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ABSTRACT

We show that the one-dimensional Ising and XXZ open spin chains in a
magnetic field and with surface fields are invariant under a two-parametric
generalization of the sl,(2) algebra with deformation parameters being a root
of unit.
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Since the discovery of quantum (or deformed) algebras there has been
an intense activity on the study of their connections to physical systems [1].
Very recently, an old discrepancy between theory and experiment concerning
the stability of phonon spectrum in * He was overcome [2] by treating the gas
of phonon excitations in *He as an ideal deformed bosonic gas. Moreover,
this deformed model [2] reproduces within 5% of accuracy the experimental
4He molar specific heat for T < 1°K. In brief, the low energy excitations
in superfluid *He seem to be an example of the presence and relevance of
deformed algebras in nature.

The quantum algebra sl,(2) was first introduced by Kulish and Reshetikhin
[3] and independently by Sklyanin [4] within the approach of the quantum
inverse scattering method (QISM) [5]. Later, quantum algebras were intro-
duced by Jimbo [6] as g-analogues of classical Lie algebras and presented as
quasitriangular Hopf algebras by Drinfeld [7]. Of particular interest is the
relation of this algebraic structure to one-dimensional spin chains [8]; for ex-
ample, the XXZ and XYZ open chains are connected to the si,(2) [9] and
Sklyanin [10] algebras respectively. It is the purpose of this letter to give a fur-
ther contribution to the above connection: we show that the one-dimensional
Ising and XXZ open chains in an external magnetic field and with surface
fields are both invariant under a two-parametric (g, A) generalization of the
sl,(2) algebra at q and X being a root of unit. This generalization, firstly
introduced by Bazhanov and Stroganov [11], is a six-generator bi-algebra
defined from the Fundamental Commutation Relations of the QISM for a
two-state trigonometric R-matrix with two modulo one parameters.

Let R(z) be an invertible matrix acting in C? @ C2, given explicitly as
[12]

qr — ¢zt 0 0 0
0 Mz — 27t Qr 0
R(z) = : A Y
0 0 0 qr — q lx1

where 7 is a variable, = ¢—q¢~!, X and ¢ are non-zero complex parameters.
This R-matrix (eq.(1)) satisfies the Yang-Baxter equation [13]

Ria(z/y) Ri3(z) Ras(y) = Ras(y)Riz(z) Ria(w/y), (2)

where Ris = 57,0, 6, @1, Riz3 = Y;0; ® 1 ® b; etc., with the R-matrix
written in this notation as R=5>",a;, ® b; .
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Define an operator L(z) in C?® CV, N > 2, satisfying the Fundamental
Commutation Relations (FCR) [5]

Riz(x/y)Li(z)La(y) = La(y)Li(z) Ri2(z/y), (3)

where I; =L ®1, Ly =1® L and 1 is the unit matrix in C2.
Using for L(z) a similar dependence in z that we have for R(z) (eq.(1))
one chooses an L-operator of the form

L(z) = 2Lt +27'L7, (4)

where LT(L™) is independent of z and has an upper(lower) triangular form
in C2.

Substituting eq.(4) into the FCR one gets seven equations but only three
of them are independent. Considering the R-matrix given by eq.(1) the three
independent equations reduce to

[LE L3 = [L§, L =0, i,j=1,2,
L1i1L12 = W_S”(i)L+ Li ) L:ltle_l = Wsa(i)LiLitp
Li p L =w @ szLgcz ) L2izL2—1 = W’ L2_1L2i2a

Ly Liy =wLiLy — (W™ — w™*2) (LT Ly — L L1), (5)
where o(4+) = 2, o(=) = 1, w = ¢* and [14]
(@) '=wt, AT =W, N =w (6)

The relations in eq.(5) can be considered [11] as the definition of a bi-algebra
with six generating elements L¥ and LY, L3; and co-product

AL = Z L; (7)

This algebra will be called the two-state fundamental commutation algebra
and will be denoted as F'C,(2) since it is defined through the relations (eq.(5))
which comes from the FCR (eq.(3)) using the two-state R-matrix defined in
eq.(1). The si,(2) algebra is obtained by setting

A=1, LS, =Ly , e==+. (8)
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Moreover, if one requires that
detcz(LS;) # 0, (9)

for all values of €, %, 7, from eq.(5), it follows that this happens provided that
w = exp(27i/N) and in this case from eq.(6) one easily obtains

$1+ 52+ s3 =0 (mod.N) , sz —s1=1(mod.N). (10)
It is convenient to introduce a matrix S* defined by [14]

Y SiwLiE; =D LS = bilivxny,s (11)
k k

where 1(y ) is the N x N unit matrix. Let gy be the algebra generated by
S5 and L;;. One can show that Qs given by [14]

