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Abstract

We propose a Feynman path-integral solution for the Feynman propagator as-

sociated to an isotropic quantum harmonic oscillator with time-depedent stochastic

frequency and time-variable mass.
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1 Introduction

One of the most interesting problem in non-relativistic quantum mechanics is the math-

ematical computations associated to quantum motions of particles in presence of random

potentials ([1]).

Although there is a huge literature on the subject ([2]), it still worth the search for new

mathematical methods to analyze the above cited problem and specially those possesing

potentiality for numerical-computation analysis ([3]). In the subject of quantum motion in

random potentials, one very important (formal) model is a system of a quantum harmonic

oscillator with a time-variable mass of the form m(t) = exp
(

ν
m
t
)
and a harmonic poten-

tial with a stochastic (random) frequency w(t) satisfying a prescribed gaussian statistics

and phenomenologically simulating a damped particle around a equilibrium position of

the random potential. It is worth remark that outside the quantum physics, this model in

its euclidean version (the diffusion equation with time-dependent parameters) has impor-

tant applications on one-dimensional Burger turbulence and Paraxial wave-propagation in

random medium ([5]) (see Appendix A for some pedagogical discussion on this subject).

In this letter to the Editor, we follow our previous studies ([3]) by proposing a path-

integral solution for the above cited problem by considering in the first section a new

explicit expression for the quantum system Feynman propagator, which by its turn, and

opposite to others results on the literature ([4]) posseses the interesting property of al-

lowing to perform exactly the stochastic frequency average on the associated Feynman

Propagator. As a result it will lead to a suitable one-dimensional field theory path-integral

representation for the quantum averaged propagator, the content of the second section

of our letter. Finally, in the third section, we present a somewhat pedagogical discus-

sion of application and modelling of the results previously exposed to Brownian quantum

mechanics.
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2 An integral representation for the quantum Feyn-

man propagator of the anisotropic time-dependent

harmonic oscillator

Let us start our analysis by considering the general case of the Schödinger equation

associated to the Feynman propagator of an anisotropic harmonic oscillator with deter-

ministic time-dependent frequency set {wi(t)} and a time dependent, mass parameter
m(t) , namely:

− ih̄
∂ψ(�r, t)

∂t
=

{
− h̄2

2m(t)
∆ +

1

2
wij(t)xixj

}
ψ(�r, t) (1)

with the Plane-Wave initial condition

ψ(�r, 0) = exp(i�k(�r − �r ′)) (2)

Note that due to the linearity of eq. (1), its Green function (the Feynman Propagator)

is straightforwardly given by the simple integration in relation the Plane-Wave momentum

�k

G(�r, �r ′, t) =
∫ +∞

−∞
d3�k.ψ(�r, t, [�r ′, �k]) (3)

where we have used the notation ψ(�r, t, [�r ′, �k]) in order to emphasize the functional de-

pendence of the Schrödinger wave function eq. (1) on initial-value parameters (�r ′, �k).

Let us try to solve eq. (1) in a elementary way by proposing an ansatz of the following

form (�r = (xi), i = 1, 2, 3)

ψ(�r, t) = exp
[
i

2
xiAij(t)xj

]
exp[i xsps(t)]exp[iφ(t)] (4)

where the symmetric 3× 3 matrix [Aij(t)], the R
3 vector [ps(t)] and the (complex) scalar

φ(t) are determined after substituting the ansatz eq. (4) into eq. (1) and leading, thus

to the following system of ordinary Riccati differential equations after comparing the

monomials on the spatial variables (xi). We get, thus, the following result (a matrix

ordinary differential equation) for the quadratic form coeficients Aij(t):

d

dt
Aij(t)− h̄

m(t)

(
3∑

k=1

Aik(t)Akj(t)

)
=
1

h̄
(wij(t)) (5)
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with the initial condition

Aij(0) = 0 (6)

The [ps(t)] vector ordinary differential equation is given by

d

dt
pi(t)− h̄

m(t)

