
CBPF-NF-033/98

Some Aspects of Geometrical Con�nement

M. Novello and V. A. De Lorenci

Centro Brasileiro de Pesquisas F��sicas,

Rua Dr. Xavier Sigaud, 150, Urca

22290-180 Rio de Janeiro { RJ, Brazil.

and

E. Elbaz

Institut de Physique Nucl�eaire de Lyon IN2P3-CNRS

Universit�e Claude Bernard, 43 Bd du 11 Novembre 1918

F-69622 Villeurbanne Cedex, France.

Abstract

In this paper we present a toy model for the dynamics of a gauge �eld theory

in such way that spin-one particles can be con�ned in a compact domain. We

show that the property of con�nement can be associated to the formation of a null

surface identi�ed to a horizon. This is due to the presence of an e�ective geometry

generated by the self-interaction of the gauge �eld that guides the wave propagation

of the �eld.

This phenomenon has a striking analogy to the gravitational black hole in Ein-

stein general theory of relativity, separating two domains of spacetime that can be

trespassed only into one direction.
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1 Introduction

It is a common knowledge that the necessary condition for a �eld theory to produce
con�nement is to be non-linear. Although this seems to be a good requirement, it is not
enough. Since such a con�nement, for instance, in the SU(3) non-Abelian gauge theory
containing an octet of massless vector gluons, is still not available [1], a question appears:
is there a natural way to generates con�ned structures in a non linear theory? The
proposal of this paper is to exhibit in a simple version a pattern that answers a�rmatively
to this question.

The crucial point of our interest is concentrated on the way the �eld discontinuity
evolves. Thus, our main concern here is the evolution of the wave propagation for certain
classes of dynamics. We shall prove that, in a very general context, massless gauge �elds
do not propagate through the null-cones of the underlying Minkowski spacetime metric
but instead, they follow paths of geodesics in another e�ective geometry that depends on
the properties of the unperturbed background �eld. We show here that this property is
not restricted to the case of an Abelian group (as, for instance, in the theory of a non linear
photon), but instead it is a very general behavior for non linear gauge invariant theories.
We propose to use such mechanism to produce con�nement for spin-one gauge �elds on
the gluonic world. Finally let us remark that the reader should be warned of the following.
We will deal here only with the classical property of the gauge �eld. This is not due to
a naive belief that the con�nement phenomenon does not belong to the quantum world,
but just because we think that T.D. Lee [2] is correct when he argues that "...Quark
con�nement is a large-scale phenomenon. Therefore, at least on the phenomenological
level, it should be understandable through a quasi-classical macroscopic theory, much like
the London-Landau theory of superuidity...". This is precisely what we intend to present
in this paper.

2 Classical Version of the Con�nement

We identify a classical version of the con�nement of massless spin-one particles with the
interpretation of the deformation of their surfaces of propagation, the corresponding light

cones, in such a way that the gluons encounter an unsurmountable barrier that forbids
them to get outside the con�nement region. In other terms, it appears, for the external
world, as a situation that can be described equivalently in terms of the formation of a
horizon. Such a deformation does not occur in the standard theory of gauge �eld in
the Minkowskian structure of spacetime. How to create a similar e�ect in a scenario
containing just a set of spin-one self-interacting �elds?

Our aim is then reduced to obtain the required property that the information carried
on by the gluons operates in a di�erent way from the Minkowski null cones. In this
vein, our �rst step is to change the dynamics in an adequate way. The reason for this
is related to the fact that massless Yang-Mills (YM) particles, like the linear photon in
Maxwell's theory, travel along the Minkowski null cone1. This property is the same as

1The need for this modi�cation comes from the property of the structure of geodesics in Minkowski
spacetime, that imposes that any particle that follows null cones cannot be bounded in a compact region.
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in the Abelian case and has its origin as a direct consequence on the construction of the
YM model that makes all non-linearity of this theory to be restricted uniquely to the
algebraical dependence of the �eld F a

�� on the potential Aa
�.

