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1 Introduction

Topological algebras appeared originally in the context of two dimensional N=2 super-

symmetry models which, after twisting, provide a description of topological theories with

matter �elds [1]. The main characteristic of such algebras lies on the existence of odd

generators G�; Q (Q2 = 0) satisfying [Q;G�] = P�, which is an essential ingredient of

topological quantum �eld theories (TQFT) [2]. The generators Q and G� depend on the

supersymmetry charge Q�a (�; a 2 f1; 2g; (1; 2) � (+;�)) through the combinations

Q := Q+� + Q�+ and G� = (G1; G2) := (1
2
(Q++ + Q��);

i

2
(Q++ � Q��)). It is then

clear that the topological algebras constructed in [1, 3] arise as a direct consequence of

an underlying N=2 supersymmetry algebra.

Here, we want to construct topological algebras that are not necessarily related to

supersymmetry. In a previous work [4], we have studied the properties of models described

by generalized gauge and curvature ladders A �
PD

i=0 '
1�i
i := c+A+ '�12 + � � �+ '1�D

D ,

F �
PD

i=0 �
2�i
i := �+  +B + � � �+ �2�DD satisfying

~dA+ 1
2
[A;A] = F (1)

~dF + [A;F ] = 0 (2)

A = e�c; F = e�� (3)

~d = e�be�� (4)

with ~d := b + d and ~d2 = 0. � is a superderivation of bidegree (1,-1), i.e. it acts on a

�eld increasing its form degree by 1 and reducing the ghost number by the same amount.

From (4) we obtain

d = [�; b] (5)

which is the starting point for our de�nition of topological algebras. In fact, if we can iden-

tify the odd generators G�; Q with �; b then (5) becomes a natural realization of [G�; Q] =

P� in the space of �elds and their derivatives V = f'1�i
i ; d'1�i

i ; �2�ii ; d�2�ii g0�i�D. We can

then proceed to a full realization of the topological algebra by de�ning systematically on

V the action of the other generators and ensuring their remaining algebraic relations are

satis�ed. In much the same way, we can introduce a matter ladder H �
PD

i=0 h
�i
i [7] with

H = e�h00 and extend the topological algebra to the space V de�ned by the component

�elds of A; F ; H and their exterior derivatives. Depending on the way we de�ne the
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relations among these ladders we will obtain distinct representations for the generators of

the topological algebra.

In this work we will present a systematic procedure on how to obtain topological alge-

bras for models admitting a d = [�; b] decomposition. In order to relate our construction

to the model described in [1] we will consider 2-dimensional models de�ned in an eu-

clidean spaceM. The �elds are then considered as di�erential forms inM with values in

a certain Lie algebra (that is not restricted to SO(2)). With respect to the isometries of

M; SO(2)M, 1 the ladders A; F and H carry no SO(2)M spinor �eld, therefore all �elds

in V will transform as SO(2)M tensors. We will see that the choice of a 2-dimensional

ladder of matter H together with the gauge ladder A will result in a model that contains

all �elds of the topological matter of [1]. In this case, we will derive an action that is both

BRST and M invariant but it is not included in the formalism of [1].

Our work is organized as follows. In Section 2 we introduce the topological algebra

and set out our notation. In Section 3 we realize the topological algebra in the space

V = f'1�i
i ; d'1�i

i ; �2�ii ; d�2�ii g determined by component �elds of gauge and curvature

ladders A = c + A + '�12 , F = � +  + B . In Section 4 we analyse a model de�ned

by a ladder of matter H �
P2

i=0 �
�i
i := h + � + � and a zero curvature condition. We

restrict the �elds to be abelian, a condition that will allow us later on to derive an N=2

supersymmetry algebra from a (un)twisting procedure. We exhibit then an invariant

action S (bS = 0 $ QS = 0) by solving the descent equations associated to bS = 0. In

Section 5 we redo the same analysis of section 4 but relaxing the zero curvature condition.

In Section 6, having in mind the particular cases of sections 4 and 5, we show how we

can de�ne supersymmetry generators from the odd generators of the topological algebra.

