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In this work we compare the quantization of a massless scalar �eld in an inertial frame with the
quantization in a rotating frame. We used the Trocheries-Takeno mapping to relate measurements
in the inertial and the rotating frames. An exact solution of the Klein-Gordon equation in the
rotating coordinate system is found and the Bogolubov transformation between the inertial and
rotating modes is calculated, showing that the rotating observer de�nes a vacuum state di�erent
from the Minkowski one. We also obtain the response function of an Unruh-De Witt detector
coupled with the scalar �eld travelling in a uniformly rotating world-line. The response function is
obtained for two di�erent situations: when the quantum �eld is prepared in the usual Minkowski
vacuum state and when it is prepared in the Trocheries-Takeno vacuum state. We also consider the
case of an inertial detector interacting with the �eld in the rotating vacuum.

I Introduction

The key point of special relativity is that the Poincar�e
group is the symmetry group of all physical systems.
The de�nitions of the Lorentz and Poincar�e groups are
based as groups of mappings that leave invariant the
at metric. The natural consequence is that an inertial
observer (in an inertial reference frame) can assign a
time and space location to any event occuring in space-
time, using light clocks, etc. To obtain a \physical" in-
terpretation of the Poincar�e mapping we have to derive
general relations between the space-time measurements
made by di�erent observers who are in di�erent inertial
frames.

So far, we have been considering only classes of mea-
suring devices in inertial reference frames. However,
suppose we are to make measurements with a device in
non-inertial frames, as for example in a rotating disc.
To discuss such measurements and to show how they
can be incorporated into a space-time description, en-
tails that distance and time measurements made with
some arbitrary set of measuring devices can always be
made to correspond to the coordinates of space-time
by means of a suitable space-time mapping. In other
words, in order to compare measurements made by in-
ertial and non-inertial (e.g. rotating) observers, we

must present the mapping that relates the measure-
ments made with the two di�erent sets of devices.

For example, in a Galilean scenario it is possible to
relate the space and time measurements made in a ro-
tating frame to those in an inertial one by the mapping:

t = t0; (1)

r = r0; (2)

� = �0 � 
t0; (3)

z = z0; (4)

where 
 is the constant angular velocity around the z
axis of the inertial frame. In the above, the cylindri-
cal coordinate system x0� = ft0; r0; �0; z0g is adapted to
an inertial observer and the rotating coordinate system
x� = ft; r; �; zg is the one adapted to the rotating ob-
server. Although some authors tried to construct the
counterpart of this mapping incorporating special rela-
tivity [1], the �nal answer for this question is still open.

In two recent papers [2] it is assumed that the map-
ping which relates the inertial frame with the rotating
one is given by:

t = t0 cosh 
r0 � r0�0 sinh
r0; (5)

r = r0; (6)

� = �0 cosh
r0 � t0

r0
sinh
r0; (7)
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z = z0: (8)

Such group of transformations was presented a long
time ago by Trocheries and also Takeno [3]. In Takeno's
derivation, three assumptions were made: (i) the trans-
formation laws constitute a group; (ii) for small ve-
locities we must recover the usual linear velocity law
(v = 
r); and (iii) the velocity composition law is also
in agreement with special relativity. In fact, the above
transformation predicts that the velocity of a point at
distance r form the axis is given by v(r) = tanh(
r).

It is our purpose, in this work, to investigate how
does an uniformly rotating observer see the Minkowski
vacuum. In this direction we performed the quantiza-
tion of a scalar �eld as an observer who rotates uni-
formly around some �xed point would do it. We as-
sume the Trocheries-Takeno transformations (5-8) to
compare measurements made in the inertial and in the
rotating frames.

The canonical quantization of a scalar �eld in the
rotating frame, related to the inertial one through co-
ordinate transformations (1-4), was made by Denardo
and Percacci and also by Letaw and Pfautsch [4]. To
compare the quantizations performed in the inertial
and rotating frames, the authors calculated the Bo-
golubov transformation [5] between the inertial modes
 i(t0; r0; �0; z0) and the modes adapted to the rotating
frame,  j(t; r; �; z). Since they found that the Bogol-
ubov coe�cients �ij are null, they conclude that the
rotating vacuum or no-particle state, as de�ned by the
rotating observer, is just the Minkowski vacuum j0;M i.

