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1 Introduction

The original version of the Dirac's �ther was presented long ago as a result following

his formulation of the so-called \New Electrodynamics" (NE) [1]. In the NE, Dirac has

adopted a radical approach for the discussion of a classical electron in the presence of an

electromagnetic �eld. The main idea was to use the spurious degrees of freedom associated

to the gauge potential to describe the electron. In [1] Dirac showed how this could be

done by a judicious choice of gauge condition, e.g. A2 = k2. In fact, introducing this as a

gauge �xing term in the Lagrangian 1 L = �1

4
F 2+ �

2
(A2��2); we �nd @�F �� = J� � �A�.

Therefore, we obtain a four current depending on A� that is suitable for the description of

a classical electron interacting with an electromagnetic �eld. In this approach we observe

that the gauge condition doesn't intend to eliminate spurious degrees of freedom of the

gauge potential. Instead of that, it acquires a deep physical meaning as the condition

that allow us to describe the right physics without having to introduce any extra �elds.

One of the striking consequences of these results were discussed in a subsequent paper

of Dirac [2] and led to the �ther model. In fact, by using quantum mechanical arguments

Dirac argued it would be possible to consider an �ther provided we interpret its four

velocity v at each point as a quantity subjected to uncertainty relations. Then, the �ther

four velocity instead of being a well-de�ned quantity, would rather be probabilisticaly

distributed over a range of values. The wave function describing the �ther would be such

as to assure a velocity distribution with all velocities being equally probable. Admitting

the �ther velocity as de�ning a point in a hyperboloid with equation v20�~v2 = 1; v0 > 0,

Dirac could relate it to the gauge potential (satisfying A2 = k2) by 1

k
A� = v� and from

the interpretation given to the NE, he concluded that v would be the velocity an electric

charge would ow if placed in the �ther. The four velocity v, being de�ned through all

points of spacetime, justify its interpretation as a meaningful physical quantity, the �ther

velocity.

Following Dirac, many authors have tried to develop a realistic model for the Dirac's

�ther by considering the �ther as a vacuum with conductivity � � 10�13/s [3, 4]. They

have also found the photon as having a non-null mass m = �h=c2 � 10�48g (which is

below laboratories estimates for the limit of the photon mass). In these models, the basic

equations for the �ther were the Maxwell equations in a conducting medium without

1With � a lagrange multiplier and k a constant.
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density of charge and current. The intensity of the electric �eld ~E, and the magnetic

induction ~B 2 are related to the electric displacement ~D, and the magnetic intensity ~H

by the relations ~D = � ~E; ~H = 1

�
~B which suppose the �ther as a homogeneous medium

polarized isotropically and linearly. Besides that, it is implicit in [3, 4] that all their

analysis is considered in a at spacetime and from a reference frame at rest relative to

the �ther.

Our present work is a continuation of an investigation initiated in a preceding paper [5]

where we have studied the ampli�cation of the cosmic magnetic induction for the Proca

electromagnetic �eld in the Dirac's �ther. There the equations used were the Proca's

equations in a conducting media. Here, we wish to study the Dirac's model from another

point of view, extending his original idea but maintaining the physical motivation for the

application in a curved background. One of our interests is to analyse how the primordial

cosmic magnetic induction has been ampli�ed, as the Universe evolves, for a model that

is neither Proca nor the purely Maxwell electrodynamics (but that includes this last

one as a particular case). In the literature of the Dirac's �ther, none of the models

presented in [3, 4, 6] discusses a possible framework for the study of electromagnetic

phenomena in the large scale structure. They all take for granted the basic Maxwell

theory. Therefore, any application to a large scale scenario is expected to be modeled

within the Maxwell formulation. Since it is unknown if under the inuence of a curved

background the electromagnetic �eld presents a di�erent behaviour than that foreseen by

the Maxwell theory, it is reasonable to test alternative approaches that may provide a

suitable description for the electromagnetic �eld at the large scale. Our model intends to

o�er such an alternative.

Although we are not concerned with the relevant question about the structure of the

�ther as a conducting medium [6], it is implict in our formulation that there is an inertial

reference frame in which the �ther is at rest and consequently the �eld of velocities of

the points of the �ther write as v��ther = (1; 0; 0; 0). We refer it as the �ther frame.

