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Abstract

We derive topological algebras for 2-dimensional models admitting a d = [6,b] de-
composition (with b the BRST operator). In general, the topological algebra we
obtain is not derived from the twisting of a N=2 supersymmetry algebra. We show

how this situation arises for an abelian model described by a ladder of matter.
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1 Introduction

Topological algebras appeared originally in the context of two dimensional N=2 super-
symmetry models which, after twisting, provide a description of topological theories with
matter fields [1]. The main characteristic of such algebras lies on the existence of odd
generators (7, Q (Q* = 0) satisfying [Q),G,] = P,, which is an essential ingredient of
topological quantum field theories (TQFT) [2]. The generators @) and (7, depend on the
supersymmetry charge Q.. (a,a € {1,2}; (1,2) = (4, —)) through the combinations
Q = Q4- + Qs and G, = (G1.Gy) = (5(Q4s + Q——)a%(@++ — Q--)). It is then
clear that the topological algebras constructed in [1, 3] arise as a direct consequence of
an underlying N=2 supersymmetry algebra.

Here, we want to construct topological algebras that are not necessarily related to
supersymmetry. In a previous work [4], we have studied the properties of models described
by generalized gauge and curvature ladders A = Y2 ol i=c+ A4+ @' + -+ o5,
F = ZzD:o nf_i =0+ +B+4+---+ n%_D satisfying

CZA—I-%[A,A] =F (1)
dF +[A, F] =0 (2)
A=ée, F=¢é'g (3)
d=e’be? (4)

with d := b+ d and d? = 0. § is a superderivation of bidegree (1,-1), i.e. it acts on a
field increasing its form degree by 1 and reducing the ghost number by the same amount.

From (4) we obtain
d=[6,b] (5)

which is the starting point for our definition of topological algebras. In fact, if we can iden-

tify the odd generators (), Q with ¢, b then (5) becomes a natural realization of [, Q] =

P, in the space of fields and their derivatives V = {@! ™", dpi ™" 3™, dnf_i}osz'sp. We can
then proceed to a full realization of the topological algebra by defining systematically on
V the action of the other generators and ensuring their remaining algebraic relations are
satisfied. In much the same way, we can introduce a matter ladder H = Y2 h7* [7] with
H = €°hY and extend the topological algebra to the space V defined by the component

fields of A, F, H and their exterior derivatives. Depending on the way we define the



CBPF-NF-033/02 2

relations among these ladders we will obtain distinct representations for the generators of
the topological algebra.

In this work we will present a systematic procedure on how to obtain topological alge-
bras for models admitting a d = [é, b] decomposition. In order to relate our construction
to the model described in [1] we will consider 2-dimensional models defined in an eu-
clidean space M. The fields are then considered as differential forms in M with values in
a certain Lie algebra (that is not restricted to SO(2)). With respect to the isometries of
M, SO(2)pm, ! the ladders A, F and H carry no SO(2) s spinor field, therefore all fields
in ¥V will transform as SO(2)um tensors. We will see that the choice of a 2-dimensional
ladder of matter ‘H together with the gauge ladder A will result in a model that contains
all fields of the topological matter of [1]. In this case, we will derive an action that is both
BRST and M invariant but it is not included in the formalism of [1].

Our work is organized as follows. In Section 2 we introduce the topological algebra
and set out our notation. In Section 3 we realize the topological algebra in the space
V = {7 de! nFt dy?T'} determined by component fields of gauge and curvature
ladders A = ¢+ A+ o;', F = ¢+ + B . In Section 4 we analyse a model defined
by a ladder of matter H = 2 ,(™" := h + p + y and a zero curvature condition. We
restrict the fields to be abelian, a condition that will allow us later on to derive an N=2
supersymmetry algebra from a (un)twisting procedure. We exhibit then an invariant
action S (bS =0 < QS = 0) by solving the descent equations associated to S = 0. In
Section 5 we redo the same analysis of section 4 but relaxing the zero curvature condition.
In Section 6, having in mind the particular cases of sections 4 and 5, we show how we

can define supersymmetry generators from the odd generators of the topological algebra.

