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Summary. { The anisotropy in favoured alpha transitions which produce even-even
deformed nuclei is discussed. A simple, Gamow's-like model which takes into account
the quadrupole deformation of the product nucleus has been formulated to calculate the
alpha decay half-life. It is assumed that before tunneling into a purely Coulomb potential
barrier the two-body system oscillates isotropically, thus giving rise to an equivalent,
average preferential polar direction �0 (referrred to the symmetry axis of the ellipsoidal
shape of the product nucleus) for alpha emission in favoured alpha transitions of even-even
nuclei.
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The present work reports on the anisotropy of ground-state to ground-state alpha transi-
tions which produce even-even deformed nuclei. A simple, Gamow's-like model in which
the quadrupole deformation of the product nucleus is taken into account has been for-
mulated, yielding a formula with no adjustable parameter to calculate the half-life of
favoured alpha decays of even-even parent nuclei.

In this approach the shape of the product nucleus is assumed to be the one of an
ellipsoid of revolution with semi-axes a = b 6= c, the amount of deformation, d, being
de�ned by the intrinsic electric quadrupole moment, Q2, of the ground-state product
nucleus.

TheQ�-value as well as the reducedmass of the disintegrating system, �, are calculated
from the nuclear (rather than the atomic) mass-values of the participating nuclides:

Q� = [mP � (mD +m�)]F(1)

1

�
=

1

mD
+

1

m�
:(2)

Here, mP and mD represent, respectively, the nuclear mass of the parent and daughter
nucleus, m� is the alpha-particle mass, and F is the mass-energy conversion constant.
The nuclear mass is calculated by

m = M � Zme +Be;Z;(3)

where M is the atomic mass, Be;Z is the total binding energy of the Z electrons in the
atom, and me is the electron rest mass. The Be;Z -values are evaluated by

Be;Z = 8:7 � 10�6 Z2:517

F
u; Z � 60 ;(4)

which expression has been derived from data reported by HUANG et al [1]. Atomic mass
values are those listed in the \1993 Atomic Mass Table" by AUDI and WAPSTRA[2],
from which Table the values

me = 548579903 � 10�12 u

m� = 4:0015061747u

F = 931:494313
MeV

u

have been taken and used throughly.
The frequency of oscillation for the relative two-body motion (�0 � 1021 � 1022s�1) is

calculated as

�0(�; d) =
v

2s0(�; d)
;(5)

where � is the polar angle referred to the symmetry axis of the ellipsoid, d = 250 Q2=Z2

(d in fm2 and Q2 in barn) de�nes the degree of nuclear deformation, and Z2 is the atomic
number of the product nucleus; v = (2Q�=�)1=2 is the relative velocity, and s0 denotes
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the separation between the centres of the fragments at contact. This latter quantity is
given by

s0(�; d) = [A� (A� C)cos2�]�1=2(6)

with

A = (a+R�)
�2 ; C = (c+R�)

�2 ;(7)

where R� represents the equivalent sharp charge radius of the alpha particle. The R�-
value is set equal to (1:62 � 0:01)fm, as it comes from the charge density distribution
resulting from data on elastic electron scattering from 4He as obtained by SICK et al. [3].

The con�guration at contact is de�ned at the sharp surface of the neutron (rather than
the charge) density distribution of the product nucleus. The semi-axes of the ellipsoidal
shape of the product nucleus are determined by assuming that the neutron density dis-
tribution deforms in the same way as the charge density distribution does, where volume
is preserved in both cases. Accordingly, the semi-axes are given by

a = b =

 
R3
n2

c

!1=2

; c = 2�1=3Rn2

h
(1 +B)1=3+ (1 �B)1=3

i
;(8)

where

B =

2
41 � 4

 
d

3R2
ch2

!3
3
5
1=2

;(9)

and Rn2 and Rch2 are, respectively, the equivalent sharp radius of the neutron and charge
distribution of the product nucleus.

The Rch2 -values are calculated from the average hr2chi
1=2 of the nuclear root-mean-

square charge radius values taken from a number of compilations and systematics of charge
radii [4{13]. Here, the droplet model description for the radial moments (with contribu-
tions from the size, redistribution, and di�useness) following MYERS and SCHMIDT [4]
is used, thus obtaining

Rch2 =
1

2

(�
4:41 � 10�6Z2

2 +
20

3

�
hr2chi

1=2
�2
� 19:602

�1=2
� 2:1 � 10�3Z2

)
:(10)

This expression gives Rch2 -values (expressed in fm) with uncertainty <
�

1%.

