regard, we have succeeded in deriving an N=2{Maxwell-Chern-Simons model
with anomalous magnetic moment [4]. Our strategy consisted in the formulation of an
N=1{D=4{gauge model with a BF-term, free of constraints on the coupling constants1.
Upon a convenient dimensional reduction of the component-�eld action from (1+3) to
(1+2) dimensions, we set out an N=2{D=3 Maxwell-Higgs model with a Chern-Simons
term and magnetic moment interaction with the matter sector. Adopting this viewpoint,
we raised the possibility of freely handling the parameters of the model and, remarkably, it
enabled us to obtain topological self-dual solutions, even in the critical regime mentioned
above. This is to be compared with previous attempts where just a �2{Higgs potential
has been considered so as to �nd self-dual solutions [8].

In the present paper, we derive the proper self-dual equations and the Higgs potential
needed to allow topological as well as non-topological vortices in a non-minimally coupled
MCS model; this is our main result. We perform a gauge-independent calculation which
permits a suitable handling of the energy functional, leading to self-dual solutions to the
equations of motion in both the symmetric and asymmetric phases of the model (Sections
2 and 3). In Section 4, we discuss the properties of system for the critical value of the
magnetic coupling. The analysis of the self-dual solutions and a wide variety of soliton
con�gurations are presented in Section 5. Finally, in Section 6, we draw our General
Conclusions.

2 The Lagrangian

In Ref.[4] we have put forward the N=2{susy Lagrangian including the bosonic model we
are going to analyse here. In component-�eld form, it exhibits the proper non-minimally
coupled MCS extension needed for our main purpose of �nding a topological phase in
the bosonic theory. For the sake of a better understanding let us quote below the full
expression of the N=2-susy Lagrangian in terms of components

1This is to be compared with the procedure of Ref.[5] which, in turn, relies on a special choice of
parameters, in order to have an extended supersymmetry built up directly in D=3 dimensions. Similar
constraints have also been needed in order to �nd an N=2{susy extension of the Maxwell Higgs model
[6] and of the Chern-Simons Higgs model [7].
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where
r�' = (@� � ieA� � igF�)': (2)

The origin of all the �elds appearing in equation eq.(1) has been carefully justi�ed in [4];
we refer the reader to this reference for the details. Here, we are basically concerned with
the bosonic sector of the theory, so we will focus our attention to a particular piece as we
discuss in what follows.

Let us consider the purely bosonic part of the susy Lagrangian of eq.(1)

L = �1
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where
G(') = 1� 2g2e2gM j'j2 (4)

and the term �� corresponds to the Fayet-Iliopoulos term included in the susy Lagrangian
in order to allow spontaneous breaking of gauge invariance [9].

The equation of motion for the auxiliary �{�eld gives

� =
e
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�
(5)

where for convenience we have written � = �ev2: Substitution of the above in eq.(3),
gives the following Higgs-type potential
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which depends on two �elds: a real (M) and a complex (') scalar. Upon elimination of
the auxiliary �eld �, we may work with the following Lagrangian

L = �1

4
F 2
�� +

1

2
G@�M@�M + e2gMr�'r�'� +

�

2
A�F

� � U (7)

which shall play a central role in the present discussion. Let us �rst de�ne the currents

H� = �ie
2
('�D�'� 'D�'

�)

J� = �ie
2
(��r��� �r��

�) (8)

where � is a complex scalar parametrized in terms of M and ' as given below

� =
p
2egM' (9)

As we shall discuss in the next section, the scalar � will be identi�ed as the physical
�eld in terms of which the vortices will be speci�ed. Now, the equation of motion for the
gauge �eld can be written as

@�F
�� + �F � = J � +

g

e
"���@�J� (10)

where the time component determines the modi�ed \Gauss Law"

@iEi + �B +
g

e
"ij@iJj + J0 = 0: (11)

The gauge invariant modes are now short-range due to the mass term resulting from
eq.(11). Hence, the �rst term has a vanishing space integral. On the other hand, the
third term results in a line integral taken at in�nity which also vanishes for �nite energy
con�gurations. Therefore, it can be seen from the remaining piece that the charge of the
vortex solutions is related to non-zero magnetic 
uxes by

Q = ��B; (12)

where �B � � R d2xB:
3 The self-dual equations of motion

The energy functional is given by
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which can be reorganized as
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Notice that the non-minimal term from the r�{derivative, though not explicitly writ-
ten in the above equation, has an e�ect which is implicit through G. The terms linear in
F� are not present in the energy because they are topological (metric-independent).

