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freedom of a classical particle moving freely on an arbitrary surface. The dependence
of the projector on the coordinates and momenta of the particle is discussed.
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1 Introduction

The problem of finding the physical degrees of freedom of a constrained system
can be traced back to the work of Dirac [1] and represents the central issue in
the quantization of realistic models. The classical method to deal with this sort
of problems is to enlarge the phase space by adding non-physical variables to the
original ones and to define the physical surface with the help of a nilpotent operator
acting on the all degrees of freedom. This is the well known BRST method (see
[2] for a reveiw.) However, in many cases when the structure of the constraints is
simpler, there are other ways of finding the physical degrees of freedom. In particular,
when the constraints are of second class only, a local symplectic projector can be
written down and the local physical degrees of freedom can be computed from it
([3, 4, 5, 6, 7, 8, 9, 10, 11]). A class of systems that may exhibit simple second
class constraints is given by a particle moving on a surface defined by a holonomic
function f(x) = 0. The way in which such system can arise and the problems
related to the quantization of it were addressed in [12]. In this letter we are going
to study the dynamics of the classical particle on a surface from the point of view
of the symplectic projector method. This study is usefull for understanding the
local degrees of freedom of the particle as well as the range of the applicability of
the method to constrained systems. The paper is organized as follows. In Section
2 we review the method of the symplectic projector. In Section 3 we derive the
local degrees of freedom for a free particle on a surface embedded in Rn and the
corresponding Hamiltonian. The last section is devoted to discussions.

2 Brief Review of The Symplectic Projector

Method

The symplectic projector can be defined for any system subject to second class
constraints φm

(
ξM

)
= 0. Here ξM = (xa, pa), M = 1, 2, . . . , 2N are the coordinates

in the phase space which is assumed to be isomorphic to R2N and m = 1, 2, . . . , r =
2k. The symplectic projector has the following form [4]

ΛMN = δ MN − JML δφm

δξL
∆−1

mn

δφn

δξN
, (1)

where JMN is the symplectic two-form and ∆−1
mn is the inverse of the matrix

∆mn = {φm, φn}. (2)

The symplectic projector given by the relation (1) projects the phase space variables
ξM onto local variables on the constraint surface ξ∗

ξ∗M = ΛMNξN . (3)

Starting with a 2N -dimensional phase-space and 2k second class constraints, we
are led to a vector with 2(N − k) independent components. As was noted in [3],
the boundary conditions that should be satisfied by the normal coordinates and the
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corresponding momenta to the constraint surface are given by the following relations

xm(t) = φm(x) = 0, (4)
pm(t) = ṗm(t) = 0. (5)

Then, the physical Hamiltonian is given by the original one written in terms of the
coordinates that are obtained after projection, i. e. the local coordinates on the
physical surface. These variables are independent, free of constraints and they obey
canonical commutation relations. The equations of motion follow from the usual
Hamilton-Jacobi equations:

.
ξ
∗
= {ξ∗,H∗} , (6)

where { , } are the Poisson brackets. From the analogy between the Dirac matrix

DMN = {ξM , ξN}D = JMN − JMLJKN δφm

δξL
∆−1

mn

δφn

δξK
, (7)

and the projector given by the relation (1) one can see [10] that the following relation
holds:

Λ = −DJ. (8)

We note that the trace of the projector matrix gives the degrees of freedom of
the system. In order to quantize the theory, one should start with the physical
Hamiltonian obtained above. Then, the observables of the quantum theory should
depend only on the coordinates ξ∗.