To change this in the realm of the gluon interaction, conserving the color covariance,
one should modify the Lagrangian conveniently. This is precisely the case which we will
consider here and constitutes the basis for the actual new ingredient of our model. We
shall see that a slight modi�cation of the YM theory2 concerning its Lagrangian seems to
be the key to the understanding of the con�nement problem.

However, before this and in order to gain some insight on the generic properties of
such modi�ed action let us concentrate our analysis on the simpler case of the dynamics
of a single vector �eld. In the next section we will make a short overview of a class of
nonlinear Electrodynamics.

3 The General Framework of Spin-1 Theory

The nonlinear electrodynamic theory3 is described by a Lagrangian L given uniquely in
terms of the invariant F � F�� F

��. We set4

L = L (F ): (1)

The corresponding equation of motion is given by

@� fLF F
��g = J�

ext (2)

in which LF represents the functional derivative of the Lagrangian (� L=�F ) with respect
to invariant F ; LFF is the second derivative.

This equation can be written in another, more appealing form, by just isolating the
linear Maxwell term and taking all remaining non linear parts as an additional internal
current to be added to the external one:

@� F
�� = J�

int + J�
ext (3)

in which the associated internal current, the self-term is given by

J�

int � �
LFF

LF

F �� @� F: (4)

Written under this form it can be thought as nothing but a modeling of the response in a
self-interacting way of some special plasma medium. Indeed, let us consider the quantity
��

�� �
LFF

LF

@� F: (5)

2We remark that the major part, and by far the most important one, of Yang-Mills theory is
maintained.

3We note that these remarks concern any spin-1 theory.
4We do not consider here the invariant constructed with the dual F �

��
.



{ 3 { CBPF-NF-033/98

We de�ne a normalized frame n� � ��=�2, which in the case �� is time-like in the
Minkowski background, could be identi�ed to a real observer that co-moves with ��. The
extra term of the current assumes then the form

J int
� = �E� (6)

in which E� is the electric part of the �eld as seen in the frame n� and � (F ) may depend
on the �eld variables in a complicated way. Under the form of Eq. (6) the analogy with
situations treated within Maxwell electrodynamics in material media is transparent.

From the de�nition of the energy-momentum tensor we obtain from the non-linear
Lagrangian:

T�� = �L�� � 4LF F�� F
�
�: (7)

Using the equation of motion and after some manipulation, one obtains the expression
that contains all information on the balance of forces through the exchange of energy of
the �eld and the currents independently of the particular form of the Lagrangian. Indeed,
we obtain

@� T
�� = �F �� J ext

� : (8)

3.1 Propagation of the Discontinuities in Non-Linear Electro-

dynamics

From the standard geometrical optic approximation, front waves can be characterized by
discontinuities of certain derivatives of the �eld. The evolution of these discontinuities is
determined by the �eld equations of motion. A rather simple and elegant method to deal
with such discontinuities was provided by Hadamard [4], and will be used in this section.

Let � be a surface of discontinuity for the electromagnetic �eld and k� is the normal
4-vector on �. Following Hadamard's condition let us assume that the �eld is continuous
through � but its �rst derivative is discontinuous. We set

[F��]� = 0; (9)

and
[@� F��]� = f��k�; (10)

in which the symbol [J ]� represents the discontinuity of the function J through the surface
�.

Applying these conditions into the equation of motion (2) we obtain

LF f
�� k� + 2LFF �F

��k� = 0; (11)

where � is de�ned by
� � F �� f��: (12)

The cyclic identity yields
f��k� + f��k� + f��k� = 0: (13)

Multiplying this equation by k� F �� yields

�k� k�
�� + 2F ��f��k

� k� = 0: (14)
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From the Eq. (11) it results:

f�� k
� = � 2

LFF

LF

�F�� k
� : (15)

After some algebraic manipulations, the equation of propagation of the disturbances
is obtained:

f�� + ���g k�k� = 0 (16)

in which �� is the Minkowski metric written in an arbitrary coordinate system and the
quantity ��� is provided by:

��� � �4
LFF

LF

F ��F�
� : (17)

The main lesson we learn from this is that, in the non-linear electrodynamics, the
disturbances propagate not in the Minkowskian background, but in an e�ective geometry
which depends on the energy distribution of the �eld. The net e�ect of the nonlinearity
can thus be summarized in the following property.