Now, the search of the Bogomol'nyi bound for the energy yields the proper self-dual
equations in a natural way 2
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The last two terms vanish whenever integrated over the whole space; so, using the Gauss
law and considering static con�gurations, the lower bound to the energy is clearly attained.

To close this section, let us express the self-dual equations and the Higgs potential in
terms of the �{�eld; in so doing, we shall get expressions that are more useful for our
future purposes. Thus eqs. (15) and (6) read

B � e

2G

�
j�j2 � v2 +

2�

e
M + 2gj�j2M

�
= 0

A0 �M = 0

r1�� ir2� = 0 (16)

2See Ref.[10] for a general approach to Bogomol'nyi equations in other models.
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and
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which, for g = 0, gives the Higgs potential of the minimal MCS model as given by the
supersymmetric Lagrangian found in ref.[2], as expected. Notice that the system has two
degenerate minima, a symmetric phase for which j�j = v; M = 0 and an asymmetric
phase where � = 0; M = ev2=2�:

4 The critical magnetic coupling

Let us now analyze a very special value of the magnetic coupling, namely,

gc = �e=�; (18)

for which the equations of motion (10) reduce down to �rst order, looking analogous
to the pure CS model's. This choice yields fractional statistics describing anyons [1].
Remarkably enough, this is the value that has to be �xed in order to obtain an N=2{
MCS non-minimal theory, when working from the outset in D=3 [5]. In that case only a
symmetric, �2, Higgs potential has been found, yielding just non-topological solutions [8].

Hence, for g = gc one has
J� = �F� (19)

whose time-component reads

�

 
1� e2

�2
j�j2

!
B = e2A0j�j2: (20)

We will now show that, in our model, we can make such a special choice, g = gc,
without constraining the potential to a symmetric phase. We shall also �nd topological
vortices, in contrast to previous attempts (we drop the subscript c in what follows).

Using A0 = �M [see eq.(16)] and de�ning 
 by means of � = 
ev (
 � 1 to have
positive de�nite energy con�gurations) we get
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On the other hand, self-duality relations provide also
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Notice that the M{�eld has decoupled from the other components, i.e., it can be
written in terms of just the Higgs �eld �. Another interesting feature of the bosonic
model just found is that it still presents together both topological and non-topological
phases

U =
e4

8

j�j2(j�j2 � v2)2

�2 � e2j�j2 (24)

Note that for �! 1 (
 >> 1); it behaves like the Higgs potential typical of a pure CS
model [7], as expected.

5 Analysis of the self-dual solutions

Assuming maximal (rotational) symmetry, we take the following ansatz to �nd self-dual
vortices

�(r; �) = vR(r)ein� (25)

A(r) =
b�
er

[a(r)� n] (26)

where R and a are real functions of r, and n an integer indicating the topological charge
of the vortex. Then, the magnetic �eld reads
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and the 
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eq. (16) can be written as  
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where we have used (23) and rede�ned r !
p
2

ev
r:

The natural boundary conditions at in�nity result from the requirement of �nite en-
ergy, while a non-singular behavior determines the values at the origin.

In the topological phase, R(1) = 1 and a(1) = 0 for nontrivial vorticity n. Then, for
large r the asymptotic form of the topological vortices is given by

R(r) ' 1 �
p
2

2
d 
K0

 p
2


2 � 1

r

!
(32)

a(r) ' d rK1

 p
2


2 � 1
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where d is a constant whose value is determined by the form of the solutions at the origin.
Also at the origin, one must expect non-singular �elds, implying R(0) = 0 and a(0) = n.
Hence, the magnetic 
ux is quantized as follows

�B =
2�

e
[a(0)� a(1)] =

2�

e
n: (34)

Now, we can combine eqs. (30,31) to produce a second order equation

1

r

d

dr
(r
dR

dr
) =

(R0)2

R

1 +R2=
2

1�R2=
2
� 1�R2


2 (1�R2=
2)2
R3 (35)

so that the behavior of the solutions for small values of r, where (1 � R2) ' 1, can be
approximated by a Liouville-type function