The Rn2 -value is taken as the mean value (RM
n2

+ RD
n2
)=2 of two equivalent sharp

neutron radius evaluations. The �rst one (denoted by RM
n2
) results from the droplet

model description of atomic nuclei, the values of which (expressed in fm) are those listed
in the table of equivalent sharp neutron radii by MYERS [14]. The second one (denoted
by RD

n2
) comes from the most recent systematics for neutron radii in even-even nuclei by

DOBACZEWSKI et al. [13]. This systematic study predicts hr2ni
1=2-values in excellent

agreement with experimental neutron root-mean-square radii derived from the analysis
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of high-energy polarized proton scattering experiments on nuclei. According to [13] the
root-mean-square neutron radii (expressed in fm) can be calculated by

hr2ni
1=2 = rn =

�
3

5

�1=2

� 1:176A
1=3
2

�
1 +

3:264

A2
+ 0:1341

�
1 �

2Z2

A2

�
�(11)

�
0:7121

A2
2

+
4:828

A2

�
1 �

2Z2

A2

��
+�rn ;

where A2 is the mass number, and the �rn-values are taken from the color-code graph of
�gure 4 in Ref. [13]. By using the general relationship between hr2i1=2 and R [15], and
adopting the value 0:99 fm for the nuclear di�useness, the RD

n2
-values are obtained by

RD
n2

=
�
5

12

�1=2

rn

8<
:1 +

"
1 � 6

�
0:99

rn

�2
#1=29=

; :(12)

The uncertainty associated with the Rn2 -values evaluated as described above results to
be �1�1:5%.

The assumption is made out that before tunneling into the potential barrier the two-
body system oscillates isotropically, giving rise to an average frequency of oscillation,
��0(d), which does correspond to an equivalent, average preferential polar direction �0 for
alpha emission. This assumption is expressed by

��0(d) =
1

4�

Z �

0
�0(�; d)2�sin�d� = �0(d; �0) ;(13)

which leads to an anisotropic alpha emission at the average polar direction �0 in favoured
alpha transitions of even-even nuclei.

The predicted anisotropy in alpha emission is expected to occur for cases of both
prolate{ and oblate-shaped product nuclei. Equations (5{7) and (13) are handled to give

cos�0 =

8<
:
�
1�

C

A

��1

�

"
1

2

 �
A

C
� 1

��1=2

+
�
1�

C

A

��1

� arc sin
�
1 �

C

A

�1=2
!#29=

;
1=2

;

(14)

which is valid for prolate-shaped product nuclei, i.e., Q2 > 0, a < c, and C=A < 1, and

cos�0 =

8<
:
"
1

2

 �
1 �

A

C

��1=2

+
�
C

A
� 1

��1

� arc sinh
�
C

A
� 1

�1=2
!#2

�
�
C

A
� 1

��1
9=
;

1=2

;

(15)

which is valid for oblate-shaped product nuclei, i.e., Q2 < 0, a > c, and C=A > 1.
The equivalent, average preferential polar direction for alpha emission is found to

vary very weakly within the range of deformation of known even-even nuclei [16, 17]. In
fact, from equations (14) and (15) it results that the �0-values are found in the range
� 53:40 � 54:70 for all prolate cases, and in the range � 54:80 � 56:00 for the oblate ones.
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The decay constant,

�(d) = ��0(d)P (d; �0) ;(16)

is therefore calculated at such average preferential �0 direction, where

P (d; �0) = exp[�G(d; �0)](17)

is the penetrability factor through a purely Coulomb potential barrier, V (d; �0; s), at
separation s � s0(d; �0), and G(d; �0) is Gamow's factor for decay given by the classical
WKB-integral approximation

G(d; �0) =
2

~

Z s0(d;�0)

s0(d;�0)
f2�[V (d; �0; s)�Q�]g

1=2 ds ;(18)

in which the outer turning point s0 is de�ned by

V (d; �0; s
0) = Q� :(19)

The Coulomb potential energy for the interaction between the alpha particle (Z1 = 2)
and the product nucleus (supposed to have only quadrupole deformation) at separations
s � s0 has been deduced as [18]:

V (d; �0; s) =
Z1Z2e

2

s
g(d; �0; s) ;(20)

where, for prolate deformations (Q2 > 0, d > 0, x = d=s2 > 0)

g(d; �0; s) =
3

2

(
n

x1=2
arc sinh

"
x1=2

�
2

m� x

�1=2
#
+ p

)
;(21)

and, for oblate deformations (Q2 < 0, d < 0, x = d=s2 < 0)

g(d; �0; s) =
3

2

(
n

(�x)1=2
arc sin

"
(�x)1=2

�
2

m� x

�1=2
#
+ p

)
;(22)

with 8>>>>>>>>>><
>>>>>>>>>>:

m = 1 + (1 � 2x cos2�0 + x2)1=2

n = 1 +
1� 3cos2�0

2x

p =
21=2cos2�0
x(m+ x)1=2

�
(m+ x)1=2sin2�0
21=2x(m� x)

;

(23)

and e2 = 1:4399652 MeV�fm is the square of the electronic charge.
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Finally, by expressing masses in u, energies in MeV, lengths in fm, and time in yr, the
following formula can be used as routine to calculate the alpha decay half-life:

T1=2 = 3:16 � 10�30

 
�

Q�

!1=2

s0(d; �0)exp
h
0:5249578932 (Z1Z2�)

1=2I
i
;(24)

where

I =
Z s0

s0

"
g(d; �0; s)

s
� q

#1=2
ds ; q =

Q�

Z1Z2e2
;(25)

and s0 is the solution of the equation g(d; �0; s0) = qs0. Equation (24) gives absolute values
for the half-life in the sense that it does not contain any adjustable parameter.