Another way to compare di�erent quantizations is
to study the vacuum activity of a quantum �eld, and
this is performed introducing a measuring device which
couples with the quantum �eld via an interaction La-
grangian. (In the following discussion we will take into
account the detector model due to Unruh and De Witt
[6, 7].) Using �rst-order perturbation theory, it is pos-
sible to calculate the probability of excitation per unit
proper time (excitation rate) of such a detector, that is,
the probability per unit time that the detector, travel-
ling in a given world-line and initially prepared in its
ground state, to wind up in an excited state when it
interacts with the �eld in a given state [8]. As an
example, consider that the detector is in an inertial
frame and the �eld is prepared in the Minkowski vac-
uum state. In this situation the detector will remain
in the ground state (null excitation rate). This is eas-
ily understood, because there are no inertial particles
in the Minkowski vacuum state. On the other hand, if
the detector is put in a world-line of an observer with
constant proper acceleration and the �eld is prepared
again in the Minkowski vacuum, the detector has a
non-null probability to su�er a transition to an excited
state. This is the so-called Unruh-Davies e�ect and the
quantitative result is in agreement with the fact that
the Minkowski vacuum state is seen as a thermal state

by the accelerated observer, with temperature propor-
tional to its proper acceleration [6]. The construction
of a quantum �eld theory with the implementation of
the Fock space in Rindler's manifold leads to de�ne the
Rindler vacuum state j0; Ri. For completeness, in the
situation when the �eld is prepared in such a state and
the detector is uniformly accelerated, the detector re-
mains inert. Again one is tempted to conclude that this
is so because there are no Rindler particles in j0; Ri to
be detected in the uniformly accelerated frame.

The agreement between the response of a detector
and canonical quantum �eld theory seems not to oc-
cur for more general situations. Indeed, as was shown
by Letaw and Pfautsch, if the detector is put in a uni-
formly rotating world-line and the �eld is prepared in
the Minkowski vacuum state j0;M i, it is found a non-
null excitation rate, in spite of the fact that j0;M i is
considered as the vacuum state for a rotating observer,
as discussed above. The rotating detector is excited
even though there are no particles as an orbiting ob-
server would de�ne them (see also [9]).

Recently Davies et al [10] (see also [11]) solved
this paradox, still assuming the Galilean coordinate
transformations (1-4) between the inertial and rotat-
ing frames. First of all note that the world-line of an
observer in the rotating frame is an integral curve of
the Killing vector � = (1 � 
2r2)�

1

2
@
@t , which is time-

like only for 
r < 1. Therefore, for a given angular
velocity 
 there will be a maximum value of the radial
coordinate rmax = 1


 (the light cylinder) for which an
observer a distance r > rmax will be moving faster than
light. The Bogolubov coe�cient � is a scalar product
over a spacelike hypersurface, where the radial coordi-
nate ranges over 0 � r < 1 and the notion of Bo-
golubov transformations outside the light cylinder be-
comes obscure. In order to circumvent this problem,
Davies et al introduced a perfectly conducting cylinder
with radius a < rmax and they prove that the response
of the detector vanishes when it is put a distance r < a
from the rotation axis. They conclude that \a rotat-
ing particle detector corotating with a rotating vacuum
state registers the absence of quanta", although they
continue to regard the Minkowski vacuum as the rotat-
ing vacuum state.

The aim of this paper is two-fold. The �rst one is
to present an exact solution of the Klein-Gordon equa-
tion in the Trocheries-Takeno coordinate system and to
show that the Bogolubov coe�cients � between inertial
and rotating modes are not zero. This fact proves that
there is a Trocheries-Takeno vacuum state adapted to
rotating observers. The second one is to analyse the
behavior of an apparatus device, a detector which is
coupled with the scalar �eld travelling in inertial or
rotating world-lines, interacting with the �eld in the
Minkowski or the Trocheries-Takeno vacuum states.