2 Topological algebras in d=2

In this work fields and operators carry a bidegree (i,j). As a field, X{ means a i-form with
ghost number j; as an operator, X{ means a superderivation which acts on a field with
bidegree (m,n) producing another field with bidegree (i+m,j+n). The total degree of X7
is ¢ + j. Products of objects like X{X,i result in an object with bidegree (i +k,j +1). We
define [X7, X!] := X7 X! — (—1)+D0G4D X X7,

!Even though M is an euclidean space, we will use the terminology of [1] and sometimes we will refer

SO(2)pm as “Lorentz” SO(2).
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We deal with a two-dimensional Euclidean space with metric g, = ¢,,. The antisy-
metric symbol €,, has €12 = 1. The gamma matrices are defined as in [1].
By a topological algebra we understand the algebra generated by the superderivations

{P,,J,b,G,, M} with bidegrees (0,0), (0,0), (0,1), (0,-1), (0,1) and satisfying

[P )= [P b = [Py, G] = [P, M] = b = M? =0 (6)
[J,0] = [J, M] = [b,M] = [G,,, L] = 0 (7)

[J, P) = —ic," P, [J,Gu) = —ie, "G, (8)

(G, b] = =P, (9)

[M,G,] = —ic,"D, . (10)

Our J generator corresponds in [1] to the twisting of internal and Lorentz SO(2) gener-
ators. Here, since we are not restricting the fields to be SO(2) valued, J is related only
to the generator of Lorentz SO(2) transformations and we write it as jﬂu = —1¢, ().
The generator of internal symmetry, at this point, doesn’t enter the topological algebra.

In what follows we will write P, = 0,,.

3 A model with A and F

Let us consider a model defined by ladders
A=ct+A+p, F=0+v+B (11)
where c = ¢, A =AY, ¢ = ¢3!, ¢ = ¢2, ¥ =¢!, B = BY. The field B is an arbitrary
two form independent of A.
3.1 Defining G, b, M
From (3,4) we obtain the following ¢ transformations
be=A, 6A=2p, bp=0; dp=1, b =2B, 6B=0, [6,d=0. (12)

§ = 67" being a superderivation of bidegree (1,-1) can be written as § = G, @dz*. This
together with [6, d] = 0 determines (7, as

Gue=—A,, GuA, = 0, Guoas =0, G.0,=0,G, (13)
GMb = ¢uv GMZ’V = _Bwv GuBcvﬁ =0. (14)
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The BRST transformations arise from (1,2) and assume the form

be = —c4 ¢ 15
bA, = Ouc— e, Al + by
bowy = —Fu =, 0u] + Bu
bp = —[c, 9]

by = =00 — le; ] = [Ay, 9]
0B, = 0wty = Outpy — e, Bu] + [Au, o] = [Av ul = [y, 9]

with F,, = 9,4, — 9,A, +[A,, A)] and b* = 0.
M = Mj is a generator with bidegree (0,1), therefore we start defining it on ¢ and ¢

16
17
18
19

(
(
(
(
(
(20

)
)
)
)
)
)

as Mc = a1c® + ay¢ and M = asc® + aqcd + aspe. With ay, - -+, as arbitrary constants.
Imposing (10), [M,0,] = 0 and [M, b] = 0 we obtain a1 = a4y = —as, as = 0 and

Mce = a1 4 ax¢ (21)
MA, = ac, A+ axb, +1€,”0,¢ (22)
M = a([Aw A+ [eopw)) + axBu +ie, “0uA, —ie, 0. A, (23)

Mo = ale, ¢ (24)
My = ar([Ay, ¢l +[e,0u]) — 16,700 (25)
MBu, = ai(lpu, 9] = [Aw Yl + [Av, ] + e, Bul) — 1€, " Outhy + 1€, % Dathy, . (26)

It is straightforward to verify that the set of generators {d,, J, Gy b, M} satisfy the topo-
logical algebra (6-10). Since the constants appearing in the definition of M are not
determined by the topological algebra, we have then established a family of topological

algebras indexed by the values of (a1, as).