The preferred alpha decay of 252Cf isotope has been selected to test the present model.
Since the deformation parameters for 248Cm product nucleus have been calculated as
�2 = 0:235, �3 = 0, �4 = 0:04, and �6 = �0:036 [17], it follows that 248Cm exhibits
essentially a quadrupole deformation. The measured intrinsic electric quadrupole moment
for 248Cm is reported as Q2 = 12 b [10], for which case it yields �0 = 54:1350. The
corresponding predicted half-life results to be (2:7 � 1:0)yr, in quite good agreement
with the measured value of (3:18 � 0:09)yr [19]. If the assumption of spherical-shaped
product nucleus was made the predicted half-life by the present Gamow's-like model in
the spherical approximation, i.e., Q2 = 0, d = 0, a = b = c = Rn2 , s0 = Rn2 + R�,
V (s) = Z1Z2e

2=s, and s0 = Z1Z2e
2=Q�, would result (1:94� 0:58)yr. This latter value is

clearly more distant from the experimental one than is the calculated half-life when the
quadrupole deformation of 248Cm product nucleus is taken into account. Figure 1 shows
the e�ect of deformation of the product nucleus (assumed to be an ellipsoid of revolution)
on potential Coulomb barrier for the favoured decay 252Cf !248Cm+4He. The potential
energy, V (s), calculated in the separation region s0 � s � s0 at the extreme emission
directions � = 0 (pole) and � = �=2 (equator) is compared with the potential barrier
obtained in the spherical approximation. It is seen that not only the V (s)-curves di�er
from each other, but large di�erences are noted mainly among the separation-values at
the contact con�guration. The combined e�ect from such di�erences leads therefore to
di�erent predicted half-life values.

The same happens to 190Pt!186 Os+4He decay (Q2 = 5:4 b, �0 = 54:3140), for which
case the predicted half-life of (2:6 � 1:0) � 1011yr agrees quite well with the most recent
measured value of (3:2�0:1) �1011yr [20]. In this case, the value (2:3�0:7) �1011yr results
if one assumes the spherical shape for 186Os product nucleus.

An example of even-even oblate-shaped daughter nucleus is found in 184Pb!180 Hg+
4He decay, with experimental half-life of 1:7 � 10�8yr. The quadrupole deformation pa-
rameter for 180Hg is reported as �2 = �0:122 [17], which corresponds to an intrinsic
electric quadrupole moment of Q2 = �3:12 b. The equivalent, average preferential di-
rection for alpha emission is calculated as �0 = 55:00, and the predicted half-life results
to be 1:4 � 10�8yr, in quite good agreement with the measured value. Since the amount
of oblate deformation for 180Hg product nucleus is small, the predicted half-life does not
di�er appreciably from 1:2 �10�8yr as obtained under the spherical-shaped approximation
for 180Hg.
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The examples reported above show that little changes from the spherical to either
prolate or oblate shape of the product nucleus may explain the expected anisotropy in
favoured alpha decays of even-even nuclei. The experimental half-lives of preferred alpha
transitions producing deformed nuclei should be better reproduced when deformation
is taken into account in Gamow's-like model than in its spherical approximation. A
systematic half-life prediction study on these lines should be worked out.

To conclude, it is worthwhile to mention that a microscopic description of the alpha
decay in axially deformed nuclei has been presented recently by DELION et al. [21-23]
and STEWART et al. [24], and experimental observations of remarkably pronounced
preferential alpha emission in odd-A alpha emitters have been reported by SOINSKI and
SHIRLEY [25], WOUTERS et al. [26], and very recently by SCHUURMANS et al. [27].

**********

The author wishes to express his warmest thanks to Prof. H.G. de Carvalho for
encouragement and many stimulating, valuable discussions.
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Figure Caption
Figure 1 Coulomb potential barrier, V (s), plotted against separation, s, for the favoured

alpha decay of 252Cf isotope. The 248Cm product nucleus is supposed to be an
ellipsoid of revolution (semi-axes a = b < c) of total charge uniformly distributed
in the volume. � is the polar emission angle referred to the symmetry axis of the
ellipsoid. The Q�-value for decay is represented by the horizontal dashed line. The
curves represent the calculated potential barrier for � = 0 and � = �=2 (ellipsoidal
shape), and for the spherical approximation of the product nucleus as indicated.
Also shown are the inner (s0) and outer (s0) turning points in each case.
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