We organize this paper as follows. In Section II we
second quantize a massless scalar �eld in Takeno's ro-
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tating coordinate system, and also compare this quan-
tization with the usual one in the inertial frame via the
calculation of the Bogolubov coe�cients. In Section III
we introduce the measuring apparatus { the Unruh-De
Witt detector [6]. We calculate its response function
when it is rotating and the �eld is prepared in two dif-
ferent states: the Trocheries-Takeno vacuum state and
the Minkowski vacuum state. We also consider the case
of an inertial detector interacting with the �eld in the
rotating vacuum. Conclusions are given in Section IV.
In this paper we use �h = c = kB = 1.

II Canonical quantization in the

inertial and rotating frames

In this section we will make a comparison between the
quantizations of the massless Klein-Gordon �eld per-
formed in the inertial frame and in the rotating one

(Trocheries-Takeno), when the two coordinate systems
are related by the mapping (5-8). Such a comparison
will be made by calculating the Bogolubov transforma-
tion [5] between the inertial and rotating modes, so-
lutions of the respective Klein-Gordon equations. For
the quantization in the inertial frame one chooses cylin-
drical coordinates on t0 =constant hypersurfaces and
writes the Klein-Gordon equation in terms of them. We
just quote the results of refs. [4]. Positive-frequency
modes (with respect to inertial time t0), solutions of
the Klein-Gordon equation, are found to be:

vq0m0k0(t0; r0; �0; z0) = N1 e
ik0z0+im0�0

e�i!
0t0Jm0 (q0r0);

(9)

where !0 2 = q0 2 + k0 2, Jm0 (q0r0) are Bessel functions
well-behaved at the origin and N1 = [2�(2!0)1=2]�1

is a normalization factor. In the above, m0 =
0;�1;�2;�3; : : :, 0 � q0 < 1 and �1 < k0 < 1.
In this way the �eld is expanded as:

c

�(t0; r0; �0; z0) =
X
m0

Z
dq0 q0 dk0

h
bq0m0k0vq0m0k0(t0; r0; �0; z0) + byq0m0k0v

�
q0m0k0(t0; r0; �0; z0)

i
; (10)

d

where the coe�cients bq0m0k0 and byq0m0k0 are, respec-
tively, the annihilation and creation operators of the
inertial quanta of the �eld and satisfy the usual com-
mutation rule [bi; b

y
j] = �ij . In the above, the modes

vi and v�i are called, respectively, positive and nega-
tive frequency modes with respect to the Killing vec-
tor @=@t0. It is important to stress that in stationary
geometries, such as the Minkowski space-time, the def-
inition of positive and negative frequency modes has
no ambiguities. The Minkowski vacuum state is then
de�ned by

bq0m0k0 j0;M i = 0; 8 q0;m0; k0: (11)

We now consider the quantization in the rotating frame.

Assuming the mapping (5-8) to connect measure-
ments made in the rotating frame and those made in
the inertial one, the line element in the rotating coor-
dinates assumes the non-stationary form [2]:

ds2 = dt2�(1+P )dr2�r2d�2�dz2+2Qdrd�+2Sdtdr;
(12)

where P;Q and S are given by:

c

P = (
Y

r2
+ 4
�t) sinh2
r � 


r
(t2 + r2�2) sinh 2
r+ 
2Y; (13)

Q = r� sinh2
r � 1

2
t sinh 2
r+ 
rt; (14)

S =
t

r
sinh2 
r � 1

2
� sinh 2
r� 
r�; (15)

d

where Y = (t2 � r2�2). Note that this metric presents
no event horizons. In order to implement the canonical
quantization �rst we have to solve the Klein-Gordon
equation in the Trocheries-Takeno coordinate system:

2�(t; r; �; z) = 0: (16)

It is possible to show that a complete set, basis in the
space of solutions of the Klein-Gordon equation is given
by fuqmk; u