4 A model with a matter ladder and a zero curva-
ture condition
Let us consider an abelian model defined by ladders
A=c+A+¢, H=h+p+x (27)

with h = 18, p = p1', x = x3°%. We impose they obey equations

dH=A, dA=0 (28)



CBPF-NF-033/02 )

A=¢c, H=eh (29)

d=ebe™® . (30)
From (29) we obtain the é-transformation as
bc=A, 6A=2p, 6p =0, Oh=p, 6p=2x, Ox =0 (31)
which, in addition to (13), determines
Guh = pus Gupy = =X GuXap = 0. (32)
From (28) we have the following BRST transformations

be =0, bA,=0,c, bp,, =—F,, bh=c¢, bp,=—-0,h+ A,
wa = aupu - aupu + Puv - (33)

Since we are dealing with an abelian model subjected to a zero curvature condition we

write Mc =0 and Mh = ac. Then (9) determines the M transformations as

Me=0, MA, =1€,"0,c, Mop,, =1€, "0, A, —1€,“0,A,, Mh=ac
Mp,=aA, —1€,"0h, Mxu = apu, —1€, “Oup, + 1€, “Onpy (34)

Gy by, M given in (32,33,34) satisfy the topological algebra (6-10).

4.1 An invariant action

Let us consider § = [ satisfying b6S = [bw) . This is equivalent to the system of

descent equations
bl 4 dwi =0, bwy +dw =0, bwi =0. (35)

In order to solve (35) let us consider bwi = 0 with wi € V = {c, A, ¢, h, p, x, dc,dA, dp, dh,
dp,dx}. Here, since the fields are abelian we have wi(c,h) = 0. One possibility for
obtaining a non-trivial solution is to consider a set of ladders A?, H!, I = 1,....2N,
where the index [ splits as [ = (¢, 2), 1 =1,...,N. For each value of I we have the same
set of equations as before, (32,33,34), satisfied by the I-th component of the ladders. It

is possible to consider the splitting of [ in such a way that the corresponding ladders are
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complex conjugates, i.e A" := A*, H' := H*, however, our discussion is not restricted

by this choice. ?

Now we can write w? as ®

wg = fij(hv }Al)cicj + fz}(hv }Al)ciéj + f;}(hv }Al)élé] (36)

with fi; = —f;i, fiz = —f;;. Then, bwi = 0 determines the following conditions on the
functions fi;, fi;. [fi;

afy 19[4 lafﬂ%_o fi; 0w  Ofw

oLk 20hi 20k 7 9hF  Ohi T OhI
0f; 10fg 10/ Of;  Ofu | 0fy

vy A _I_ _ 2 (A 07 A2] _I_ J _I_ kz — 0 37
dhk 2 9hi 2 9hi Oh* b Ohi (37)

which is solved by

0K 0K oK 0K
= = — T, A= - —2 =, sc:—)\ i 38
f] Ohighi Ohioht f” OhtORI Ohiohi fl] fJ ( )

with K an arbitrary function of (h, ]Az) and A an arbitrary constant that should be made
equal to 1 in case we describe our model by a pair of complex fields and their conjugates.

Replacing (38) into (36) we obtain

Wo = 2K e e 2[’ &+ 20K r s 2)\[' FLé (39)

with K = % etc. The use of the ¢ operator allow us to exhibit a particular solution
to the descent equations [4, 5, 6, 7, 8, 9]. In fact, in the case of [§,d] = 0 we can write
(35) in the form do =0 for & = =witw +uwli=e wg Then from (39) and the definition

of 6 we obtain,
&= 2]@;,4%4]' + 2K AN AT+ 2AK AV AT 4 20K AT A (40)

with K = K(H, H K(h, iz) and j&i] = #575 etc. Writing H = h + O, H = il—l—@

) =
with @ = p 4+ y and (:) = p + x, we expand R;(H, 77) in a Taylor series around (h, iz)
— — A A ~ A 1 A
KMH,H) = K(h,h)+O"K,(h,h)+ O"Ky(h,h)+ §®m®”[&’mn(h, h)+

~ N 1~ ~ N
+O70" Kb, h) + 5070 Ko (b, h)

2This condition should be assumed in [1] since there it is necessary to have a set of chiral and antichiral
superfields which consequently generate pairs of complex conjugate fields.