The main point of our research is based on the proposition of an action for the �ther

of Dirac which may be able to reproduce some characteristics of previous models. We

propose then the action S =
R
dx

�
�1

4
F 2 + �v�F

��A�

�
with v being the �ther's velocity

relative to a generic observer (inertial or not). For inertial observers, v� = ��
�v

�
�ther = ��

0

2Here we will also refer to the intensity of the electric �eld ~E and the magnetic induction ~B as simply

electric and magnetic �eld.
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3 is still constant and we obtain from the equations of motion a four-current in the form

J� = ��v�@:A + �v�@
�A�, that is understood as being induced in the �ther by the

presence of the electromagnetic �eld. Therefore, it de�nes a polarization tensor M�� from

which we obtain the vectors of polarization and magnetization of the medium. We will

see in section 2.4 that in the �ther reference frame the form assumed by this 4-current

allow us to de�ne the electric displacement vector as ~D = ~E + � ~A while the magnetic

intensity coincides with the magnetic �eld, ~H = ~B, with the resulting equations being

similar in form with the macroscopic Maxwell equations in a medium. This coincides with

the results of [3, 4] but with a particular di�erence: ~D 6= � ~E. This shows that in our

model the �ther cannot be thought of as an isotropic medium. Moreover, in a generic

reference frame moving relative to the �ther, the vectors of electric displacement ~D and

magnetic intensity ~H will depend on v. Our treatment o�ers an extension of the results

of [3, 4] in the sense that our equations incorporate the situation of reference frames that

are not at rest relative to the �ther.

In our approach the basic electromagnetic �elds are the vectors ~E and ~B which are

components of the tensor F�� � @�A��@�A�. The equations of motion (3) are determined

directly from our action, with the Jacobi identity F��;� + F��;� + F��;� = 0 completing

the set of equations involving the electromagnetic �eld. In the traditional formulation

of classical electrodynamics the non-homogeneous Maxwell equations in a conducting

medium are obtained introducing a second tensor H�� with components ~D and ~H which

satisfy @�H
�� = �j� . Compared to our formalism we don't have to introduce by hand

any tensor H�� . Here it is the interaction term v�F
��A� that forces the appearance

of additional terms (depending on A�) in the equations for ~E and ~B which allow us

to identify as ~D and ~H . Both the classical electrodynamics in vacuo (31-34) and in

conducting media (35-38) are obtained as a particular case of our model for an observer

that is at rest relative to the �ther. For observers that move slowly relative to the �ther

and/or for phenomena in which the �ther conductivity is su�ciently small we are expected

to have the interaction term giving a small contribution to the Maxwell equations and

therefore the model may qualitatively agree with the same predictions of the traditional

formulation of classical electrodynamics.

This work is organized as follows. Considering an observer moving with constant

velocity relative to the �ther, in Section 2.1 we discuss the lagrangian of the model,

3with � the Lorentz transformation relating the observer and the �ther frame.
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identify the 4-current and a constraint that appears associated to its conservation; in

Section 2.2 we analyse a global gauge invariance of the action, we show that in the �ther

frame the conservation of the Noether charge coincides with the Gauss law, we interpret

the interaction term v�F
��A� as ~J � A with ~J� � v�F

�� a conserved 4-current, and we

propose a mass term that preserves the global symmetry; in Section 2.3 we show that our

action admits a local gauge invariance; in Section 2.4 we show that in the �ther frame we

obtain macroscopic Maxwell equations with ~D = ~E + � ~A and ~H = ~B. Considering the

case of a curved background we will have, in general, v 6= cte; in Section 3 we establish

the material relations involving the �elds; in Section 4 the equations of the model in a

cosmological background are solved and the solutions are discussed. The last section is

devoted to concluding remarks.