�
qmkg, where
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c

uqmk(t; r; �; z) = N2 e
ikz exp

h
i (m cosh 
r + !r sinh
r) � � i

�m
r
sinh
r + ! cosh 
r

�
t
i
Jm(qr); (17)

d
where !2 = q2 + k2 and N2 is a normalization fac-
tor. Again, m = 0;�1;�2;�3; : : :, 0 � q < 1 and
�1 < k < 1. One sees that these modes are well-
behaved throughout the whole manifold. Making use
of the transformations (5-8) one can show that these
modes are of positive frequency by using the criterium

of di Sessa [12], which states that a given mode is of pos-
itive frequency if it vanishes in the limit (t0) ! �i1,
where t0 is the inertial time coordinate, while u�j are
modes of negative frequency. In this way, the �eld op-
erator is expanded in terms of these modes as:

c

�(t; r; �; z) =
X
m

Z
dq q dk

�
aqmkuqmk(t; r; �; z) + ayqmku

�
qmk(t; r; �; z)

�
; (18)

d
where the coe�cients aqmk and ayqmk are, respec-
tively, the annihilation and creation operators of the
Trocheries-Takeno quanta of the �eld. The vacuum
state de�ned by the rotating observer is thus the
Trocheries-Takeno vacuum state j0; T i and it is given
by

aqmk j0; T i = 0; 8 q;m; k: (19)

The many-particle states of the theory can be obtained
through successive applications of the creation opera-
tors on the vacuum state.

We are now ready to compare both quantizations
by using the Bogolubov transformations [5]. Since both
sets of modes are complete, one can expand modes (9)
in terms of modes (17) and vice-versa, the coe�cients
of this expansion being called Bogolubov coe�cients.
For instance:

ui(x) =
X
j

�ijvj(x) + �ijv
�
j (x) (20)

and conversely:

vj(x) =
X
i

��ijui(x)� �iju
�
i (x); (21)

where �jj0 = (uj; vj0) and �jj0 = � �
uj; v

�
j0

�
, where the

scalar product is de�ned by:

(�; �) = �i
Z
�

d��p�g [�@��� � ��@��] ; (22)

with d�� = n�d�, where n� is a future-oriented unit
vector orthogonal to the spacelike hypersurface �. As �
we will choose the hypersurface t0 = 0, t0 being the iner-
tial time. The relevant coe�cient for our present anal-
ysis is the � coe�cient since it is this coe�cient which
gives the content of rotating particles in the Minkowski
vacuum [5], and for such a calculation we need to ex-
press the rotating modes uj(x) in terms of the inertial
coordinates, using transformations (5-8). In this way:

c

uqmk(t
0; r0; �0; z0) = N2 e

ikz0

exp (i�0 [m cosh 2
r0 + !r0 sinh 2
r0])

� exp
�
�it0

h
! cosh 2
r0 +

m

r0
sinh 2
r0

i�
Jm(qr

0) (23)

d
and the Bogolubov coe�cient �jj0 is written as:

c

�jj0 = +i

Z 1

0
r0dr0

Z 1

�1

dz0
Z 2�

0
d�0

�
uj(x

0)
@vj0(x0)

@t0
� vj0(x0)

@uj(x0)

@t0

�

= N1N2

Z 1

�1

dz0ei(k+k
0)z0

Z 1

0

r0dr0
h
!0 � ! cosh 2
r0 � m

r0
sinh 2
r0

i
Jm0 (q0r0)Jm(qr

0)

�
Z 2�

0

d�0 exp (i�0 [m0 +m cosh 2
r0 + !r0 sinh 2
r0]) : (24)
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d

The �rst integral is easily evaluated to a delta func- tion 2��(k + k0), while the third one gives us:

c
Z 2�

0
d�0 exp (i�0Am;m0 (r; !)) = (iAm;m0 (r; !))�1 [exp (2�iAm;m0 (r; !))� 1] ;

d

where

Am;m0 (r; !) = m0 +m cosh 2
r0 + !r0 sinh 2
r0: (25)

Thus, we obtain

c

�jj0 = 2�N1N2 �(k + k0)

Z 1

0

r0dr0
�
!0 � ! cosh 2
r0 � m

r0
sinh 2
r0

�
Jm0 (q0r0)Jm(qr

0)

� (iAm;m0 (r; !))�1 [exp (2�iAm;m0 (r; !))� 1] : (26)

d

The resulting expression is di�cult to evaluate, but
nonetheless it is non-zero. (In the appendix we give
an inderect proof that it is non-zero.) This means
that the two vacua considered are non-equivalent, i.e.,
j0;M i 6= j0; T i, which means that the Minkowski vac-
uum j0;M i contains rotating quanta, i.e., Trocheries-
Takeno particles [5].