3 Free Particle on a Surface f(x) = 0 in RN

Let us consider a particle moving freely on a smooth arbitrary surface Σ embedded
in RN and defined analytically by the equation

Σ : f(x) = 0, (9)

where x = {xa}, a = 1, 2, · · · , N are the Cartezian coordinates in RN . The movement
on the surface Σ can be obtained by introducing the f (x) in the Hamiltonian
through a Lagrange multiplier λ

H =
1

2m
pap

a − λf(x) (10)

and then interpreting λ as an independent variable. Thus, the extended phase space
is coordinatised by xµ = (λ, xa) and pµ = (pλ, pa) and it is endowed with an
Euclidean metric and a symplectic two-form. The constraints on the dynamics are
derived in the usual manner, by the Dirac algorithm which gives the following set
of equations

φ1 = pλ (11)
φ2 = f(x) (12)

φ3 =
pa

m

∂f

∂xa
(13)

φ4 =
pa pb

m2
∂a∂bf +

λ

m
∂af∂af . (14)
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The constraints (11)-(14) are of second class, therefore one can apply the Symplectic
Projector Method to determine the local physical degrees of freedom [3, 10]. To this
end, one computes firstly the Dirac brackets in the extended phase space. The non-
zero Dirac brackets are

{λ , xb}D = kb

{λ , pb}D = vb

{xa , pb}D = δa
b − nanb = δ̃a

b

{pa , pb}D = ωab, (15)

where we have used the following notations

kb =
2pc

m|∂f | ∂cn
b (16)

vb = − pcpd

m|∂f | [∂c∂dnb + 3(∂cn
a)(∂dna)nb] − 2λnc ∂cnb (17)

ωab = pc(nb∂cna − na∂cnb) = −ωba (18)
(19)

The normal vector to the surface na has unit norm and is defined in the usual way

na =
1√
mα

∂af =
∂af

|∂f | , |∂f | ≡
∣∣∣√∂af∂af

∣∣∣ . (20)

If we write the components of a symplectic vector in the extended phase space in the
order (λ, xa, pλ, pa) then the Dirac brackets can be disposed into a (2N+1)×(2N+1)
matrix which is called the Dirac matrix

D =

⎛
⎜⎜⎜⎝

0 kb 0 vb

−ka 0 0 δ̃a
b

0 0 0 0
−va −δ̃a

b 0 ωab

⎞
⎟⎟⎟⎠ . (21)

The symplectic projector is given by the equation (8) and has the following form

Λ =

⎛
⎜⎜⎜⎝

0 vb 0 −kb

0 δ̃a
b ka 0

0 0 0 0
0 ωab va δ̃a

b

⎞
⎟⎟⎟⎠ . (22)

By acting with the projector (22) on the degrees of freedom of the extended phase
space we obtain the local physical degrees of freedom of the particle [3]. Locality,
in this case, has the meaning of “local on the surface Σ”. Note that the trace of the
matrix (22) is equal to the number of the degrees of freedom, which in this case is
2N − 2. The projected degrees of freedom are given by the following relations

λ∗ = vbx
b − kbpb

x∗a = δ̃a
bx

b + kapλ

p∗λ = 0
p∗a = ωabx

b + vapλ + δ̃a
bpb . (23)

Now let us discuss the above sytem. We can see that there are some distinct cases
to deal with.
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3.1 General Λ (ξ)

In the case of an arbitrary function f , the entries of the projector matrix are
functions of the coordinates of the particle in the phase space. Therefore, there
is no general method to separate the linearly independent physical coordinates
ξ∗µ, where µ, ν . . . = 1, 2, . . . 2(N − 1) from the linearly dependent ones ξ∗α, where
α, β, . . . = 1, 2, 3, 4. However, we can derive some general relations to be satisfied
by the linearly dependent coordinates as well as by the projector. Since there are
constants cα

µ such that
ξ∗α = cα

µξ∗µ, (24)

then one can use the relation Λ2 = Λ to find the following relations that should be
satisfied by cα

µ’s

(δµ
ν − Λµ

α (ξ) cα
ν ) Λν

N (ξ) ξN = 0, (25)(
δα
β − Λα

β (ξ)
)

cβ
µΛµ

N (ξ) ξN = 0. (26)

The above equations should be satisfied simultaneously for all ν and all β. By
comparing the number of equations with the number of constants c’s, we see that c’s
may be completely determined only if N = 1, 2. This condition, although necessary,
is not sufficient. Indeed, if we treat (25) and (26) as a system that solves c’s, we see
that the constants cα

µ are expressed as functions on ξ’s. However, by hypothesis, c’s
should be real numbers which implies that these functions be constants.