� The disturbances of nonlinear electrodynamics are null geodesics that propagate in
the modi�ed geometry:

g�� = �� � 4
LFF

LF

F �� F�
� : (18)

A simple inspection on this formula shows that only in the particular linear case of
Maxwell electrodynamics does the discontinuity of the electromagnetic �eld propagates
in a Minkowski background5. From equation (18), we obtain the speci�c form of the
components of the metric tensor:

g00 = 1� 4
LFF

LF

E2; (19)

gij = ij + 4
LFF

LF

�
EiEj +BiBj � ij BkBk

�
; (20)

gol = �4
LFF

LF

li�ijk E
j Bk; (21)

in which we have set E2 = �E�E
�.

Before going into a speci�c model, let us make here a comment. Linear photons
propagate in a Minkowskian underlying background. Non linear photons propagate in an
e�ective geometry given by Eq. (18). Note, however, that this situation is not competitive
to gravity processes. The reason for this is easy to understand: the above modi�ed
geometry (in case of non-linear electrodynamics) is not a universal one. Indeed, other
kinds of particles and radiations behave as if the background metric were that dealt
with in special relativity: the charged electrons follow time-like paths with respect to
Minkowski metric.

5However, it is possible to present the wave propagation of Maxwell electrodynamics in a dieletric
medium in terms of a modi�ed geometry of the spacetime | see Appendix A.
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Let us make a �nal comment on these expressions of the e�ective geometry. Although
we will not examine the properties associated to the metric tensor g�� , we would like to add
the following. The background geometry, the Minkowski metric tensor, is the responsible
for lowering and raising all coordinate indices. However, there may exist circumstances,
if one is dealing with the associated curvature for instance, where one should know the
inverse metric g�� de�ned by

g�� g
�� = ��

� : (22)

In this case, the inverse is not obtained by means of the Minkowski tensor. Nevertheless
there is no di�culty to obtain such expression in a compact form | see the Appendix B.

4 Strong Interaction

So much for an Abelian theory. Let us analyse now the case of the gauge theory of strong
interactions. We start by considering a set Aa

� of color multiplet that constitutes a Yang-
Mills �eld of a non-Abelian theory6 with F a

�� as the corresponding �eld. Let F be the
invariant under space-time and internal color coordinates, de�ned by:

F � ~F ��: ~F�� = F a�� Fa��: (23)

The dynamics set up in the Yang-Mills approach recover Maxwell electrodynamics by
the identi�cation of the Lagrangian to such a quantity, that is, LYM = F. Should this
be taken as an irretrievable paradigm? Does a change on this hypothesis, in the hadron
world, yield the desirable consequences? Before answering this question, let us make a
small comment on the classical description.

From a broad principle the Lagrangian should have the general non-linear form

L = L(F): (24)

Although one can go further without being necessary to specify the form of such a func-
tional, in order to have a de�nite model that exhibits in a simple manner the main aspects
of our ideas, we limit all our considerations here to a speci�c toy model provided by7:

LNDE = �
1

4
F

�
1�

F

�s

�
�1

; (25)

in which �s is a constant. The corresponding equation of motion is given by

Dac
�

"�
1 �

F

�s

�
�2

F ��
c

#
= 0 (26)

that is

[�cd@� + g cacdA
a
�]

(�
1�

F

�s

�
�2

F d��

)
= 0; (27)

6We have in mind, for instance, the standard SU (3) non-Abelian QCD model.
7We would like to note that all of the following conclusions are qualitatively independent of such a

form.
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where cabc are the constants of the structure of the gauge group and g is the strong inter-
action coupling constant. To proceed with the examination of the corresponding behavior
of the classical gluons in such non-linear theory there is no better way than to consider the
very high energy case through the analysis of the eikonal. In the standard Yang-Mills dy-
namics, the eikonal is nothing but null-cones of the Minkowski background spacetime, as
in Maxwell theory. This is not the case for our Lagrangian. Indeed, there exist examples
of spin-one theories in which the eikonal follows null geodesics in an e�ective geometry
which depends not only on the background metric, but also on the �eld properties. This
has been shown in the case of pure non-linear electrodynamics [3]. This result is still valid
in the non-Abelian gauge theory, as we will now show8.