III Detector excitation rate

We now pass to consider the probability of excitation
of a detector which is moving in a circular path at con-
stant angular velocity 
, interacting with the scalar
�eld. The initial state of the detector is its ground state
and for the initial state of the �eld we will consider the
two vacuum states: the usual Minkowski vacuum state
and also the Trocheries-Takeno vacuum state. The in-
teraction with the �eld may cause transitions between
the energy levels of the detector and if it is found, after
the interaction, in an excited state, one can say that it
has detected a vacuum uctuation of the �eld [11].

As a detector we shall be considering mainly the
detector model of Unruh-De Witt [6, 7], which is a sys-
tem with two internal energy eigenstates with monopole
matrix element between these two states di�erent from
zero. According to standard theory [8], the probability
of excitation per unit proper time of such a system (nor-
malized by the selectivity of the detector), or simply, its
excitation rate, is given by:

R(E) =

Z 1

�1

d�t e�iE�tG+(x(t); x(t0)); (27)

where �t = t � t0, E > 0 is the di�erence between
the excited and ground state energies of the detector
and G+(x(t); x(t0)) is the positive-frequency Wightman
function calculated along the detector's trajectory. Let
us note that the positive-frequency Wightman function
is given by

G+(x(t); x(t0)) = h0j�(x(t))�(x(t0))j0i ; (28)

where j0i is the vacuum state of the �eld, which can ei-
ther be j0;M i or j0; T i. Let us consider �rst the second
possibility.

If one splits the �eld operator in its positive and
negative-frequency parts with respect to the Trocheries-
Takeno time coordinate t, as �(x) = �+(x)+��(x) (we
wrote �(x) for �(x(t))), where �+(x) contains only an-
nihilation operators and ��(x) contains only creation
operators (see Eq.(18)), and also considers j0i as the
Trocheries-Takeno vacuum state, i.e., j0i = j0; T i then,
using Eq.(19), one �nds that:

G+
T (x(t); x(t

0)) =
X
i

ui(x)u
�
i (x

0); (29)

where the subscript T stands for the Wightman func-
tion calculated in the Trocheries-Takeno vacuum state.
Considering now the modes given by Eq.(17) and that
we are interested in the situation where the detec-
tor is at rest in the Trocheries-Takeno frame, i.e.,
� = constant, z =constant and r = R0 =constant, one
�nds:
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c

G+
T (x(t); x(t

0)) =
1X

m=�1

Z 1

0

dq q

Z 1

�1

dkN2
2 e

�i[ m
R0

sinh 
R0+! cosh
R0]�tJ2m(qR0): (30)

d

Putting the above expression in Eq.(27), we �nd:

c

R
(r)
T (E;R0) =

1X
m=�1

Z 1

0

dq q

Z 1

�1

dkN2
2 J

2
m(qR0)

Z 1

�1

d�t e�i[E+
m

R0
sinh
R0+! cosh
R0]�t: (31)

d

(In the above, the subscript T stands for the Takeno
vacuum and the superscript (r) stands for the rotat-
ing world-line followed by the detector.) The last inte-

gral gives us 2��
�
E + m

R0

sinh
R0 + ! cosh 
R0

�
, for

which the argument is non-null only if m < 0; we can
take the summation index to run for m = 1; 2; 3; :::,
leaving us with

c

R
(r)
T (E;R0) = 2�

1X
m=1

Z 1

0

dq q

Z 1

�1

dkN2
2 J

2
m(qR0) �

�
E � m

R0
sinh
R0 + ! cosh 
R0

�
: (32)

d

The above expression predicts excitation for the de-
tector, and depends in a non-trivial way on the position
R0 where it is put. So we once again arrive at the same
confrontation between canonical quantum �eld theory
and the detector formalism,which was settled by Letaw
and Pfautsch and Padmanabhan: how is it possible for
the orbiting detector to be excited in the rotating vac-
uum? However a crucial distinction exists between our
present analysis and the above-mentioned works: we
state, as proved in the last section, that the rotating
vacuum is not the Minkowski vacuum. We now analyse
the two independent origins of the non-null excitation
rate, Eq.(32).