Notations For Flat Space-time

��� = diag(+;�;�;�)
x� � (x0; xi)

:
= (t; ~x); x� � (x0; xi)

:
= (t;�~x)

@� � (@0; @i)
:
= (

@

@t
;�~r); @� � (@0; @i)

:
= (

@

@t
; ~r)

A� � (A0; Ai)
:
= (�; ~A); A� � (A0; Ai)

:
= (�;� ~A)

F0i = ~Ei; Fij = ��ijk ~Bk; F 0i = �F0i = � ~Ei; F ij = Fij = ��ijk ~Bk

2 The Lagrangian of the Dirac's �ther and Its In-

variances

2.1 Equations of Motion

Let us consider a certain reference system moving with a constant 4-velocity relative to

the �ther reference frame. We take for action

S =
Z
dx

�
�1

4
F 2 + ~J �A

�
(1)

with

~J� :
= �v�F

�� : (2)

In these expressions we have F�� = @�A� � @�A�, and the �eld A is understood as a

1-form de�ned in a at spacetime manifold. The (constant) parameter � is associated to
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the �ther conductivity and ~J will be shown to be a conserved quantity. Here, the term

~J �A de�nes an interaction of the gauge �eld with itself.

The equation of motion for A� has the form

@�F
�� + �v�@:A� �v�@

�A� = 0 (3)

and it assumes the same form as the Maxwell equations in the presence of a source

@�F
�� � J� (4)

provided we identify

J� = ��v�@:A+ �v�@
�A� (5)

with a conserved 4-current. This interpretation follows the same idea of Dirac's NE [1] in

which the term j�
:
= �A� was interpreted as a 4-current. However, in Dirac's formalism

the appearance of this 4-current originates from the introduction of a gauge �xing term
1

2
�(A2� k2) in the action while in our approach J�, given in (5), arises from the presence

of the interaction term ~J:A.

Now, taking the divergence of (4) we obtain 0 = @�J
� = �v�(2A

� � @�@:A) =

�v�@�F
�� = �v�J

� = �2(�v2@:A+ v�v�@
�A�), i.e

@:A =
v�v�
v2

@�A� : (6)

This constraint is a new feature of our model and since it involves the divergence of A it

resembles a kind of gauge condition. Nonetheless, its origin is independent of any local

symmetry of the action. In section 2.3 we will analyse how this condition combines with

a local symmetry of the action imposing certain conditions to be satis�ed by the gauge

parameter.

2.2 Global Gauge Invariance

The �rst invariance of the action we want to analize is the one de�ned by a transformation

parametrized by a global parameter � (@�� = 0) and having the form

A� ! A0
� = A� + �v� : (7)

Associated to this symmetry we have the following Noether current

�� = F ��v� � �v�A:v + �v2A� � ���v� (8)
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with

��� :
= F �� � �v�A� + �v�A� : (9)

In section 3 the quantitity ��� will be interpreted as the tensor H�� , which in the �ther

frame becomes H�� = ( ~D; ~H). In this general case, it will be clear how H�� depends on

the properties of the medium and on the 4-velocity v. In a system that is at rest relative

to the �ther we have

�� = (0; ~E + � ~A) (10)

and condition (6) gives ~r: ~A = 0. Therefore, the conservation equation of �� let us with

~r: ~E = 0 : (11)

In our model, there is another conserved current that has the form

Ĵ� = ��v�@:A+ �v:@A� (12)

and from which we obtain ~J = Ĵ � J . Then, conservation of ~J follows immediately as

the di�erence of two conserved currents. Equivalently, from (9) we can also think of ~J�

as originating from the divergence of ��� ,

@��
�� = � ~J� : (13)

In the classical formulation of Electrodynamics in conducting media the non-homogeneous

Maxwell equations are written covariantly as

@�H
�� = �j�ext (14)

with the tensor H�� having ~D and ~H as its components. In our model ��� (9) generalizes

the tensor H�� and equation (13) corresponds to (14). Then this allow us to interpret ~J�

as the corresponding 4-current of our model, in much the same way as Dirac interpreted

j� = �A� as a 4-current in [1]. The interaction term ~J �A in our action (1) parallels then

the same interaction term of the usual electrodynamics.