Qu =Tr {@(L—S+)M} . M=1,2, (12)

where © = diag(q?, 1) and the trace is taken in C?, are Casimir operators of

2.
When M = 1, we have

Q1 =wA; + Ay + L;lsf“z =A; +wAs + S]_EL2_1) (13)

where A; = L3 S; and the second form of Q; in the above equation is ob-
tained from the first one through the use of

(L3, S%] = (1 —w) (A1 — Ag). (14)
From the commutation relations among A;, L;; and S{;

A1L2_1 = w—1L2_1A1 y Alsﬁ = (.dSiEAl,
AsLy =wLlj Ay, AxShHh=w"'SHAs, (15)

the commutation properties of Q; are readily seen. Since in eq.(13) the
operators S5 and Lj; always appear in pairs, using eq.(15) one sees that

[Ql,Ai] = [Ql,Liﬂ =0. (16)
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Moreover,

Lp@Qi = Ly +wlyAs+LySily
= (wA;+ Az + Ly S%) L = @QiLa,
SHQ: = wSHAL+ ShAs + 5Ly St
= (A +wAy + StLa) Sth = QuSih, (17)

where it was made use of eqs.(13, 15). Finally, from egs.(11, 16) one also has

[Qla LTZ] = 0.
In the same way one analyses the case where M = 2. From eq.(12) and

by a repeated use of eq.(14) two useful forms of @, are obtained

Q, = WA+ A +w(l—w)AiAs+2(wA; + A2) Ly STy
+ Ly SihLnSis
= A2+ WAL+ w(l —w)A1A; + 2 (A1 +wA) SHLy
+ SHL7ShLa. (18)

Following the steps described in the previous case one gets the commuta-
tion properties of Q. It is interesting to note that if one considers the
two-parameter solution of eq.(5) referred to in the literature as slg(2) (for
instance, see [15]) one easily obtains that Qs is dependent of Q;. In what
follows, we shall see for the generalization we are considering here that @,
for ¢ = 1, 2, are independent.

Let us now analyse the role played by @ in the algebra F° C,(2). First we
rewrite them in terms of the generators of FCy(2); performing appropriate
substitutions we obtain

Q= "‘)L1_1(LIL1)—1 + ng(L;2)—l _Wsz(Lirl)—l(L;E)_le_lsz
= LO(LH) ' 4 wlan(Ly) ™ —w ™ (LH) (L) T Lhly  (19)
and
Q2 = Wz(Ll_l)Q(Lfl)_2 +w(l— W)Ll_le_z(Lfl)_l(ng)_l
20 (wLiy (L) ™ + Lan(Lf) ™) (L) (L) L L
+ W (L;rl)_z(L;2)_2L2_1L1F2L51Lf2 + (L2_2)2(L2+2)_2~ (20)
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For the case where the parameters are roots of unit we see from eq.(h) that
(LE)N belongs to the center of FC,(2) i.e,

(L)Y = (5N L vxn)s (21)

where p5° are constants. Thus, we can rewrite Qu as

L = (MT)_NWLﬁ(LTl)N_l+(U;)_NL52(L;2)N_1
- (MTM; _NWS2(LTl)N—I(ng)N_nglLB (22)

and

Q5 = (i) N (L)L) + (2 )N (L) (L)

+w(l — W)(MTM;)_NLﬁL;z(Lﬁ)N_I(ng)N—l

—owr ()N () N L (L)

+(H;)_NL§2(L:{2)N_1) (LE)N‘l(L?z)N_ILz_lLTz

o ()N (L)L) P L L L L (23)

From the above expressions we see that depending on which representation
of FCy(2) is considered, one has a different form of egs.(22-23); thus Q1 and
Q, are more properly referred to as invariants of F'Cy (2).

We shall now compute Hamiltonians of spin chains, invariant under the
FC,(2) algebra for N = 9 1In the tensor product space of two N =2
representations of F'Cy(2) the invariants take the form

AQr = '(N';r)_2AL1_1ALT1+(N;)_zAngAng
(ufu;)_2ALf1AL§“2AL;1AL1+2 (24)

and
AQy = (uF) ALY + (1) (ALp)* — 2(ut ) PALLALRALT AL,
+2(,u,1+,u§“)’ZALflAL&AL;lALE - Z(MTH;)—QAngALﬁALz_lALE
() PALR ALHLALy ALY, (25)

where ALiij are given in eq.(7) and we have used sy = 2l and 51 = 2l + 1,
I; integers, which is a solution of eq.(10) for N = 2.
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The L-matrices in the cyclic representation are N x N matrices given by

11, 14]

Ly =uX ™, Ly=mX™,

L?z = M;X_Sl ’ L2_2 = /JEX_sza

Ly =2 (i X 4 €2 X7,

Ly =t Z (€uf X + 5 X7, (26)

where Z and X are N x N matrices satisfying ZX = wXZ and £, § are
constants. For N = 2 one immediately has

LTl = Nfl , Ly = o”,

L?z = M—;Ux y Loy = py 1,

L =t (ipgo? + £y 0%)