Note that the present situation of a Unruh-De
Witt detector being excited when put in an orbit-
ing world-line interacting with the �eld in the rotat-
ing (Trocheries-Takeno) vacuum is to be contrasted
with the two following situations. In fact, this same
detector is not excited whether it is in an inertial
world-line and interacting with the �eld in the iner-

tial (Minkowski) vacuum [5, 8] or when it is uniformly
accelerated and interacting with the �eld in the accel-
erated (Rindler) vacuum [13]. However note that both
Minkowski and Rindler space-times are static, di�er-
ently of the Trocheries-Takeno metric, and di�erently
also of the rotating metric obtained using the galilean
transformation, which are examples of non-static met-
rics. Recall that using instead the galilean transforma-
tion to a rotating frame it was also found by Letaw
and Pfautsch a non-null excitation rate for the orbiting
detector in the rotating vacuum, considered by them
as j0;M i. Therefore the excitation in the present case
may be attributed to the non-staticity of the Trocheries-
Takeno metric.

The other origin of the excitation found above for
the detector can be atributed to the detector model we
adopted [14]. Indeed, note that splitting the �eld op-
erator in its positive and negative-frequency parts with
respect to rotating time t in Eq.(28), one can express
the Wightman function as:

c

G+(x; x0) = h0j�(x)�(x0)j0i
=



0j�+(x)�+(x0)j0�+ 


0j�+(x)��(x0)j0�
+



0j��(x)�+(x0)j0�+ 


0j��(x)��(x0)j0� : (33)
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d

In the case where j0i = j0; T i, because of Eq.(19)
only the second term above is non-vanishing, corre-
sponding to the emission (creation) of a Trocheries-
Takeno quantum with simultaneous excitation of the
detector and this is the term responsible for the
non-vanishing excitation rate, Eq.(32). In the con-
text of quantum optics photodetection is regarded as
photoabsorption processes only [15, 16], a detector be-
ing able to be excited only when it absorbs (annihi-
lates) a quantum of the �eld. In this way terms like
the second one above are discarded and only terms
like the third one are taken into account, such a pro-
cedure being called the rotating-wave approximation
[16]. Therefore purely absorptive detectors (Glauber
model) always give vanishing excitation rate in the vac-
uum state of the �eld. From this discussion, it is clear
that the Glauber detector model will not be excited
when put in the orbiting world-line and the �eld is in
the Trocheries-Takeno vacuum state. Another context
in which the inclusion of the antiresonant term (second
one above) plays a crucial role is that of accelerated ob-
servers, where the thermal character of the Minkowski
vacuum as seen by a Rindler observer is not revealed if
one uses the Glauber correlation function, but only if

one uses the Wightman one. In e�ect, the Wightman
correlation function includes the vacuum uctuations
that are omitted in the Glauber function [14], and to
these very vacuum uctuations can be attributed the
non-vanishing excitation rate Eq.(32). Because of this
feature the model of Unruh-De Witt is also called a
uctuometer [17].

We now discuss the other case of putting the detec-
tor in an orbiting trajectory and preparing the scalar
�eld in the usual inertial vacuum j0;M i. Writing j0;M i
for j0i in Eq.(28), it is easy to show that the positive-
frequency Wightman function is given by:

G+
M (x(t); x(t0)) =

X
j

vj(x)v
�
j (x

0); (34)

where M stands for the Minkowski vacuum state. As
the rate of excitation Eq.(27) is given in terms of
the detector's proper time, we shall express Eq.(34)
in terms of the rotating coordinates, using the in-
verse of Takeno's transformations. Let us begin with
G+
M(x(t01); x(t

0
2)), in inertial coordinates, with identi�-

cations r01 = r02 = R0 and z01 = z02, as demanded for this
case:

c

G+
M(x(t01); x(t

0
2)) =

1X
m=�1

Z 1

0

qdq

Z 1

�1

dkN2
1 e
�i!(t0

1
�t0

2
)+im(�0

1
��0

2
)J2m(qR0): (35)

d

The inverse of Takeno's transformations read

t0 = t cosh
r + r� sinh
r; (36)

r0 = r; (37)