Let � be a surface of discontinuity for the gauge �eld. Following Hadamard's [4]
condition, we take the potential and the �eld as being continuous through � but having
its �rst derivative discontinuous, that is:

[F a
��]� = 0; (28)

and
[@� F

a
��]� = fa��k�; (29)

in which the symbol [J ]� represents the discontinuity of the function J through the surface
� and k� is the normal 4-vector on �.

Applying these conditions into the equation of motion (26), we obtain

f��a k� +
4

�s � F
�F ��

a k� = 0; (30)

where � is de�ned by
� � F ��

a fa��: (31)

From the cyclic identity,

Dbc
� F

a
�� +Dbc

� F
a
�� +Dbc

� F
a
�� = 0 (32)

and using the above continuity conditions of the potential and the �elds, we obtain

fa��k� + fa��k� + fa��k� = 0: (33)

Multiplying this equation by k� F ��
a yields

�k� k�
�� + 2F ��

a fa�� k
� k� = 0: (34)

Using Eq. (30) in this expression and after some algebraic manipulations, the equation
of propagation of the disturbances is obtained:

f�� + ���g k�k� = 0 (35)

8At the basis of this property rests the fact that the dependence of the group connection on the
potential does not contain derivatives, but only an algebraic form. Standard conditions for the wave
disturbances, like Hadamard's structure, imply that this sector of the non-linearity does not a�ect the
velocity of propagation.
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in which the quantity ��� is

��� � �
8

�s �F
F a�� Fa�

�: (36)

The net e�ect of this modi�cation of the non-linearity of the Yang-Mills theory can thus
be summarized in the following property: The disturbances of the gauge �eld controlled by

the non-linear Lagrangian LNDE propagate through null geodesics of the modi�ed e�ective

geometry given by:

g�� = ��� �
8

�s � F
F a�� Fa�

�: (37)

Let us emphasize that this property stands only from the structural form of the dy-
namics of our theory. To avoid misunderstanding9 we state:

� This geometry modi�cation is a pure spin-one non-linear phenomenon.

Thus, we conclude from the above statement that gluon dynamics can be examined
through the properties of null geodesics in the modi�ed geometry. The fact that in this
theory massless spin-one particles do not follow Minkowski null cone occurs as a direct
consequence of the particular non-linear dynamics used in our model, which is distinct
from the one contained in standard Yang-Mills theory.

In order to show the con�nement induced by such non-linear model, there is no better
way than to investigate the behavior of the null geodesics in this geometry. For our
purposes, we restrict ourselves here to the analysis of a spherically symmetric and static
solution. A direct computation shows that, in the spherical coordinate system, such a
particular solution can be found uniquely in terms of a radial component given by:

F a
01

= f(r)na; (38)

in which na is a constant vector in the color space and f(r) is given by the relation:

f(r)

[�s + 2f(r)2]2
=
e
4Co

�2
s

r2
; (39)

where Co is the constant of integration. We can determine its value by imposing the
Maxwell asymptotic limit for large r, i.e.,

f(r) =
Q

r2
: (40)

The parameter Q is related to distribution of the charge q(r):

Q =

Z
d3xq(r): (41)

9The reason for this additional assertion is due to the fact that modi�cations on the underlying
geometry are traditionally supposed to be connected to gravitational forces. We would like to stress that
this is not the case here.
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Introducing this result in the exact solution we obtain:

f(r)

[�s + 2f(r)2]2
=

Q

�2sr
2
: (42)

From the standard de�nition of the energy momentum tensor we obtain:

T�� =
1

4

�sF

�s � F
�� +

�2s
(�s �F)2

~F��: ~F
�
�; (43)

and for the density of energy T00 results:

T 0
0 =

Qf(r)

2�sr2
�
�s � 2f(r)2

�
: (44)

A remarkable characteristic of the e�ective geometry induced by this non linear spin-1
�eld theory may be made explicit by looking into the line element of the corresponding
e�ective geometry in which the massless spin-1 particles travel. Before this, however,
it seems worth to make the following remark. The method of Hadamard used in the
previous section enables us to obtain the propagation of the disturbances in terms of g�� ,
a modi�ed metric of the underlining Minkowski one. In order to analyse this propagation
as a null geodesic we need the covariant form of the e�ective geometry | g�� | de�ned
by the relation (22).