The global symmetry (7) is a new feature of our model that has no similar counterpart

in the usual Maxwell formulation. It is also possible to add a mass term to the action (1)

that perserves this global symmetry. In fact, the action

S =
Z
dx

�
�1

4
F 2 + ~J �A� 1

2
�2A�(v

2g�� � v�v�)A�

�
(15)
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is invariant by (7). From (15) we obtain the following equation

@�F
�� � J

� :
= ��v�@:A+ �v�@

�A� + �2(v2g�� � v�v�)A� (16)

or equivalently

�
g��(2� �2v2)� @�@� + �(v�@� � v�@�) + �2v�v�

�
A� = 0 : (17)

Here the conservation of the current J
�
that follows from (16) doesn't produce any con-

straint over A. We also notice that associated to the global symmetry we have the same

conserved current (8).

2.3 Local Gauge Invariance

The local gauge invariance depends on a parameter �(x) and assumes the usual form

A� ! A0
� = A� + @�� : (18)

Here, condition (6) adds new features to our analysis. In fact, let A0 and A be two �elds

related by (18). Since both �eld con�gurations should obey (6) we must have

@:A0 =
1

v2
(v:@)(v:A0) *) 2� =

v�v�
v2

@�@�� : (19)

Consider that @:A 6= 0 and let us choose � such that it ensures @:A0 = 0. We should then

have � satisfying

2� = �@:A : (20)

This last condition together with the constraints (6,19) gives

@�@�� = �1

2
(@�A� + @�A�) (21)

that represents a restriction stronger than that shown in (20). Equivalently, we can obtain

equation (21) directly from 0 = @:A0 = vav�

v2
@�(A� + @��) by using (6).

2.4 Electrodynamics in the �ther's Reference Frame

Let us analyse our model in the �ther reference frame. We have v = (1; 0; 0; 0). We also

suppose the �ther as a medium without any given density of charge or current. From (4)

we obtain the following equations

~r: ~E = ��~r: ~A (22)

~r� ~B =
@ ~E

@t
+ �

@ ~A

@t
+ � ~E (23)
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to which we add the homogeneous equations

~r: ~B = 0 (24)

~r� ~E = �@
~B

@t
: (25)

Our equations involve just the �elds ( ~E; ~B). The presence of additional terms depend-

ing on the potential vector in (22, 23) is understood as signalizing the response of the

medium to the presence of the �elds ( ~E; ~B), a situation that resembles the phenomena of

polarization and magnetization of a medium. Therefore, we rewrite (22) as

~r: ~D = 0 (26)

with ~D
:
= ~E + � ~A+ ~r� ~K. At this point, ~K is an arbitrary vector that can be thought

of as playing a similar role of a gauge parameter. Now, we rewrite (23) as

~r� ~B =
@ ~D

@t
+ � ~E � @

@t
~r� ~K (27)

and we choose ~K such that it satis�es

@

@t
~r� ~K = � ~E : (28)

Then, using (25) we obtain

@

@t
~r�

�
� ~A+ ~r� ~K

�
= 0 : (29)

The vector ~K can be further restricted so that

� ~A+ ~r� ~K = 0 : (30)

This gives ~E = ~D and ~B = ~H and lead us to a set of equations

~r: ~E = 0 (31)

~r� ~B =
@ ~E

@t
(32)

~r: ~B = 0 (33)

~r� ~E = �@
~B

@t
(34)

that correspond to the Maxwell equations in free space. Conditions (28,30) can be inter-

preted as originating from the imposition of the temporal gauge. In fact, together they

imply ~rA0 = 0 that is naturally satis�ed if we put A0 = 0.
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It is possible to give another description for our electrodynamics without using this

vector ~K. From (23) we can simply identify ~D = ~E + � ~A; ~H = ~B that lead us to the

following equations

~r: ~D = 0 (35)

~r� ~B =
@ ~D

@t
+ � ~E (36)

~r: ~B = 0 (37)

~r� ~E = �@
~B

@t
(38)

that coincides with the �ther's equations obtained in [3, 4]. In the identi�cation ~D =

~E + � ~A; ~H = ~B the �ther behaves like a medium that responds to the presence of the

electric �eld by creating a polarization ~P = � ~A. We also have a current ~J = � ~E which is

in agreement with our supposition of the �ther as being a medium with conductivity �.

According to Schwinger's idea of structureless vacuum [7], an electromagnetic �eld

disturbs the vacuum a�ecting its properties of homogeneity and isotropy. This is exactly

the situation we have obtained in our model, where the presence of an electromagnetic

�eld in a vacuum with conductivity � produces a response of the medium ( ~D 6= � ~E) that

signalizes its non-isotropy.