R(r) ' 2N


r

"�
r

r0

�N
+
�
r0
r

�N#�1
(36)

where N and r0 are arbitrary constants. Upon substitution of the above expression in
eq.(30), we �nd

a(r) ' �1 +N
1�

�
r

r0

�N
1 +

�
r

r0

�N ; (37)

so that using a(0) = n we obtain N = n+ 1. It implies that, near the origin, the form of
the vortex is power-like

R(r) ' 
cnr
n;

a(r) ' n� cnr
n+1 (38)

where cn = 2(n + 1)=rn+10 . This last relation is obtained by expanding eq.(36) around
r = 0; however, the precise numerical values of the cn constants are determined by the
shape of the �elds at in�nity, rather than by their behavior at the origin. Indeed, we have
numerically solved the self-dual equations of motion by means of an iterative procedure,
giving a tentative value for cn which is corrected each time by imposing that both limits,
R! 1 and a! 0, hold together at in�nity. For illustration, we quote some of the results
in Fig. 1 and Fig. 2, for the cases n = 1; 2; 3: Notice the ring-type structure of the
topological vortices (see. Fig. 2 and Fig. 3). This pro�le is analogous to the pure CS
magnetic �eld shape [11]. The n < 0 con�gurations are related to the n > 0 ones by the
transformation a! �a and R! R.

Table 1. Several values of cn for n = 1; 2; 3 and 
 = 1:5; 2:0; 4:0 [see eq.(38)].


 � n 1 2 3
1:5 1:7948 � 10�1 2:0538 � 10�2 1:4206 � 10�3

2:0 1:0664 � 10�1 9:1194 � 10�3 4:7256 � 10�4

4:0 2:8118 � 10�2 1:1979 � 10�3 3:1004 � 10�5
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Now, let us analyze the non-topological sector. In this case v is no longer a relevant
parameter, but we can use the same ansatz as in eqs.(25,26) with v = �=e (
 = 1). Now,
the system of di�erential equations gets simpli�ed by

1

r

da

dr
= �R2

dR

dr
= � aR

r (1 �R2)
; (39)

but it still admits soliton solutions. These are analogous to those found with the �2

potential considered in [8], although in our case the symmetric phase of the potential

arises from U = e2

8
j�j2

�
�2

e2
� j�j2

�
and the soliton structures are of course not identical.

It should be mentioned that in the present situation a nontrivial vacuum value, j�j2 = �2

e2
,

is not physically meaningful as the magnetic 
ux �B together with the energy would be
divergent. Note also that for large r, where (1 � R2) ' 1, the second order equation for
the �eld R(r) becomes again Liouville's type so that asymptotic solutions look as (36) and
(37) in contrast to the asymptotic behavior of topological solutions as given in eqs.(32)
and (33). Since we need R(1) = 0 to have �nite energy con�gurations, from (37) we
obtain N1 = �(a1n + 1), where a(1) = a1n .

At the origin, non-singular soliton con�gurations must satisfy nR(0) = 0 and a(0) = n.
Let us now distinguish between the following two possibilities.

On the one hand, non-vorticity (n = 0) implies that R(0) = b0 is a continuous param-
eter, restricted between 0 and 1. This restriction is to guarantee the validity of eq.(35)
for all r, namely to avoid singularities.

When b0 ! 0; we may assume that Liouville's approximation is valid for all r; and
then we can employ (37) to calculate a10 by using just the value at the origin a(0) = 0: It
provides (a10 )min = �2 as an analytical result. When b0 ! 1; we can not use (37) at the
origin any longer, and we have to perform numerical calculations yielding (a10 )

max = �1:83
(see Figs. 4,5,6 and Table 2). In Figs. 4-6 it can be seen the 
ux-tube structure of the
n = 0 solitons, with the maximum value of the magnetic �eld at the origin.