3∑
k=1

(Aik(t) · pk(t)) = 0 (7)

with the initial constraint

pi(0)=ki (8)

and finally the scalar ordinary differential equation is written as

h̄
dφ(t)

dt
=

h̄2

2m(t)

[
3∑

k=1

(pkpk − iAkk)(t)

]
(9)

with the initial value

φ(0) = −(�k · �r ′) (10)

Let us firstly analyze the set of ordinary differential equations eq. (5) - eq. (10) in

the simple case of an one-dimensional isotropic harmonic oscillator. In this case eq. (5)

- eq. (6) reduces to the following second-order ordinary differential equation (Aij(t) =

a(t); p5(t) = p(t))
da(t)

dt
− h̄a2(t)

m(t)
=

w(t)

h̄
(11)

with

a(0) = 0 (12)

Now it is straightforward to solve eq. (12) by means of the Riccati ansatz

a(t) = −m(t)

h̄

(
u̇(t)

u(t)

)
(13)

where u(t) satisfies the usual second order differential classical (damped) harmonic oscil-

lator equation with the boundary condition u̇(t0) = 0

d2u

d2t
+
(
ṁ

m

)
(t) · du

dt
+

w(t)

m(t)
u(t) = 0 (14)

The remaining equations eq. (7) - eq. (10) are solved by trivial quadratures after

solving eq. (11)-eq. (14). It yields the following results

p(t) = exp

(
h̄
∫ t

0

a(σ)

m(σ)
dσ

)
· k (15)
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and

φ(t) = −(�k�r ′) + h̄
∫ t

0
dσ

p2(σ)

2m(σ)
− ih̄

2

∫ t

0
dσ

a(σ)

m(σ)
(16)

At this point it is instructive to compare our elementary method of solution with

the somewhat cumbersome technique of refs. [4] to solve time-dependent Schrödinger

equation with time-dependent quadratic potentials by means of complicated space-time

variable change.

It is worth remark that the case of the Caldirola-Kanai model of m(t) = exp( ν
m
t), eq.

(14) - eq. (16) are exactly soluble (Appendix A).

After we have displayed our elementary integral representation for eq. (1) - eq. (2)

we, thus, pass to the important problem of random frequency {wij(t)} in next section.

3 The random frequency averaged quantum propa-

gator

In this section we intend to write a one-dimensional path-integral representation for the

isotropic quantum harmonic oscillator where the isotropy is taken for simplicity of our

exposition.

Let us, thus, consider the Schrödinger equation eq. (1) for this isotropic case in R3

− ih̄
∂ψ(�r, t)

∂t
=

{
− h̄2

2m(t)
∆ +

1

2
w(t)(|�r 2|

}
ψ(�r, t) (17)

and

ψ(�r, 0) = exp(i�k · (�r − �r ′)) (18)

Here the random frequency w(t) satisfies the white-noise statistics (0 ≤ t ≤ ∞)

〈w(t)〉w = 0 (19)

〈w(t1)w(t2)〉w = λδ(1)(t1 − t2) (20)

The main object of this section will be the exact evaluation of the averaged quantum

propagator associated to eq. (17) over the frequency ensemble namely

〈G(�r, �r ′, t)〉w =
∫ +∞

∞
d3�k〈ψ(�r, t, [�r ′, �k])〉w (21)
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In order to evaluate exactly eq. (21) by means of a path-integral, we first consider our

eq. (4) in the suitable path-integral form

G(�r, �r ′, t) =
∫ +∞

−∞
d3�k

{∫ a(∞)=0

a(0)=0
DF [a(s)]exp

(
i

2
a(t)|�r|2

)}
exp[i�p(t) · �r]exp[iφ(t)]

δ(F )

[
d

dt
a(t)− h̄

m(t)
(a(t))2 − 1

h̄
w(t)

]
δ(F )

[
d

dt
�p(t)− h̄

m(t)
a(t)�p(t)

]

δ(F )

[
dφ(t)

dt
− h̄

2m(t)
(p2(t)− ia(t))

]
(22)

where we have introduced as constraints (delta functionals) the ordinary differential equa-

tions determining the parameter (a(t), �p, φ(t)) on our proposed solution eq. (4). Note that

after evaluating the a(s)-path integral one re-obtains the full set of equations eq. (4) - eq.