�0 = � cosh 
r +
t

r
sinh
r; (38)

z0 = z: (39)

Using the above in Eq.(35) and taking note of the fact
that the detector is at rest in the rotating frame, i.e.,
�1 = �2, we see that in this manner the Minkowski
Wightman function is a function of the di�erence in
proper time �t = t1 � t2, which allows us to calculate
the rate of excitation of the orbiting detector when the
�eld is in the Minkowski vacuum:

c

R
(r)
M (E;R0) = 2�

1X
m=1

Z 1

0

dq q

Z 1

�1

dkN2
1 J

2
m(qR0) �

�
E � m

R0
sinh
R0 + ! cosh 
R0

�
: (40)

d

The result above is very much like Eq.(32), with the
exception that in the above it appears the normaliza-
tion of the inertial modes N1 instead of N2.

Finally, let us suppose that it is possible to prepare
the �eld in the rotating vacuum and the detector is in
an inertial world-line and let us calculate the excitation

rate in this situation:

R
(i)
T (E;R0) =

Z 1

�1

d�t0 e�iE�t
0

G+
T (x(t1); x(t2));

(41)
where the superscript (i) stands for the inertial world-
line followed by the detector, �t0 is the di�erence in
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proper time in the inertial frame, and G+
T (x(t); x(t

0))
is given by Eq.(29). It is not di�cult to write
G+
T (x(t); x(t

0)) in terms of the inertial coordinates, re-

calling that now the detector is not at rest in the rotat-
ing frame. We have therefore the result that:

c

R
(i)
T (E;R0) = 2�

1X
m=�1

Z 1

0

dq q

Z 1

�1

dkN2
2 J

2
m(qR0)

� �

�
E �

�
!
R0 � m

R0

�
sinh(2
R0) � (m
 � !) cosh(2
R0)

�
: (42)

d

In order to study the activity of the Trocheries-
Takeno vacuum, we calculated the rate of excitation
of an Unruh-De Witt detector in two di�erent situa-
tions: when it is put in the orbiting and in an inertial
world-lines. Since in the �rst case we found a non-null
rate, contrary to the idea that the orbiting detector co-
rotating with the rotating vacuum should not perceive
anything, it can be considered as a noise of the rotat-

ing vacuum, being it perceived regardless of the state
of motion of the detector. This ammounts to say that
the inertial detector will also measure this noise, and
we normalize the rate in this situation by subtracting
from it the value Eq.(32), resulting in a normalized ex-
citation rate for the inertial detector in interaction with
the �eld in the rotating vacuum:

c

R(i)
T (E;R0) = 2�

1X
m=�1

Z 1

0

dq q

Z 1

�1

dkN2
2 J

2
m(qR0)�

�
�

�
E �

�
!
R0 � m

R0

�
sinh(2
R0)� (m
 � !) cosh(2
R0)

�
� �

�
E � m

R0
sinh
R0 + ! cosh
R0

��
:(43)

d

IV Summary and discussions

In this work we quantize a massless scalar �eld in a uni-
formly rotating frame and compare this quantization
with the usual one in an inertial frame. As a di�er-
ence with regard to previous works, we assume a coor-
dinate transformation between both frames that takes
into account the �nite velocity of light and is valid in
the whole manifold. In doing so, a material point orbit-
ing around the axis of rotation never exceeds the speed
of light, no matter how far it is from the axis. The
metric, when written in rotating coordinates, presents
no event horizons, although it is non-static and non-
stationary. We recourse to a criterium of di Sessa to
de�ne positive and negative frequency modes in the
rotating frame and the �eld is quantized along these
lines. Such a quantization entails a vacuum state and
by using the Bogolubov transformations we were able
to show that this vacuum state is inequivalent to the
Minkowski one. This is the main result of the paper.
This results in that the Minkowski vacuum is seen as
a many-rotating-particle state by a uniformly rotating

observer, although it can not be seen as a thermal state
(of Takeno particles), as in the case of a uniformly ac-
celerated observer (for Rindler particles) and thus we
cannot assign a temperature to it.