Ly =t (Eufo® +ipz0%), (27)

with 1 the 2 x 2 unit matrix and (6%, 0¥, 0%) the Pauli matrices.
Using egs.(7, 27) in eq.(24) we obtain, after a long but straightforward

calculation,

AQy

where

5]

Co
C3
C4

Cs

Cr

I

{

ol ® 1+ 10" @ 0" + 0¥ ® 0¥ + c30° Q@ 67
sl ® 0%+ 50" 1+ cgo? @ 0% + cr0” @Y, (28)

—(u )+ (u’)2 +ufud (—(e)? + (12)?)
oy (u? )2) ,
( 2
(13

62

(-

(-
M1N2( & (13)
(-

(-

Hy Mz
2

’

ﬂ1M2+ 52 1#2 +§ Hy Mo

k),
m))
p 2)
it g + €2y iy )
—,U2N2)

+
1H
THT = K 1 ) (29)

M1 Ho )

ipg iy (M
iy g (e
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Considering real, non-zero ©F, in order to have AQ; Hermitean we choose
pipy = 3 e (30)
for this choice eq.(29) reduces to

—(u)* + (12)%

cc=cr=0, c

c=c ﬂ2ﬂ2( 2u1+uz + €721 )
04:uzuz( Sz ) + €20,
es = g py (—€2(ui)? + €72 (ur)’) .- (31)

The condition of non-zero determinant (eq.(9)) can be expressed in the
case we are analysing as

(uD)? # 43, (ug)” # &uh?, (32)

which implies, for finite, non-zero &, pE, a non-zero cy and ¢ coefficients.
Moreover, cy(or c3) is zero iff

pypy = &g, (33)

which contradicts eq.(9). This conflict can be seen by multiplying the above
equation by p3 and using eq.(30). Finally, we note that the coefficient ¢; can
be zero.

For the second invariant, AQ,, we obtain the same expansion as we have
for AQ1, eq.(28), but with different coefficients

02263265=06=0
e = () 7213 (ur
2

Vuz (260 + 1),
ca = E4(ui )2 (p)* + (p
X

D+ (1) + 4(p1)%(13)?
() T ) (12 D,
er = 206 (E D + (12)?) () + (2)?) - (34)

The Hermiticity condition in this case is

() ==z )? (35)
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and under this condition the coefficients in eq.(34) reduce to
ca=cg=c5=c¢=cr =0,
o = —€4(ud)2 (i) (uz) ™t (267 + 1)
ca= (WD) + (1))

Let h; = AQ; — o1 ® 1, for ¢ = 1,2, and consider the Hamiltonian
N-1

(36)

H=J>18.0hH"®1g..01, (37)
j=1

where J; are constants and 27"} is h; acting in the (5,7 + 1) slot of (C?)®V.
Then we have
N-1

T T y_ Yy z z
> (Jmai 0i41 T 07041 T 0; Ji+1)
i=1

N
+(B+ B)Y_of — (Bot + Boy), (38)
=1

where

H,

_ =)+ (e)?
13ty ’

B=—-&3)+ ¢ m)’,

B = & (u)? + €% (ug)%,

&

B

== pfpd + € (39)

The Hamiltonian H, describes a one-dimensional XXZ chain with open bound-
ary conditions in a magnetic field in the direction of the anisotropy and with
surface fields.

Eq.(37) for i = 2 results in

N-1 N
T T x x
H2=<]g; g 0-10-Z+1+B§ O'i—BO'1,
i=1

(40)
] i=1
where
Jo = =€) (ug) ™ (205 + 1)
B = (u)*+ (u)%
J = 1.
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This is the Hamiltonian of a one-dimensional Ising chain with open boundary
conditions in a longitudinal magnetic field and with a surface term which
cancels the magnetic field for site 1.

By construction H;, ¢ = 1,2, are invariant under the algebra F'C,(2), i.e,

[H;, £3] = [Hi, £75) = [Hi, £3,) =0, 1,5 =1, 2, (42)

where

N
+ _ @r+
£ = 11745

N
£T2 = Z Lfl ®.. & L1+1 ® (sz)k ® Lg—z ®.. & L5L2a
k=1

N
£ = D Lp®..®Ly®Ly)k®L;®...® L, (43)
k=1

with the subscript k of L}, and L; in the above equations indicating that
the referred operators are in the k-th slot of (C?)®N. The operators £, £1,
and £, are the generators of FCy(2) on (C?)®V.

We have shown that the quantum one-dimensional Ising and XXZ open
chains in a external magnetic field and with special surface fields are both
invariant under a two-parametric (g, \) generalization of sl,(2) at ¢ and A
being a root of unit. This generalizes some results of ref. [9] where systems in
an external magnetic field were not considered. Finally, it is interesting to
stress that our derivation relies strongly on the representation theory of the
quadratic relations eq.(3) when the parameters are roots of unit.
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