Let us look at the time evolution of an arbitrary projected coordinate ξ∗M . On
the constraint surface, it is given by its Poisson bracket with the physical Hamilto-
nian H∗

ξ̇∗M = {ξ∗M ,H∗}∗PB, (27)

where H∗ = H (ξ∗) depends only on the linearly independent variables and ∗ in the
Poisson brackets means that they should be computed using the projected variables.
In particular, the relation (27) guarantees that the mapping by Λ is canonical. On
the other hand-side, if we interpret ξ∗M (ξ) as function on the phase space, then its
time evolution should be given by the following relation

ξ̇∗M (ξ) = {ξ∗M (ξ) ,H (ξ)}DB . (28)

However, on the constraint surface Σ, the relations (27) and (28) should coincide,
i. e. the following relation should hold

{ξ∗M ,H∗ (ξ∗)}∗PB = {ΛM
N (ξ) ξN ,H (ξ)}DB

∣∣∣Σ={φm(ξ)=0} (29)

The above relation represents a consistency condition that should be satisfied by
the symplectic projector.
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3.2 Constant Symplectic Projector

There are surfaces for which the entries of the symplectic projector are constant
functions on the coordinates ξ. These surfaces will satisfy the following relations

2pc

m|∂f | ∂c
∂bf

|∂f | = Ca, (30)

− pcpd

m|∂f |
[
∂c∂d

∂bf

|∂f | + 3(∂c
∂af

|∂f |)(∂d
∂af

|∂f |)
∂bf

|∂f |
]
− 2λ

∂cf

|∂f | ∂c
∂bf

|∂f | = Db, (31)

pc(
∂bf

|∂f |∂c
∂af

|∂f | −
∂af

|∂f |∂c
∂bf

|∂f |) = Oab, (32)

where Ca, Db and Oab = −Oba are constant numbers. In this case, (23) is a sys-
tem of linear equations with numeric coefficients (from R). Therefore, one can find
the independeent degrees of freedom as follows. Since the projected momenta p∗λ
vanishes, we should look for three more vanishing or linearly dependent degrees of
freedom in (23). They can be obtained by noting that not all the coefficients in the
r.h.s. of (23) are independent since they are entries of the projector (22). Therefore,
from the condition

Λ2 = Λ (33)

we derive the following relations

vaδ̃
a

b − kaωab = vb , (34)
kaδ̃a

b = kb , (35)
δ̃a

c δ̃c
b = δ̃a

b , (36)
ωacδ̃

c
b + δ̃a

cωcb = ωab . (37)

It is important to note that (33) is not a supplementary condition imposed by hand.
Rather, it is a built-in relation in the formalism because Λ is constructed to be the
local projector on the constrained surface. Therefore, the relations (34)-(37) are
natural constraints. nanb is the projector on the normal direction and δ̃a

b is the
projector onto the tangent space to Σ. We can use these projectors to split the
coordinates (23) into normal and tangential. Then it is easy to show that

x∗a
t = δ̃a

b x∗b = δ̃a
bx

b + kapλ , (38)
p∗ta = δ̃a

b (ωbcx
c + vbpλ + pb) . (39)

represent the independent degrees of freedom. They are tangential to the surface
Σ as they should be. The dependent and null degrees of freedom are given by the
following relations

λ∗ = vax
∗a
t − kap∗ta , (40)

x∗a
n = 0 , (41)
p∗λ = 0 , (42)

p∗na = nan
bωbcx

∗c
t . (43)

The equations above elliminate four degrees of freedom. Therefore, the number of
the local physical degrees of freedom is 2N − 2 as expected. Note that they are
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expressed in terms of the global indices in the initial RN space. One can pass to
a local coordinate system on Σ by performing a general coordinate transformation
from the origin of RN to the point P on Σ. In order to elliminate the normal
direction, one has to pick-up one of the directions of the local coordinate system
parallel to the normal. However, the tangential directions are determined only up a
SO(N − 1) transformation.