We obtain the response function of an Unruh-De
Witt detector in three di�erent situations: the orbiting
detector is interacting with the �eld prepared in the ro-
tating and in the Minkowski vacuum states, and �nally
the detector is travelling in an inertial world-line and
the �eld is prepared in the rotating vacuum. In the �rst
case it is found that the detector gets excited and we at-
tributed this excitation to two di�erent causes: Firstly,
we are using the Unruh-De Witt detector model in-
stead of a purely absorptive detector as the Glauber's
model, and secondly the Trocheries-Takeno metric is
non-static. Because the rotating vacuum excites even a
rotating detector, we consider this as a noise which will
be measured by any other state of motion of the detec-
tor. In this way, when calculating the reponse of the
inertial detector in the presence of the rotating vacuum
we subtract from it this noise.
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V Appendix

We now give inderect proofs that the Bogolubov coe�-
cient � is in fact non-zero. The calculations in the text

show that:

c

�jj0 = 2�N1N2 �(k + k0)

Z 1

0
r0dr0

�
!0 � ! cosh 2
r0 � m

r0
sinh 2
r0

�
Jm0 (q0r0)Jm(qr

0)

� (iAm;m0 (r; !))�1 [exp (2�iAm;m0 (r; !))� 1] ; (44)

d

where

Am;m0 (r; !) = m0 +m cosh 2
r0 + !r0 sinh 2
r0: (45)

As for m = m0 = 0 the integrands go like 1= sinh(2
r),
and 1= sinh(2
r) diverges for r ! 0, let us calculate
�0;1, which is for m = 0 and m0 = 1.

c

�01 = �2�iN1(m
0 = 1)N2(m = 0) �(k + k0)

Z 1

0
rdr

(!0 � ! cosh 2
r)

(1 + r! sinh 2
r)
J0(qr)J1(q

0r)

� [exp (2�i(1 + r! sinh 2
r))� 1] : (46)

d

So we call I the integral above:
c

I =

Z 1

0

rdr
(!0 � ! cosh 2
r)

(1 + r! sinh2
r)
J0(qr)J1(q

0r) [exp (2�i(1 + r! sinh 2
r))� 1] : (47)

d

The �rst integral is the only one which is
!0�dependent, i.e., it is a fuunction of !0. So, if
we prove that it is di�erent from zero, we prove that

�01 6= 0, since the second integral is not su�cient to
make it zero. Let us call it I(!0):

c

I(!0) = !0
Z 1

0

rdr
J0(qr)J1(q0r)

(1 + r! sinh 2
r)
[exp (2�i(1 + r! sinh 2
r))� 1] : (48)

d

Let us pick the second integral above, since again
the �rst one is not capable to make I(!0) 6= 0:

I2(!
0) = �!0

Z 1

0

rdr
J0(qr)J1(q0r)

(1 + r! sinh 2
r)
: (49)

There is not an analytical expression for I2(!0), but us-
ing the Maple one can calculate particular values, such

as:
Z 1

0

rdr
J0(r)J1(r)

(1 + r sinh r)
= 0:1830959596; (50)

so we proved, very indirectly, that � 6= 0.
A di�erent way to prove that � 6= 0 is to study the

high-velocity limit of �00:

c

�00 = �2�iN1(m
0 = 0)N2(m = 0)�(k + k0)

Z 1

0

rdr
!0 � ! cosh(2
r)

!r sinh(2
r)
J0(qr)J0(q

0r)
h
e2�i!r sinh(2
r) � 1

i
: (51)
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d

As 1
sinh x ! 0 as x!1, and cosh x

sinh x ! 1 as x!1, we �nd:

c

lim

!1

�00 = �2�iN1(m
0 = 0)N2(m = 0)�(k + k0)

Z 1

0

drJ0(qr)J0(q
0r)

h
1� e2�i!r sinh(2
r)

i
: (52)

d

The �rst of these two integrals can be found in Grad-
shteyn, in terms of hypergeometric functions:

Z 1

0

drJ0(qr)J0(q
0r) =

1

q + q0
F

�
1

2
;
1

2
; 1;

4qq0

(q + q0)2

�
;

(53)
and it is non-zero.
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