3We denote ¢ = ¢ ete.
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which gives the decompositions

T |- m s Am oS 1 mon moan - 1 m An
e e (12)
Kﬂg = K. (43)

wy is obtained by taking terms with bidegree (2,0) in @. Therefore, replacing (41,42,43)
n (40) we obtain

wy = ol

= K,,;p"p"cd +2K, 0" p" e —I-]&mm]p pletd —I—IXmm]pmp”clc +

—I—ZKmﬁ;]pm el 1 [&mm]pm el 1 ZIXmZ]chZc + ZIXWJX e+ 2[&mgixméicj +
-|-2[&m”§(mélc] + 2]&m2]pmc’AJ + QIXWJ[JchAJ — 2]&m2]p AA — 2]&m”p A+
—|—2]&m;]pm AT+ 2[&m”/3m GAT — 2K - = med A Km;}[)mc]AZ + 2[‘2'}‘0 c,o —

—2]&7250]992 + 2[&7;5@ c,o — 2[&7;}0]952 + 2]&72514214] -+ QI(A»,AZA] +
—I—)\([&’mnijpmp”ciéj + ZKmﬁijpm[)”ciéj + Konijp™ p" A+ ]&mm]pmp”clc +

F2K 5 X7 EE + 2Ky p" AT + 2K 5 p" AT — 2K iy p AT — 2K i AT

p" &e 1 K p" U ZIXWJchZc] + ZIXWJf(mclc] + 2K jxméiéj +

mnmp

2K, p " EAT 2K EAT = 2K p AT = 2K I AT 2K —

—2K;;¢ " + 2K, ”c,o - 2K, c] —I—ZBUAZAJ—I—Z]& AZAJ) (44)

From (28) we conclude that d has trivial cohomology on V = {A,H}. Therefore any

solution of do = 0 implies it exists & such that & = d&. In particular W = &9 =
(J@)g ]9, Explicitly
wy = b{]&’mnipmp”cj +2K,,:0" 0" ¢+ [&mm[)m ) 4+ 2K 3pmAj + ZKA}ﬁmAj +

—I—ZKm;chj + 2[&’m Ve 4 2K c,o 4 )\([&mmpmp”c] + 2K,,0,p" p" € 4
+ K" 91+ 2K p" AT 2 AT 4 2 M+ 2K X+ 2K, 80) |+
+d{2K 2 p" ) + 2K+ 2K AT 4 N2K i p"E + 2K 5 + 2K, AT} (45)

then our action writes simply as a BRST variation § =

We also have [M,G,] = —i€,70, = Me® = M — i¢,7d,@dx"e’. Therefore Mwl =
(M)]; = (Me®wd)|s = 182 Mwd — (i€, 9,@da")wy = i€, dywldzdr (we have Mws =
0, w; = wide®). Thus MS = [ da?*(—id"w)) = 0, i.e the action is M-invariant.
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5 A model with matter, gauge and curvature lad-

ders

Let us consider the previous abelian model without the zero curvature condition. We

have ladders A, F, H which satisfy
dA=F, dF =0and dH =0 . (46)

The G, transformations are given by (13,14,32) and the BRST transformations assume

the form

be = ¢, bA, = Ouc+ Yy, bouy = —Fuy + By b0 =0, bipy = —0,6
0By = Outhy = Oy, bh =0, bpy = =0uh, bXy = upy — Dupy - (47)
In order to determine the M transformation we assume that Me¢ = a9, M¢ = ayc o
and Mh = a3 c. The algebraic relation (10) together with [6, M] = 0 and M? = 0 impose
a; =0, as = 0 and fix the M transformations as
Me=ay¢, MA, = a1, +1€,70,¢, My, = a1B,, + 1€, “0, A, — 1€, "0, A,
Mop=0, My, = —1e,"0,0, MB,, = —te, 0%, + 1€,°0s0,, Mh =10
Mp, = —ie,"O,h, My, = —i€, " Dupy + i€, " Dupy . (48)
Let us take ladders A", F°, H', & = 1,...,N. Here, we write w? = Fij(h,iz)cicj +
Fi(h, h)e' & + Fiy(h, h)E& + Gi(h, )¢ + Gi(h, h)¢'. Then bw? = 0 gives
w2 = Gi(h, h)¢' + Ga(h, h)g' . (49)
An invariant action is given by § = [ w) with
£ = (SR
- %Gmmif’jpk + G r 0+ %Gi,;z;wjﬁk + %G;m;ipj pr G0
PSP Gudi + oS! + Guydd + Guditd + Gui'e’ +
+G 0+ Gyt + G+ GiB + G B (50)
= b (%Gi,jkci/)j/)k + Gi,jfccipj/sk + %Gi,}‘fgciﬁjf)k + %Gi,jkéipjpk + G%,jl;éipjﬁk +
+%G;,;;;@iﬁj/3k + Gige ) + G+ G e + Gd X+ Gig A'p!
G A + G A + G AT + Gl + Gigt) +
+d (Gijc'p) + G p + G & p7 + Gyl + GiAT + GLAY) (51)
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with G;, G; arbitrary functions of A, h and G = ggj etc. The expression given in (51)
is essentially the same one given in (45) if we identify G; < 2K:, G: < 2K; and take
A = 1. Nonethless, these models differ due to their different BRST transformations.