In this particular case where the metric is diagonal, the inverse is obtained trivially.
For completeness and future reference we present the general expression of the inverse
metric in a compact form in the Appendix B.

From Eq. (37) and the spherically symmetric solution of the background, we obtain
the following non-vanishing contravariant components of the metric:

g00 =
�s � 6f(r)2

�s + 2f(r)2
(45)

g11 = �g00; (46)

g22 = �
1

r2
= sin2 �g33: (47)

Thus the line element associated to the e�ective metric seen by the perturbations of the
gauge �eld, that is,

ds2 = g��dx
�dx� (48)

is provided by

ds2 =

�
�s + 2f(r)2

�s � 6f(r)2

�
dt2 �

�
�s + 2f(r)2

�s � 6f(r)2

�
dr2 � r2 d �2 � r2 sin2 � d�2; (49)

in which f(r) is given by Eq. (42). A direct inspection of the line element shows that there
is a value of the function f(r) in which the g00 and g11 metric components are singular.
This critical point (rc) corresponds to the solution given by

f(rc) =

r
�s
6

(50)
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Note, however, that this is not a true physical singularity. Indeed, let us look into the
e�ective potential in order to prove this10.

To obtain the form of the potential, it is enough to look for the radial equation of
motion of the geodesics in this solution, as a function of the proper time. The simplest
way to arrive at this result is by means of the variational principle

�

Z ��
�s + 2f(r)2

�s � 6f(r)2

�
_t2 �

�
�s + 2f(r)2

�s � 6f(r)2

�
_r2 � r2 _�2 � r2 sin2 � _�2

�
ds = 0 (51)

in which we have used the e�ective geometry | as it appears in Eq. (49). A dot means
proper time derivative. The radial dependence yields:

_r2 + Veff = l2
0

(52)

in which the potential Veff has the form:

Veff =
�s � 6f(r)2

[�s + 2f(r)2]2

�
�2sh

2

0
f(r)

Q
� l2

0

�
�s � 6f(r)2

��
+ l2

0
; (53)

and h0 and l0 are constants of motion.
A direct inspection on the form of this potential shows that the gluons in the LNDE

non-linear theory behave as particles endowed with energy l2
0
, immersed in a central �eld

of forces characterized by the potential Veff . To present a speci�c form of this potential in
terms of the radial coordinate r, let us consider an approximated solution for the function
f(r). Expanding the function f(r) in a series we can write:

f(r) =
Q

r2
+O

�
r�6

�
: (54)

Which yields the potential:

Veff =

h
�s �

6Q

r4

2
i
h2
0

r2
�

h
�s �

6Q

r4

2
i2
l2
0

�2s
+ l2

0
: (55)

The behavior of Veff (r) is very similar to the behavior of photons in a Schwarzschild
gravitational �eld. We note that coordinates t and r interchange their role at the critical
radius rc. The region r = rc de�nes a null surface for the e�ective geometry 11, which
means that gluons path (i.e., the null cones in the e�ective geometry) have their concavity
turned to the inside domain, in a very similar way as it happens in a gravitational black
hole. This allows us to claim that gluons are hidden in a compact domain, limited by the
critical radius.

10It seems worthwhile to quote here an analogous situation occurring in Einstein's theory of general
relativity in the case of the Schwarzschild solution. In both situations we are dealing with a horizon and
not with a true singularity.