2 Topological algebras in d=2

In this work �elds and operators carry a bidegree (i,j). As a �eld, Xj
i means a i-form with

ghost number j; as an operator, Xj
i means a superderivation which acts on a �eld with

bidegree (m,n) producing another �eld with bidegree (i+m,j+n). The total degree of Xj
i

is i+ j. Products of objects like Xj
iX

l
k result in an object with bidegree (i+ k; j + l). We

de�ne [Xj
i ;X

l
k] := Xj

iX
l
k � (�1)(i+j)(k+l)X l

kX
j
i .

1Even thoughM is an euclidean space, we will use the terminology of [1] and sometimes we will refer

SO(2)M as \Lorentz" SO(2).
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We deal with a two-dimensional Euclidean space with metric g�� = ���. The antisy-

metric symbol ��� has �12 = 1. The gamma matrices are de�ned as in [1].

By a topological algebra we understand the algebra generated by the superderivations

fP�; ~J; b;G�;Mg with bidegrees (0,0), (0,0), (0,1), (0,-1), (0,1) and satisfying

[P�; P� ] = [P�; b] = [P�; G� ] = [P�;M ] = b2 =M2 = 0 (6)

[ ~J; b] = [ ~J;M ] = [b;M ] = [G�; G� ] = 0 (7)

[ ~J; P�] = �i��
�P� ; [ ~J;G�] = �i��

�G� (8)

[G�; b] = �P� (9)

[M;G�] = �i��
�P� : (10)

Our ~J generator corresponds in [1] to the twisting of internal and Lorentz SO(2) gener-

ators. Here, since we are not restricting the �elds to be SO(2) valued, ~J is related only

to the generator of Lorentz SO(2) transformations and we write it as ~J
� := �i��
�
� .

The generator of internal symmetry, at this point, doesn't enter the topological algebra.

In what follows we will write P� = @�.

3 A model with A and F

Let us consider a model de�ned by ladders

A = c+A+ '; F = �+  +B (11)

where c � c00; A � A0
1; ' � '�12 ; � � �20;  �  1

1; B � B0
2. The �eld B is an arbitrary

two form independent of A.

3.1 De�ning G�; b; M

From (3,4) we obtain the following � transformations

�c = A; �A = 2'; �' = 0; �� =  ; � = 2B; �B = 0; [�; d] = 0 : (12)

� � ��11 being a superderivation of bidegree (1,-1) can be written as � = G�
dx
�. This

together with [�; d] = 0 determines G� as

G�c = �A�; G�A� = '��; G�'�� = 0; G�@� = @�G� (13)

G�� =  �; G� � = �B��; G�B�� = 0 : (14)
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The BRST transformations arise from (1,2) and assume the form

bc = �c2 + � (15)

bA� = @�c� [c;A�] +  � (16)

b'�� = �F�� � [c; '��] +B�� (17)

b� = �[c; �] (18)

b � = �@��� [c;  �]� [A�; �] (19)

bB�� = @� � � @� � � [c;B��] + [A�;  � ]� [A�;  �]� ['��; �] (20)

with F�� = @�A� � @�A� + [A�; A�] and b2 = 0.

M � M1
0 is a generator with bidegree (0,1), therefore we start de�ning it on c and �

as Mc = a1c
2 + a2� and M� = a3c

3 + a4c�+ a5�c. With a1; � � � ; a5 arbitrary constants.

Imposing (10), [M;@�] = 0 and [M; b] = 0 we obtain a1 = a4 = �a5; a3 = 0 and

Mc = a1c
2 + a2� (21)

MA� = a1[c;A�] + a2 � + i��
�@�c (22)

M'�� = a1([A�; A�] + [c; '��]) + a2B�� + i��
�@�A� � i��

�@�A� (23)

M� = a1[c; �] (24)

M � = a1([A�; �] + [c;  �])� i��
�@�� (25)

MB�� = a1(['��; �]� [A�;  �] + [A�;  �] + [c;B��])� i��
�@� � + i��

�@� � : (26)

It is straightforward to verify that the set of generators f@�; ~J;G�; b;Mg satisfy the topo-

logical algebra (6-10). Since the constants appearing in the de�nition of M are not

determined by the topological algebra, we have then established a family of topological

algebras indexed by the values of (a1; a2).