(7) for the stochastic case.

Let us take the frequency average by means of a path-integral on the functional inte-

grand eq. (22). We obtain, thus, the following double path-integral as a result

G(�r, �r ′, t)〉w =
∫ +∞

−∞
d3k

{∫
DF [w(t)]e−

1
λ

∫∞
0

ds
w(s))2

2

}
∫ a(∞)=0

a(0)=0
DF [a(s)]exp

(
i

2
a(t)(�r)2

)
exp(i�p(t)�r)exp(iφ(t))

δ(F )

[
d

dt
a(t)− h̄

m(t)
(a(t))2 − 1

h̄
w(t)

]
δ(F )

[
�p(t)−

(
exp

[
h̄
∫ t

0

a(σ)

m(σ)
dσ

]
· �k
)]

δ(F )

[
φ(t)−

(
�k · �r ′ − h̄

∫ t

0

p2(σ)

2m(σ)
dσ + ih̄

∫ t

0
dσ

a(σ)

2m(σ)

)]
(23)

Now, it is straightforward to evaluate the w(t)-path integral by interchange of the

integration order in eq. (23) and leading, thus, to our proposed one-dimensional λϕ4 line

path integral representation for our effective quantum propagator:

〈G(�r, �r ′, t)〉w =∫ +∞

−∞
d3�k

{∫ a(∞)=0

a(0)=0
DF [a(s)]× e

− h̄2

λ

∫∞
0

ds 1
2

[
(ȧ(s))2+ h̄2

m2(s)
(a(s))4

]}

× exp
[(

i

2
(�r 2)a(t)

)] [
exp

(
i(�k · �r)exp

(
h̄
∫ t

0

a(σ)

m(σ)
dσ

))]

exp i


�k · �r ′ + ih̄

∫ t

0

a(σ)

2m(σ)
− h̄

∫ t

0
dσ


 (�k)2

2m(σ)
× exp

(
2h̄
∫ σ

0

a(s)

m(s)
ds

)




 (24)

Note that a(0) = 0 from eq. (12) and a(∞) = 0 as general property of Brownian

trajectories a(s) for 0 ≤ s ≤ ∞.
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Let us analyze perturbativelly eq. (24) at a formal one-loop order (a context with h̄ very

small but not zero). In this case one safely can make the following formal approximation

for the exponential terms inside our proposed path-integral representation eq. (24)

exp

(
h̄
∫ t

0

a(σ)

m(σ)
dσ

)
∼= 1 + h̄

∫ t

0

a(σ)

m(σ)
dσ +O(h̄2) (25)

exp

(
2h̄
∫ σ

0

a(s)

m(s)
ds

)
∼= 1 + 2h̄

∫ σ

0

a(s)

m(s)
dσ +O(h̄2) (26)

[
(ȧ(s))2 +

h̄2

4(m(s))2
(a(s))2

]
∼= (ȧ(s))2 +O(h̄2) (27)

The above written one-loop approximation lead us to the following exactly soluble

gaussian path-integral (in the simple case of m(t) = m: a constant mass parameter)

〈G(�r, �r ′, t)〉w ∼
∫ +∞

−∞
d3k exp[i(�k · (�r + �r ′))]exp

[
−i

h̄

m
|�k|2t

]

×
∫ a(∞)=0

a(0)=0
DF [a(s)]exp

(
− h̄2

λ

∫ ∞

0
ds
[ȧ(s)]2

2

)
exp

(∫ ∞

0
ds a(s)j(s)

)
(28)

here the current j(s) is given explicitly by

j(s) =
(∫ t

0
dσδ(s− σ)

)
h̄

m

(
i(�k · �r)− 1

2

)
+−


 ih̄2|�k|2

m2


(∫ t

0
dσ
∫ σ

0
dw δ(s− w)

)

+(δ(s− t))
i

2
|�r|2 (29)