In addition to the solution given in (51) we can also include BRST-invariant terms

involving derivates, for example
/ PG (D,h0"h + 0,1 AM + pl e + plpt) = b / Pa(—pl0"h — gl AM) . (52)

These terms are not generated by the expansion of e’w?. This shows explicitly the par-
ticular character of our solution.
Note that wj given in (49) is M-invariant, then adopting the same procedure of the

last section we also obtain MS = 0.

6 Deriving a supersymmetry from the topological

algebra

Let us now derive a realization of the N = 2 supersymmetry generators in the space
of abelian fields V = {¢, A, @, h,p, x,dc,dA,dp,dh,dp,dx} by following the procedure
of [1]. We define supersymmetry generators Quy = (Q4t,Q1—, @-1,Q—_) as Q14 :=
Vi Gy Q- i =~L_G,, Q4_ = %(—b—l— M), Q-4 := %(—b— M).* Then the topological
algebra (6-10) together with these definitions determine

[Qa-l-v Qﬁ-l—] =0
[Qa—v Qﬁ—] =0 = [Qaav Qﬁb] = Cab’}/gﬁau . (53)
[Qat, Qs-] = ’Ygﬁau

that corresponds to the algebra of the generators of N=2 supersymmetry. It should
be noticed though that our model differs from the description of topological matter of
[1], first, because we have two extra fields p;' and y;? that are necessary to garantee
d = [6,b] (see [4]), and second, because our fields are not components of a pair of chiral
and antichiral superfields.

Here, both actions with lagrangian densities given by (45,51) are invariant under b and

M transformations, but are not necessarily invariant by (,,. G-invariance may be obtained

“Note that (9) differs by a minus sign to the corresponding relation [@Q, G,] = 9, of [1]. Then we have

to consider here the association —b « ).
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by introducing additional ladders or by imposing restrictions on the fields. These actions
depend on arbitrary functions K, G;, G: of (h,/Az) which, contrarily to the topological
matter of [1], don’t define a Kéhler metric. In fact, the kinetic term given in (52) for the
action (51) doesn’t bring any restriction to (¢;, G (the same applies to K if we introduce

a kinetic term for (45)).

7 Conclusion

All models exhibited here admit the decomposition d = [é, ] which translates into the
fundamental relation [G/,,b] = d, of topological algebras. In addition, we also have
[d, 6] = 0, which is equivalent to [G,,d,] = 0. As it was shown in [8, 9], there are models
where this relation doesn’t hold and, as a result, a new operator A;l} of bidegree (0,-1)
arises, i.e [(,, 0,] = A} In these cases there is no natural way to introduce the generator
M in order to reproduce some of the relations of the topological algebra.

The same ideas presented here in the context of two dimensions also apply to 4 di-
mensions. However, what seems more significant is that they apply to any dimension and
to any set of Lie algebra valued fields as far as they are components of ladders satisfying
d = [6,b]. The special cases of two and four dimensions can be used to formulate a N=2
supersymmetric model provided we restrict the fields to be respectively SO(2) and SU(2)
valued [1, 3]. It becomes clear that the ¢ operator is not only a usefull tool in the analysis
of the descent equations [4, 5, 6, 7, 8, 9], or in the study of some aspects of topological
Yang-Mills theories [10, 11] but it also allows us to represent topological algebras for a
broader class of models.
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