4 A model with a matter ladder and a zero curva-

ture condition

Let us consider an abelian model de�ned by ladders

A = c+A+ '; H = h+ � + � (27)

with h � h00; � � ��11 ; � � ��22 : We impose they obey equations

~dH = A; ~dA = 0 (28)
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A = e�c; H = e�h (29)

~d = e�be�� : (30)

From (29) we obtain the �-transformation as

�c = A; �A = 2'; �' = 0; �h = �; �� = 2�; �� = 0 (31)

which, in addition to (13), determines

G�h = ��; G��� = ����; G���� = 0 : (32)

From (28) we have the following BRST transformations

bc = 0; bA� = @�c; b'�� = �F��; bh = c; b�� = �@�h+A�

b��� = @��� � @��� + '�� : (33)

Since we are dealing with an abelian model subjected to a zero curvature condition we

write Mc = 0 and Mh = a c. Then (9) determines the M transformations as

Mc = 0; MA� = i��
�@�c; M'�� = i��

�@�A� � i��
�@�A�; Mh = ac

M�� = aA� � i��
�@�h; M��� = a'�� � i��

�@��� + i��
�@��� : (34)

G�; b;M given in (32,33,34) satisfy the topological algebra (6-10).

4.1 An invariant action

Let us consider S =
R
!0
2 satisfying bS =

R
b!0

2 . This is equivalent to the system of

descent equations

b!0
2 + d!1

1 = 0; b!1
1 + d!2

0 = 0; b!2
0 = 0 : (35)

In order to solve (35) let us consider b!2
0 = 0 with !2

0 2 V = fc;A; '; h; �; �; dc; dA; d'; dh;

d�; d�g. Here, since the �elds are abelian we have !2
0(c; h) = 0. One possibility for

obtaining a non-trivial solution is to consider a set of ladders AI ; HI ; I = 1; :::; 2N ,

where the index I splits as I = (i; î); i = 1; :::; N . For each value of I we have the same

set of equations as before, (32,33,34), satis�ed by the I-th component of the ladders. It

is possible to consider the splitting of I in such a way that the corresponding ladders are
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complex conjugates, i.e Abi := A�i; Hbi := H�i, however, our discussion is not restricted

by this choice. 2

Now we can write !2
0 as

3

!2
0 = fij(h; ĥ)c

icj + fiĵ(h; ĥ)c
iĉj + fîĵ(h; ĥ)ĉ

iĉj (36)

with fij = �fji; fîĵ = �fĵ î. Then, b!2
0 = 0 determines the following conditions on the

functions fij; fiĵ; fîĵ,

@fij

@ĥk
�

1

2

@fik̂
@hj

+
1

2

@fjk̂

@hi
= 0;

@fij

@hk
+
@fjk

@hi
+
@fki

@hj
= 0

@fî̂j

@hk
�

1

2

@fkĵ

@ĥi
+
1

2

@fkî

@ĥj
= 0;

@fîĵ

@ĥk
+
@f

ĵk̂

@ĥi
+
@f

k̂î

@ĥj
= 0 (37)

which is solved by

fij =
@K

@hi@ĥj
�

@K

@hj@ĥi
; fiĵ = 2�

@K

@hi@hj
� 2

@K

@ĥi@ĥj
; fîĵ = ��fij (38)

with K an arbitrary function of (h; ĥ) and � an arbitrary constant that should be made

equal to 1 in case we describe our model by a pair of complex �elds and their conjugates.

Replacing (38) into (36) we obtain

!2
0 = 2Kiĵc

icj + 2Kîĵ ĉ
icj + 2�Kijc

iĉj + 2�Kîj ĉ
iĉj (39)

with Kiĵ �
@K

@hiĥj
etc. The use of the � operator allow us to exhibit a particular solution

to the descent equations [4, 5, 6, 7, 8, 9]. In fact, in the case of [�; d] = 0 we can write