3 Material Relations Involving H�� and F��

In section 2.4, we have obtained the following material relations

~D = ~E + � ~A (39)

~H = ~B (40)

for a at spacetime and for the case of a reference frame at rest relative to the �ther.

In the case of a curved spacetime and for a non-inertial reference frame moving relative

to the �ther, we are supposed to have a more complicated relation between H and F .

Indeed, the general form for the material relations between the tensors H�� and F�� in a

medium that is at rest in any reference frame with a metric g�� has been established in

[8] as:
p�gH�� =

p�gg�g��S�
S

�
�F�� (41)
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where the tensor S�
� characterizes the electromagnetic properties of the medium. For our

later purpose, it is convenient to rewrite (41) as

p�gH�� =
p�gg�g��S�

�A� (42)

where the third rank mixed tensor S�
�relates to S

�
� by

S�
� = (S�

S
�
� � S�

S
�
�)@� : (43)

As an application of (41) it was shown in [8] that for the vacuum (considered from

an inertial reference frame) the tensor S�
� assumes the form S�

� = ��� and the mate-

rial equations become
p�gH�� =

p�gg��g��F�� which reproduces the usual equations

of free electrodynamics in a curved background [9, 10]. Also, in the case of a linear

isotropic medium that is at rest in an inertial reference frame the tensor S�
� is given by

S0
0 = �

p
�; S1

1 = S2
2 = S3

3 =
1p
�
and we obtain the usual relations ~D = � ~E and ~H = 1

�
~B.

for the electrodynamics in a medium.

In our model, in order to de�ne the tensor H�� for a generic reference frame in a

curved background and to �nd a suitable material relation of the type (42) we should �rst

follow the procedure of section 2.4 that allow us to de�ne H�� directly from the equation

of motion for A�. Explicitly, let us take the equation of motion in a curved background,

@�(
p�gF �� � �

p�gv�A� + �
p�gv�A�) = J� � ��p�gv�F �� (44)

then we de�ne

p�gH�� :
=
p�g(F �� � �v�A� + �v�A�) : (45)

This procedure is equivalent to the introduction of the antisymmetric polarization tensor

of the mediumM�� [8]

p�gH�� =
p�g(F �� +M��) *)

p�gH�� =
p�gg��g��(F�� +M��) (46)

provided we identify from (45,46)

M�� = ��v�A� + �v�A� *)M�� = ��v�A� + �v�A� (47)

with F �� = g��g��F��; F�� � @�A� � @�A�; M�� = g��g��M��. Finally, in order to

obtain the material equations for our model we extend de�nition (42) by allowing S�

�� to

be a generic operator not restricted by (43) but given by

S�
�� = ���(@� � �v�)� ���(@� � �v�) : (48)



CBPF-NF-034/02 11

Here, the tensor S�
�� may contain not only electromagnetic properties of the medium (as

it is the case of (43)) but also information about the reference frame (implicit in the

four-velocity v�). Adopting the convention ~Di =
p�gH i0; ~Hi = �1

2
�ijk

p�gHjk [8] and

considering a at spacetime we obtain (in the �ther frame) from (42,48) the relations

given in (39,40).

4 The Dirac's �ther in a Curved Background

4.1 Some Questions on the Cosmic Magnetic Induction

The origin of the cosmic magnetic induction (CMI) is still unknown. In fact, until now

no theory has completely succeeded on explaining the evolution of the CMI, from its

generation in the early universe to our present time in galaxies, stars and probably in the

extracluster medium. The standard dynamo action, for instance, has left many questions

without answer [11, 12]. Recently, one special type of mechanism for the ampli�cation of

the CMI has been studied in [5] where the ampli�cation was understood as being caused

by the expansion of the cosmological background. This new kind of theoretical preview

was called geometric ampli�cation (GA) because the only agent responsible for this e�ect

was the scale geometric factor R(t). One of the advantages of this approach is that the

ampli�cation can be an alternative for the standard mechanism recently contested in [11].

The radio emission of very distant cosmic objects determines an upper limit for the

intensity of the CMI. According to the literature, in the extra-galatic medium the CMI is

supposed to have an intensity less than 10�13T 4.