11See Appendix C for details.
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5 Conclusion

Let us summarize what we have achieved. Massless spin-one particles (gluons) obeying
Yang-Mills dynamics travel along null cones. In a Minkowski spacetime there is no way to
con�ne such particles in a compact region, once it could be associated with the presence
of a singular horizon. We are then led to a modi�cation of the self interaction properties
of the gluons. We present here a model that can be equivalently described in terms of
an e�ective change of the background geometry. We analyse a particular example of a
static, spherically symmetric solution and proceed to the exam of the corresponding null
geodesics, the gluon paths, in the associated geometry. It then follows that the behavior
of gluons can be examined in terms of the potential given in Eq. (53) showing, through
the appearance of a horizon, the required con�ning feature. This result allows us to argue
that the solution of the con�nement of the gluons could well be found along these lines.
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Appendix

A { Dielectric Constant and the E�ective Geometry

In order to show the non-familiar reader the treatment that involves dealing with the
propagation of the non-linear theory as a modi�cation of the background geometry, we
will present here the simplest possible case of the standard Maxwell theory in a dielectric
medium. We will show how it is possible to present the wave propagation of linear
electrodynamics in a medium in terms of a modi�ed geometry of the spacetime.

In this section we take the Maxwell theory in a medium such that the electromagnetic
�eld is represented by two anti-symmetric tensors F�� and P�� given in terms of the electric
and magnetic vectors, as seen by an arbitrary observer endowed with a four-velocity v�,
by the standard expressions:

F�� = E� v� � E� v� + ���
�� v�H�; (A.1)

and
P�� = D� v� �D� v� + ���

�� v�B�: (A.2)

Maxwell equations are:
@� F �

�� = 0; (A.3)

@� P�� = 0: (A.4)
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Following Hadamard, we consider the discontinuities on the �elds as given by:

[@�E�]� = k� e�; (A.5)

[@�D�]� = k� d�; (A.6)

[@�H�]� = k� h�; (A.7)

[@�B�]� = k� b�: (A.8)

Using the constitutive relations12:

d� = � e�; (A.9)

b� =
h�
�
; (A.10)

one obtains after a straightforward calculation:

k� k� [�
�� + (� �� 1)v� v�] = 0: (A.11)

This shows that even the simple case of the evolution of the wave front in standard
Maxwell equation in a medium can be interpreted in terms of an e�ective geometry g��

that depends not only on the medium properties � and �, but also on the observer's
velocity, given by:

g�� � ��� + (� �� 1)v� v�: (A.12)

This ends our proof.

B { E�ective Geometry

In order to obtain the general form of the inverse geometry, one must use some well-known
properties of the F�� tensor. Let us set the geometry as a non-linear perturbation of the
Minkowski metric

g�� = �� + ��� (B.1)

For the case we are interested here we have

��� = F �� F�
�: (B.2)

The inverse metric tensor could be obtained in the usual form as an in�nite series13

g�� = �� � ������ + ::: (B.3)

However, in the particular case we are considering in this paper, such a procedure can be
considerably simpli�ed. This can be done by using the following relations:

F �

�� F
�� = �

1

4
F ���

�; (B.4)

12We deal here with the simplest case of linear isotropic relations, just for didactic reasons.
13We would like to thank R. Rodrigues and R. K. Barcellos for the suggestion that this series can be

written in a compact way under general circumstances.
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and

F �

�� F
��� � F�� F

�� =
1

2
F ��

� ; (B.5)

in which
F � = F ��F �

��: (B.6)

From these identities we obtain

��
� ��� =

1

16
F �2�� �

1

2
F���: (B.7)

Thus the covariant form of the metric yields

g�� = ��� + ���� (B.8)

where,

� =
16

F �2 + 8F � 16
; (B.9)

and

� = �

�
F

2
� 1

�
: (B.10)

C { The Null Surface

Let us consider the surface  = r = const in the case of the solution examined in the
previous section. We are interested here in the analysis of the characteristics of the
equation of motion of the non linear electromagnetic �eld in the neighborhood of the
critical radius de�ned by relation,

f(r = rc) =

r
�s
6
; (C.1)

that results the value for this radial coordinate:

rc =
4

3

s
Q

r
6

�s
: (C.2)

Using the metric g�� , we have

 � �g
�� =  1 1g

11 = �( 1)
2

�
�s � 6f(r)2

�s + 2f(r)2

�
; (C.3)

where we have set  � = @� . At the value r = rc, this relation vanishes showing that the
surface  is a null surface at the critical radius, for the non-linear photon.
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