(35) in the form ~d~! = 0 for ~! � !2
0 + !1

1 + !0
2 := e�!2

0. Then from (39) and the de�nition

of � we obtain,

~! = 2fKiĵA
iAj + 2fKîĵ

bAiAj + 2�fKijA
i bAj + 2�fKîj

bAi bAj (40)

with fK � K(H; cH) := e�K(h; ĥ) and fKiĵ �
@ eK

@Hi@ bHj
etc. Writing H = h+�; cH = ĥ+ b�

with � � �+ � and b� � �̂+ �̂, we expand fK(H; cH) in a Taylor series around (h; ĥ)

fK(H; cH) = K(h; ĥ) + �mKm(h; ĥ) + b�mKm̂(h; ĥ) +
1

2
�m�nKmn(h; ĥ) +

+�m b�nKmn̂(h; ĥ) +
1

2
b�m b�nKm̂n̂(h; ĥ)

2This condition should be assumed in [1] since there it is necessary to have a set of chiral and antichiral

super�elds which consequently generate pairs of complex conjugate �elds.
3We denote cî � ĉi etc.
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which gives the decompositions

fKiĵ j
�2
2 = �mKmiĵ + �̂mKm̂iĵ +

1

2
�m�nKmniĵ + �m�̂nKmn̂iĵ +

1

2
�̂m�̂nKm̂n̂iĵ (41)

fKiĵ j
�1
1 = �mKmiĵ + �̂mKm̂iĵ (42)

fKiĵ j
0
0 = Kiĵ : (43)

!0
2 is obtained by taking terms with bidegree (2,0) in ~!. Therefore, replacing (41,42,43)

in (40) we obtain

!0
2 = ~!j02

= Kmniĵ�
m�ncicj + 2Kmn̂iĵ�

m�̂ncicj +Km̂n̂iĵ �̂
m�̂ncicj +Kmnîĵ�

m�nĉicj +

+2Kmn̂îĵ�
m�̂nĉicj +Km̂n̂îĵ �̂

m�̂nĉicj + 2Kmiĵ�
mcicj + 2Km̂iĵ�̂

mcicj + 2Kmîĵ�
mĉicj +

+2Km̂îĵ �̂
mĉicj + 2Kmiĵ�

mciAj + 2Km̂iĵ �̂
mciAj � 2Kmiĵ�

mcjAi � 2Km̂iĵ �̂
mcjAi +

+2Kmîĵ�
mĉiAj + 2Km̂îĵ �̂

mĉiAj � 2Kmîĵ�
mcjÂi � 2Km̂îĵ �̂

mcjÂi + 2Kiĵc
i'j �

�2Kiĵc
j'i + 2Kîĵ ĉ

i'j � 2Kîĵc
j'̂i + 2KiĵA

iAj + 2KîĵÂ
iAj +

+�
�
Kmnij�

m�nciĉj + 2Kmn̂ij�
m�̂nciĉj +Km̂n̂ij �̂

m�̂nciĉj +Kmnîj�
m�nĉiĉj +

+2Kmn̂îj�
m�̂nĉiĉj +Km̂n̂îj �̂

m�̂nĉiĉj + 2Kmij�
mciĉj + 2Km̂ij�̂

mciĉj + 2Kmîj�
mĉiĉj +

+2Km̂îj �̂
mĉiĉj + 2Kmij�

mciÂj + 2Km̂ij �̂
mciÂj � 2Kmij�

mĉjAi � 2Km̂ij �̂
mĉjAi +

+2Kmîj�
mĉiÂj + 2Km̂îj �̂

mĉiÂj � 2Kmîj�
mĉjÂi � 2Km̂îj �̂

mĉjÂi + 2Kijc
i'̂j �

�2Kij ĉ
j'i + 2Kîj ĉ

i'̂j � 2Kîj ĉ
j'̂i + 2KijA

iÂj + 2KîjÂ
iÂj

�
: (44)

From (28) we conclude that ~d has trivial cohomology on V = fA;Hg. Therefore any

solution of ~d~! = 0 implies it exists !̂ such that ~! = ~d!̂. In particular !0
2 = ~!j02 =