4.2 The Model in the Friedmann's Geometries

Considering these ideas, we will now apply our model to a curved background. We will be

particularly interested on �nding solutions for the CMI that may provide an explanation

for the ampli�cation of this �eld from the initial value of � 10�19T to the suggested

actual value of � 10�13T. Here, we will assume that the conductivity of Dirac's �ther is

� 10�19/s.

Let us take as coordinate system the cylindrical coordinates of Schr�odinger x� =

(t; �; �; �) in a Friedmann cosmological background minimally coupled with the electro-

4Other models have considered a generation of a primordial CMI of magnitude � 10�21T [11].
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magnetic �eld. The metric tensor in all three Friedmann geometries is written as

g�� = diag
h
R2(t)(1 ;�1 ;�u2 ;�w2)

i
; (49)

where the functions u(�) and w(�) de�ne the type of three-geometry (with constant curva-

ture kc) under consideration. These functions and the di�erent scale factors are shown in

table 1. We assume here the same time dependent 4-potential with cylindrical symmetry

Table 1: The functions u, w and R(t) where � = 1026m.

u and w kc R(t)

u = �;w = 1 0 (�=2)t2

u = sin �;w = cos � +1 �(1 � cos t)

u = sinh �;w = cosh � �1 �(cosh t� 1)

[5] given by

A� = (0; 0; 1; 0)f(t)=R2(t); (50)

where f(t) is a function to be determined by the �eld equations. The non-zero components

of the �eld strength F�� are F02 and F12. Therefore, for the orthonormal basis we have

chosen, the non-null components of the �elds E and cB are E� = � _fu2=R2, cB� =

2fu u0=R2 5. To study how the expansion of the Universe inuences the time evolution

of the electromagnetic �eld, it is appropriate to de�ne the time dependent quantities E(t)
� jE=uj = j _f j=R2 and B(t) � jB=u0j = 2jf j=(cR2) that for simplicity we will also refer as

the electric �eld and magnetic induction.

In a curved space-time with metric minimally coupled to the electromagnetic �eld we

obtain from S the following equations

F ��
;� +

�

c
(A�v� �A�v�) ;� = J� (51)

where the semicolon denotes the covariant derivative, J� = (��=c)v�F �� and v� = R(t) �0�

the four-velocity of the �ther.

Here we notice that our new equations (51) di�er from the ones of our previous model

[5] by the presence of a skew-symmetric term (A�v��A�v�) ;� instead of the term (1=�2)A�

5The dot means d=dt, the prime means d=d�, and c, in this section, is written explicitly as the light

velocity.
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(that comes from the Proca term). In both cases, the qualitative behaviour of the new

term will be very similar to the one obtained in the Proca model as we can see after

comparing Table 3 below and the graphics of our preceding paper.

For � = 2 we have

�f +
�
4 kc � �

c
_R
�
f = 0 (52)

and according to the geometry, we have to solve the equations below:

�f � �t
�

c
f = 0 for kc = 0 ;

�f + (4 � �

c
� sin t) f = 0 for kc = +1 ; (53)

�f � (4 +
�

c
� sinh t) f = 0 for kc = �1 :

We assume an initial �eld of magnitude B(ti) � 10�19T. Since our model should also

contain a weak initial electric �eld to be dissipated during the evolution of Universe, we

shall assume the existence of an electric �eld of magnitude E(ti) � 10�4V/m. These

limits are �xed in order to give, as a �nal result, a realistic value for the modulus of

B(tf) that agrees with the one established by the usual theory of the cosmic �elds. These

initial values we have assumed don't perturb the gravitational �eld, as it is evident from

simple calculations which show the energy-momentum tensor of the electromagnetic and

gravitational �eld related by a factor above 1010. These results then justify the minimal

coupling of these �elds as a suitable framework to study the inuence of the very strong

geometry of the Universe on the very weak electromagnetic phenomenon.