The a(s)-path integral give us the following result

exp

{
+

λ

h̄2

∫ ∞

0
ds
∫ ∞

0
ds′ j(s) (|s− s′|θ(s− s′))j(s′)

}
=

exp
λ

h̄2



[
+

h̄

m

(
i(�k · �r)− 1

2

)]2

f1(t)+

+


−ih̄2|�k|2

m2




2

f2(t) +


 h̄

m

(
i(�k · �r)− 1

2

)−ih̄2|�k|2
m2




 f3(t)


 (30)

here the time-dependent factors are given by the integrals below

f1(t) =
∫ t

0
dσ
∫ t

0
dσ′|σ − σ′|θ(σ − σ′) (31)

f2(t) =
∫ t

0
dσ
∫ t

0
dσ′

∫ σ

0
dw
∫ σ′

0
dw′|w − w′|θ(w − w′) (32)

f2(t) =
∫ t

0
dσ
∫ t

0
dσ′

∫ σ′

0
dw|σ − w| (33)
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At this point one should proceed by trying to evaluate at some physical limit or

numerically eq. (28) and, thus, try to evaluate the quantum system effective (frequency

averaged) state density function afterwards ([1])

n(E) =
∫ ∞

0
dE ei E

h̄
t
(∫ +∞

−∞
d3�r〈G(�r, �r, t)〉w

)
(34)

which by its turn is a very important physical observable for practical applications in

solid state physics. These studies will not be presented here and we hope to expose them

in a extended paper since we have limited ourselves to the exposition of a method in

mathematical physics of path integrals and not its applications in concrete problems in

theoretical physics, which will appear elsewhere.

4 The Brownian Quantum Oscillator

In this section, somewhat of pedagogical purpose, we intend to expose the basis of the

phenomenological quantum theory of an one-dimensional damped oscillator ([4]). The

main point of generalizing the usual quantum mechanical Schrödinger equation to the

case of damping is based in the following observation: if one uses the formal Caldirola-

Kanai prescription on the second Newton law of motion

m → m e(
ν
m)t = m(t) (35)

g → g e(
ν
m)t = g(t) (36)

here m is the inertial mass of particle which becomes time-dependent by an exponential

law and g the force coupling constant which appears on the force potential function

gV (x), one obtains straightforwardly the classical motion equation of a particle subject

to damping, namely,

d

dt

(
m e(

ν
m)t

dx

dt

)
= ge(

ν
m)t

(
−dV

dx
(x(t), t)

)
(37)

or equivalently

m
d2x

d2t
+ ν

dx

dt
= −

(
g
dV

dx

)
(x(t), t) (38)
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Let us consider the Caldirola-Kanai prescription eq. (35) and eq. (36) formally into

the usual Schrödinger equation and postulate that it is the generalization suitable to

quantization of eq. (38), at least, in a phenomenological framework ([4])[
− h̄2

2me(
ν
m)t

d2

d2x
+
(
ge(

ν
m)t
)
V (x)

]
ψ(x, t) = −ih̄

∂ψ(x, t)

∂t
(39)

It is worth remark that the formal current conservation equation takes the form

∂

∂t
(ψ∗ψ)(x, t) +

ih̄

2me(
ν
m)t

(
∂

∂x
(ψ∗ ∂

∂x
ψ − ψ

∂

∂x
ψ∗)

)
(x, t) = 0 (40)

Let us show the usefulness of eq. (39) by deducing the Ohm law by first principles.

In order to implement such step, we consider a homogeneous electric field E and a initial

electron plane wave function ψ(x, 0) = exp(ip̄x) as an initial condition to be imposed on

eq. (39). If one tries to solve eq. (39) by means of the Ansatz

ψ(x, t) = eixp(t)eiφ(t) (41)

one gets the following result

p(t) = p− eE

h̄

(
e(

ν
m)t − 1

)
(

ν
m

) (42)

φ(t) =
∫ t

0
dσ


−

h̄2

2m
e−(

ν
m

t)σ


p̄− eE

h̄


e(

ν
m)σ − 1(

ν
m

)





2

 (43)