( ~d!̂)j02 � b !̂j�12 + d !̂j01. Explicitly

!0
2 = b

n
Kmnĵ�

m�ncj + 2Kmn̂ĵ�
m�̂ncj +Km̂n̂ĵ �̂

m�̂ncj + 2Kmĵ�
mAj + 2Km̂ĵ �̂

mAj +

+2Kmĵ�
mcj + 2Km̂ĵ�̂

mcj + 2Kĵ'
j + �(Kmnj�

m�nĉj + 2Kmn̂j�
m�̂nĉj +

+Km̂n̂j �̂
m�̂nĉj + 2Kmj�

mÂj + 2Km̂j �̂
mÂj + 2Kmj�

mĉj + 2Km̂j�̂
mĉj + 2Kj '̂

j)
o
+

+d
n
2Kmĵ�

mcj + 2Km̂ĵ �̂
mcj + 2KĵA

j + �(2Kmj�
mĉj + 2Km̂j �̂

mĉj + 2KjÂ
j)
o

(45)

then our action writes simply as a BRST variation S = b
R
!̂j�12 .

We also have [M;G�] = �i��
�@� ) Me� = e�M � i��

�@�
dx
�e�. Therefore M!0

2 =

(M ~!)j12 = (Me�!2
0)j

1
2 =

1
2�

2M!2
0 � (i�� �@�
dx

�)!1
1 = i��

�@�!
1
�dx

�dx� (we have M!2
0 =

0; !1
1 � !1

�dx
�). Thus MS =

R
dx2(�i@�!1

�) = 0, i.e the action is M-invariant.



CBPF-NF-033/02 8

5 A model with matter, gauge and curvature lad-

ders

Let us consider the previous abelian model without the zero curvature condition. We

have ladders A; F ; H which satisfy

~dA = F ; ~dF = 0 and ~dH = 0 : (46)

The G� transformations are given by (13,14,32) and the BRST transformations assume

the form

bc = �; bA� = @�c+  �; b'�� = �F�� +B��; b� = 0; b � = �@��

bB�� = @� � � @� �; bh = 0; b�� = �@�h; b��� = @��� � @��� : (47)

In order to determine the M transformation we assume that Mc = a1�; M� = a2 c �

and Mh = a3 c. The algebraic relation (10) together with [b;M ] = 0 and M2 = 0 impose

a2 = 0; a3 = 0 and �x the M transformations as

Mc = a1�; MA� = a1 � + i��
�@�c; M'�� = a1B�� + i��

�@�A� � i��
�@�A�

M� = 0; M � = �i��
�@��; MB�� = �i��

�@� � + i��
�@� �; Mh = 0

M�� = �i��
�@�h; M��� = �i��

�@��� + i��
�@��� : (48)

Let us take ladders Ai; F i; Hi; i = 1; :::; N . Here, we write !2
0 = Fij(h; ĥ)cicj +

Fiĵ(h; ĥ)c
iĉj + Fî̂j(h; ĥ)ĉ

iĉj +Gi(h; ĥ)�i +Gî(h; ĥ)�̂
i. Then b!2

0 = 0 gives

!2
0 = Gi(h; ĥ)�

i +Gî(h; ĥ)�̂
i : (49)

An invariant action is given by S =
R
!0
2 with

!0
2 = (e�!2

0)j
0
2

=
1

2
Gi;jk�

i�j�k +G
i;jk̂
�i�j �̂k +

1

2
G

i;ĵ k̂
�i�̂j �̂k +

1

2
Gî;jk�̂

i�j�k +G
î;jk̂
�̂i�j �̂k +

+
1

2
Gî;ĵk̂�̂

i�̂j �̂k +Gi;j�
i�j +Gi;ĵ�

i�̂j +Gî;j�
î�j +Gî;ĵ�̂

i�̂j +Gi;j 
i�j +

+Gi;ĵ 
i�̂j +Gî;j ̂

i�j +Gî;ĵ ̂
i�̂j +GiB

i +GîB̂
i (50)

= b
�1
2
Gi;jkc

i�j�k +Gi;jk̂c
i�j �̂k +

1

2
Gi;ĵ k̂c

i�̂j �̂k +
1

2
Gî;jkĉ

i�j�k +Gî;jk̂ĉ
i�j �̂k +

+
1

2
G

î;ĵk̂
ĉi�̂j �̂k +Gi:jc

i�j +Gi:ĵc
i�̂j +Gî:j ĉ

i�j +Gî:ĵ ĉ
i�̂j +Gi;jA

i�j

+Gi;ĵA
i�̂j +Gî;jÂ

i�j +Gî;ĵÂ
i�̂j +Gi'

i +Gî'̂
i
�
+

+d
�
Gi;jc

i�j +Gi;ĵc
i�̂j +Gî;j ĉ

i�j +Gî;ĵ ĉ
i�̂j +GiA

i +GîÂ
i
�

(51)
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with Gi; Gî arbitrary functions of h; ĥ and Gi;j :=
@Gi