Using the same method employed in [5], we will integrate numerically equations (53)

from the initial cosmic conformal time ti = 0:0890 to the �nal time tf = 1:6100. In

standard cosmology this range corresponds respectively to the �nal stage of the matter-

radiation coupling and our current epoch. We have obtained around 20; 000 points in the

numerical integration of which, in Table 2, we displayed only a small ensemble of these

points that can give us a qualitative view of the ampli�cation phenomenon. These results

are very similar to the ones of our latter work [5]. In Table 3 we compared the initial and

the �nal value of the �elds for each geometry. The data show the important ampli�cation

of the B �eld, which is very welcomed by astrophysicists, and the overall reduction of

the electric �eld. It should be noticed that these results are determined not only by the

evolution of the function f(t), (which constrains the �eld equations) but also by the direct

contribution of the geometry as given by the scale factor, R(t), that is present in both
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Table 2: Some Numerical Data (F=Flat, E=Elliptic, H=Hyperbolic)

t 0.0890 0.1000 0.2352 0.5779 1.5793 1.6100

(F) logjEj -3.0004 -3.1804 -4.7392 -6.2559 -8.0335 -8.0147

logjcBj -11.6993 -4.7811 -5.2158 -6.2569 -7.5110 -7.5378

(E) logjEj -2.9997 -3.2035 -4.7034 -6.4784 -7.8183 -7.8333

logjcBj -11.6988 -4.8575 -5.2248 -6.3072 -8.6010 -8.7447

(H) logjEj -3.0009 -3.2052 -4.6926 -6.2743 -8.1737 -8.2008

logjcBj -11.6999 -4.8591 -5.2266 -6.2841 -7.6994 -7.7205

mathematical expressions for E and B. It is the interchange between the gravitational

and electromagnetic �elds that imposes, as the Universe evolves, the decreasing of the

electric �eld and the ampli�cation of the B �eld.

Table 3: The Reduction of E and the Ampli�cation of B

Geometry E B
Flat (kc = 0) �10�5 �10+4

Elliptic, (kc = +1) �10�5 �10+3
Hyperbolic, (kc = �1) �10�5 �10+4

5 Conclusion

Our model for the �ther of Dirac allow us to adapt our description to any observer, be

it inertial or not. In the case of an observer at rest relative to the �ther, in a at spacetime,

we have obtained the same description of previous models [3, 4] but with di�erent material

relations involving the �elds ~D; ~H; ~E; ~B. This accounts for the fact that although the

�ther is a medium with conductivity, the presence of an electromagnetic �eld disturbs its

isotropy. The equations we have obtained in this case had the same form as the Maxwell

equations in a conductive medium provided we adopted a certain \gauge" choice for the

vector ~K (28,30). Here we notice the same role of the gauge condition as in the original

work of Dirac's NE [1], e.g. as a condition that determines a certain physics. In the case
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of a curved background, an observer with v� = R(t)�0� will see the same phenomenon of

ampli�cation of the magnetic induction and reduction of the electric intensity that had

already been observed in [5] in the context of a Proca electromagnetic �eld in a Dirac

�ther.

The material relations between the polarization tensor and the gauge potential given

in (41,48) shows that the tensor H�� is related to the electromagnetic properties of the

medium (encoded into the tensor S�
��) and the metric tensor. This raises an interesting

picture of a mutual e�ect between the electromagnetic �eld and the geometry of the

spacetime. In fact, if the GA describes how the expansion of the universe inuences the

electromagnetic �elds as a kind of geometric background e�ect that should be added to

well-established non-geometric e�ects, there is also the possibility for the electromagnetic

�eld to inuence the expansion of the universe [13].

The geometric relations between the electromagnetic �eld and the metric tensor in-

volves the scale factor R(t). The ampli�cation of the �eld B in this case is determined by

the minimal coupling we adopted. In other coulplings between the electromagnetic and

the gravitational �elds the interchange could be more rapid and/or more intense, as we

can see in [14]. Our results con�rm once more the strict relations between the electro-

magnetic and gravitational phenomena. Furthermore, the model we elaborated for the

Dirac's �ther in a curved space-time sugests it can also be applied to the study of the

electromagnetism in the large scale structure of the Universe.

The investigation of quantum phenomena brings us to the realm of quantum elec-

trodynamics. Any attempt to quantize our model should �rst address the question of a

reinterpretation of the 4-velocity v� at the quantum level so that we can associate to it

a quantum �eld v(x) depending of the spacetime. This investigation will be presented in

another work.
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