The physical Hamiltonian of the system should be entirely written in terms of
the tangential degrees of freedom and it is given by the folowing relation

H∗ =
1

2m
p∗tap

∗a
t +

1
2m

nanbωacωbdx
∗c
t x∗d

t . (44)

The local quantization of the system should be done by using (44). In order to
quantize the system globally on Σ, additional information should be given, as for
example, the range of the local coordinates and the topological structure of the
theory. It is not clear yet if this information could be included in a global projector
of the surface or if it should appear from gluing the local operators on neighbour
openings.

The two cases analysed above, i. e. when Λ containts general functions on ξ and
when it contains just constants, represent the two extreme cases of the symplectic
projector method. In the first case one cannont provide a general method for finding
the independent degrees of freedom, while in the second case they are given by
solving a system of linear equations with coefficients from R. Between the two
cases, there are particular surfaces for which the physical degrees of freedom can be
computed from the (23), but the way of solving this system depends on the specific
model. However, for all cases the physical Hamiltonian is given by (44) and it should
be used for local quantization. In order to take into account the global properties
of the constraint surface, one should extend this formalism. However, even if one
limitates to local analysis, there are surfaces for which the local physical coordinates
obtained from the symplectic projector vanish.

4 Discussions

As was already noted, the symplectic projector given by the relation (22) depends
on the coordinates of the phase space (xa, pa). This implies that the splitting of the
projected coordinates into independent and dependent coordinates also depends on
the position of the point at which this analysis is made on the constrained surface.
Moreover, from the relations (39) and (43) we see that the variables are really
independent only if the entries of the symplectic projector are real numbers. Also,
note that the equations (39) and (43) imply that some of the physical coordinates
and momenta can vanish on certain surfaces. This can be seen by taking pλ = 0
on the surface in (39). For example, the physical coordinates and momenta vanish
whenever

∂af∂bf = δb
a∂cf∂cf. (45)

Also, only momenta can vanish if

(∂c∂a∂bf − ∂bf∂a∂cf)xc = −δab. (46)
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To conclude, we have discussed the possibility of applying the symplectic projec-
tor to determine the degrees of freedom of a particle on a surface. From the present
analysis results that the independent coordinates and momenta can be found ex-
actly only for certain surfaces. If the components of the projector are constant, then
the solution can always be obtained from a linear system of algebraic equations with
constant coefficients. We note that finding nontrivial solutions to the equations (30),
(31) and (32) represents an interesting problem. Also, there are surfaces for which
these relations do not hold but which admitt solutions to the system (23). In both
cases, the local quantization of the system should be done by using (44). In the gen-
eral case, there is no systematic method to split the projected coordinates into a set
of independent variables and a linearly dependent one. The dynamics of the particle
on a plane in R3 can be considered as a simple example of a surface for which the
projector is constant. This case is somewhat degenerate since the movement is free
and the definition of the plane is a matter of chosing a coordinate system in R3.
However, as one can easily check out, the system (23) gives the correct Hamiltonian
and the degrees of freedom. As an example of symplectic projector that depends on
the coordinates but whose Hamiltonian can be obtained by applying the symplectic
projector method one can take the circle S1. Then the symplectic projector gives
the Hamiltonian equal to the kinetic energy in agreement with the Dirac algorithm.
This result is also true for Sn and represents one of the intermediate cases discussed
previously. These examples illustrate the above discussion.

In order to quantize the system globally on Σ, additional information should be
given, as for example, the range of the local coordinates and the topological structure
of the theory. It is not clear yet if this information could be included in a global
projector of the surface or if it should appear from gluing the local operators on
neighbour openings. The globality problem invites to extending the local symplectic
operator method to global theories. We hope to report on these topics in a future
paper [13].
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