On the other hand, non-trivial vorticity (n 6= 0) implies that, at the origin, R(r) can
only be zero. Then we can use (37) so that again N = n+ 1. Thus, for r ' 0 we have

R(r) ' bnr
n (40)

a(r) ' n � bnr
n+1

but in contrast to the topological case, the constants are now continuous parameters
bounded as 0 < bn � bmax

n . For bn ' 0, R(r) � 1 and Liouville's approximation is valid
everywhere, hence, we are able to analytically obtain a lower bound for a(1) namely,
(a1n )min = �(n + 2). On the other hand, by numerical investigation we can obtain the
maximum values bmax

n and accordingly (a1n )
max, as we illustrate in Table 2.

Thus, in the non-topological phase the magnetic 
ux is not quantized but instead it is
bounded for each vortex number; the width of the band shrinks as n is increased, varying
continuously between

2(n � (a1n )max) � e

�
�B � 4(n + 1): (41)
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Table 2. Values of bmax
n and �(a1n )max for n = 0; 1; 2; 3; 4; 5.

n bmax
n �(a1n )max

0 1:0000 1:8300
1 3:4648 � 10�1 2:5484
2 5:9971 � 10�2 3:5210
3 6:2389 � 10�3 4:5112
4 4:6720 � 10�4 5:5069
5 2:6900 � 10�5 6:5011

As we show in Table 2, the asymptotic values of the gauge �eld remain constrained,
increasingly close to �(n + 3=2) while the magnetic 
ux approaches the limit (4n + 3)�

e

as n grows.
In Fig. 9, we show the ring structure of the non-topological vortices, with the maxi-

mum of the magnetic �eld out of the origin as it happens in the topological phase of the
model. Notice that for bmax

n the radius of the vortices, together with their distance to the
origin, are minimal for a given charge n, while the Higgs �eld presents a cuspidal pro�le
attaining its maximum value, R = 1�.

6 Conclusions

We have obtained self-dual soliton solutions of a Maxwell-Chern-Simons model with
anomalous coupling in both topological and non-topological sectors. To do this, we have
focused the bosonic part of an N=2{D=2+1 supersymmetric model {obtained from an
N=1{D=3+1 model after dimensional reduction{ which enabled us �nding a topological
phase of this model in D=2+1. As long as we know, it is the �rst time that topological
self-dual vortices are found in a non-minimal MCS model. We have also analyzed the
non-topological phase in detail for several values of the parameters and magnetic 
uxes.
It is worth noticing that in contrast to the works in Ref.[8] the non-topological phase of
our model is not given by a simple �2 Higgs potential but rather as a fourth order function
j�j2(�2

e2
� j�j2). Our non-topological solutions are then di�erent from those presented in

[8] although similar in shape.
In order to compare with our results with previous reports we have restricted the

analysis to the critical anomalous coupling. Indeed, we have demonstrated that it is
possible to obtain a topological phase in the non-minimal MCS model having self-dual
vortex solutions, and that the corresponding non-topological phase is not the same as in
previous attempts. A natural extension to this work would be relaxing this constraint
so as to consider non-critical values of g. Such a general situation should also present
topological solitons. Since analytical as well as computational analysis are more involved
in that case, it is still under investigation and the results shall be soon reported elsewhere.
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Figure 1: The scalar R(r) and the gauge �eld a(r) in the topological phase. The values
of the cn constants are �xed by the shape of the �elds at in�nity: c1 = 0:1066, c2 =
9:1190 � 10�3, c3 = 4:726 � 10�4, for 
 = 2.
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Figure 2: The magnetic �eld B as a function of r for n = 1, 2, 3 and 
 = 2 in the
topological phase. The vortex structure is ring-type like pure CS vortices.
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Figure 3: The magnetic �eld B in the topological phase for n = 1 and several values of

 = �

hv
.
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Figure 4: The Higgs �eld R(r) in the non-topological phase for n = 0 and several values
of b0.
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Figure 5: The gauge �eld a(r) in the non-topological phase for n = 0 and several values
of b0.
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Figure 6: The magnetic �eld B(r) in the non-topological phase for n = 0 and several
values of b0. The structure looks as a 
ux tube.
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Figure 7: The Higgs �eld R(r) in the non-topological phase for n = 1 and several values
of b1.
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Figure 8: The gauge �eld a(r) in the non-topological phase for n = 1 and several values
of b1.
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Figure 9: The magnetic �eld B(r) as a function of r for n = 1 and several values of b1 in
the non-topological phase. The vortices are ring type as in the topological sector.