Now it is easy to evaluate the quantum mechanical damped electron velocity in the

Caldirola-Kanai generalized quantum mechanics eq. (39). It yields the result below

v(t) =
∫ x+∆x

x
dξ

[
ψ∗ ih̄

me
ν
m

t

∂

∂ξ
ψ

]
(ξ, t) =

=
e−(

ν
m)t(ih̄)

m


−ieE

h̄

(
e(

ν
m)t − 1

)
(

ν
m

)

∆x (44)

which at the steady limit lead us directly to the Ohm law

v(∞) = e

ν
E ·∆x =

e

ν
V (45)

and by its turn give us the physical (observable) meaning for the damped mechanical

parameter ν in eq. (39). It is the electrical resistance parameter of the Ohm’s Law.



– 9 – CBPF-NF-033/01

Let us consider another example of the usefulness of eq. (39) by considering a confined

dampled particles in a box 0 ≤ x ≤ L, namely

−
[

h̄2

2me(
ν
m)t

d2

d2x

]
ψ(x, t) = −ih̄

∂ψ(x, t)

∂t
(46)

where

ψ(0, t) = ψ(L, t) = 0 (47)

By considering again on ansatz of the form

ψ(x, t) = A(x) exp
(
i

h̄
E(t)

)
(48)

one obtains the (damped) eigen-wave functions of the damped quantum particle confined

in a box

An(x) = sin
(
nπ

L
x
)
with n = 1, 2, 3, · · · (49)

En(t) =
h̄2

2n

(
n2π2

L2

) (1− e−(
ν
m)t
)

(
ν
m

) (50)

After displaying in simple examples the consistency of the Caldirola-Kanai prescrip-

tion, let us analyze the quantization of a classical Brownian particle with motion equation

([5])

m
d2x

d2t
+ ν

dx

dt
= −gw(t)x (51)

where we have introduce a stochastic harmonic potential responsible for the interaction

of the environment in thermal equilibrium with temperature T with our classical particle

(at least near a potential equilibrium position V (x(t)) ∼= −1
2
w(t)x2 ([7])). Note that

w(t) belongs to a white-noise ensemble of random frequencies in order to produce the

Brownian character of our classical system. The formal quantization of our Brownian-

damped system eq. (52) in the three-dimensional case is given by eq. (1) of the text with

λ = kTm (see eq. (20) - eq. (21)).
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The Green Function for a Class of Parabolic-Diffusion

Operator – Appendix A

In this somewhat pedagogical Appendix, we show how to write suitable integral repre-

sentation for the following parabolic-diffusion operator Green function with time-variable

coefficients [6]

∂φ(�r, t)

∂t
= {Dij(t)

∂2

∂xi∂xj

+ vki(t)x
i ∂

∂xk

+

Ωij(t)x
ixj + Ek(t)x

k +M(t)}φ(�r, t) (A.1)

with

φ(�r, 0) = exp(i�k(�r − �r ′)) (A.2)

It is important remark the usefulness to have an explicit integral representation for eq.

(A-1) since it governs a great number of important physical phenomena like the advection

of a scalar in a turbulent medium modeled phenomenologicaly by a variable (tensor)

diffusion Dij(t), a vector field {vki(t)x
i} = {Ak(t, x)}(i = 1, 2, 3) and time-dependent

sources {Ωij(t), Ek(t),M(t)}.
Let us, thus, follow the procedure exposed in the text by supposing an ansatz of the

form

φ(�r, t) = exp
{
−1
2
xiAij(t)x

j + pi(t)x
i + φi(t)

}
(A.3)

After substituting eq. (A-3) into eq. (A-1) and taking into account the initial condition

eq. (A-2), we get the following generalized Riccati system of ordinary differential equations

similar to these exposed in the text

Ȧik(t) = −{Ais(t)Dsn(t)A
mk(t) + Ωik(t)− Air(t)vrk(t)} (A.4)

ṗ�(t) = −{A�n(t)Dnk(t)pk(t)− pi(t)Din(t)An�(t)}+ pk(t)vk�(t)− E�(t) (A.5)