@hj etc. The expression given in (51)

is essentially the same one given in (45) if we identify Gi $ 2Kî; Gî $ 2Ki and take

� = 1. Nonethless, these models di�er due to their di�erent BRST transformations.

In addition to the solution given in (51) we can also include BRST-invariant terms

involving derivates, for example

Z
d2xGij(@�h

i@�hj + @�h
iA�j + �i�@

�cj + �i� 
�i) = b

Z
d2x(��i�@

�hj � �i�A
�j) : (52)

These terms are not generated by the expansion of e�!2
0. This shows explicitly the par-

ticular character of our solution.

Note that !2
0 given in (49) is M-invariant, then adopting the same procedure of the

last section we also obtain MS = 0.

6 Deriving a supersymmetry from the topological

algebra

Let us now derive a realization of the N = 2 supersymmetry generators in the space

of abelian �elds V = fc;A; '; h; �; �; dc; dA; d'; dh; d�; d�g by following the procedure

of [1]. We de�ne supersymmetry generators Q�a � (Q++; Q+�; Q�+; Q��) as Q++ :=



�
++G�; Q�� := 


�
��G�; Q+� := 1

2(�b+M); Q�+ := 1
2(�b�M).4 Then the topological

algebra (6-10) together with these de�nitions determine

[Q�+; Q�+] = 0

[Q��; Q��] = 0

[Q�+; Q��] = 

�
��@�

9>>>=
>>>;
*) [Q�a; Q�b] = Cab


�
��@� : (53)

that corresponds to the algebra of the generators of N=2 supersymmetry. It should

be noticed though that our model di�ers from the description of topological matter of

[1], �rst, because we have two extra �elds '�12 and ��22 that are necessary to garantee

d = [�; b] (see [4]), and second, because our �elds are not components of a pair of chiral

and antichiral super�elds.

Here, both actions with lagrangian densities given by (45,51) are invariant under b and

M transformations, but are not necessarily invariant byG�. G-invariance may be obtained

4Note that (9) di�ers by a minus sign to the corresponding relation [Q;G�] = @� of [1]. Then we have

to consider here the association �b$ Q.
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by introducing additional ladders or by imposing restrictions on the �elds. These actions

depend on arbitrary functions K; Gi; Gî of (h; ĥ) which, contrarily to the topological

matter of [1], don't de�ne a K�ahler metric. In fact, the kinetic term given in (52) for the

action (51) doesn't bring any restriction to Gi; Gî (the same applies to K if we introduce

a kinetic term for (45)).

7 Conclusion

All models exhibited here admit the decomposition d = [�; b] which translates into the

fundamental relation [G�; b] = @� of topological algebras. In addition, we also have

[d; �] = 0, which is equivalent to [G�; @�] = 0. As it was shown in [8; 9], there are models

where this relation doesn't hold and, as a result, a new operator ��1
�� of bidegree (0,-1)

arises, i.e [G�; @�] = ��1
�� . In these cases there is no natural way to introduce the generator

M in order to reproduce some of the relations of the topological algebra.

The same ideas presented here in the context of two dimensions also apply to 4 di-

mensions. However, what seems more signi�cant is that they apply to any dimension and

to any set of Lie algebra valued �elds as far as they are components of ladders satisfying

d = [�; b]. The special cases of two and four dimensions can be used to formulate a N=2

supersymmetric model provided we restrict the �elds to be respectively SO(2) and SU(2)

valued [1, 3]. It becomes clear that the � operator is not only a usefull tool in the analysis

of the descent equations [4, 5, 6, 7, 8, 9], or in the study of some aspects of topological

Yang-Mills theories [10, 11] but it also allows us to represent topological algebras for a

broader class of models.
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