φ̇(t) = Dik(t){Aik(t)− pi(t)pk(t)} −M(t) (A.6)

with the following initial conditions

Ȧik(0) = 0 ; ṗ�(0) = −ik� ; φ(0)− i�k · �r ′ (A.7)
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On the basis of the unicity of the solution of eq. (A-1) on any suitable Sobelev space

([6]), we obtain the Green function written as an usual integral

G(�r, �r ′, t) =
∫ +∞

−∞
d3�k exp

{
−1
2
xiAij(t)x

j + pi(t;�k)x
i + φ(t,�k, �r ′)

}
(A.8)

At this point we remark the usefulness of eq. (A-8) for numerical studies, since there

are faster numerical schemes to handle the set eq. (A-4) - eq. (A-7) even if some objects

there are random variables.

Let us write a integral representation proposed in this paper for a purely damped

(ν2 < 4m2w2
0) quantum oscillator (in one-dimensional)

− ih̄∂ψ(x, t)

∂t
=

[
− h̄2

2me(
ν
m)t

− d2

d2x
+
1

2
(mw2

0)e
( ν

m)tx2

]
ψ(x, t) (A.9)

with

ψ(x, 0) = exp(ik(x − y)) (A.10)

By considering the text’s ansatz

ψ(x, t) = exp

(
i
x2

2
α(t)

)
exp(ixp(t))exp(iφ(t)) (A.11)

one obtain that

α(t) =
2m2w2

0

h̄
√
4m2w2

0 − v2
e(

ν
m)t




sin
(√

4m2w2
0−ν2

2m
t
)

cos
(√

4m2w2
0−ν2

2m
t
)
+ ν√

4m2w2
0−ν2

sin
(√

4m2w2
0−ν2

2m
t
)

 (A.12)

and

p(t) = k exp(A(ν,m)t)×
cos



√
4m2w2

0 − ν2

2m
t


+ ν√

4m2w2
0 − ν2

sin



√
4m2w2

0 − ν2

2m
t






γ(ν,m)

(A.13)

with

A(ν,m) =
4m2w2

0

4m2w2
0 − ν2

(
ν

2m

)(
1−

(
ν

2mw0

)2
)

(A.14)

γ(ν,m) = −
(
1−

(
ν

2mw0

)2
)

4m2w2
0

4m2w2
0 − ν2

(A.15)
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and

φ(t) = −ky +
h̄

2

∫ t

0
dσ
(
me(

ν
m)σ

)
[p2(σ)− iα(σ)] (A.16)

The Green function searched has the following integral representation

G(x, y, t) =
∫ +∞

−∞
dk e−iky

{
ei x2

2
α(t)eix p(t) e

ih̄
2

∫ t

0
dσ(p2(σ)me(

ν
n)σ)

e+ h̄
2

∫ t

0
dσ(α(σ)me(

ν
m)σ)

}
(A.17)

We have not attempted to evaluate eq. (A-17), bu the integral representation given

by this equation have potentialities for precise numerical (appropriate) evaluations of the

theory’s physical observables.

Finally, let us make the important remark that the one-dimensional Burger equation in

the presence of a spatial derivative external forcing ([8]) and given initial-time conditions

∂U(x, t)

∂t
+ U(x, t)

∂

∂x
U(x, t) = ν

∂2U(x, t)

∂2x
+

∂

∂x
F (x, t) U(x, 0) = f(x) (A.18)

can be easily mapped on the one-dimensional version of eq. (A-1)-eq. (A-2) by means of

the Hopf-Cole transformation (singular for ν → 0+)

w(x, t) =
1

ν
exp

(
− 1

2ν

∫ x

−∞
dy U(y, t)

)
(A.19)

yielding, thus, the following Euclidean-Schrödinger equation

ν
∂w(x, t)

∂t
= ν2 ∂2w(x, t)

∂2x
− 1

2
F (x, t) · w(x, t) (A.20)

with the initial condition

w(x, 0) =
1

ν
exp

(
− 1

2ν

∫ x

−∞
dy f(y)

)
(A.21)


