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Abstract

We study the Effective Feynman propagator of Brownian Quantum Particles (particles

interacting with environments).
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1 Introduction

One of the most interesting and conceptual problems in non-relativistic quantum mechanics is

the phenomena of quantum friction.

Until the present time, all studies on the subject were implemented to understand the appear-

ance of damping in the quantum particle motion equation under the hypothesis of a particle of

mass M interacting via a linear dissipative mechanism with a thermal environment at temperature

T modelated by an infinite set of harmonic oscillators coupled bilinearly to the particle coordinate

X(t). Let us describe briefly the results obtained in this framework ([1]).

The total hamiltonian H of the system plus the bath is postulated to be of the form:

H = 1
2
M Ẋ2(t) + V (X(t)) + 1

2

∑N
i=1 mj

[
φ̇2
i + w2

i (φi +
ci

miw2
i
X)2

]
. Note that the coupling to the

bath of harmonic oscillators with (different!) masses {mi} and frequencies {wi} are of the form

such that no coupling-induced renormalization on the potential V (X) occurs. This excludes from

further consideration that these Caldeira-Legget-Vermon-Feynman bath to be a phonon field with

a well determined frequency spectrum.

Classically, one obtain the following (time non-local!) equation for the particle (the Generalized

Langevin equation) in one-dimension: MX ′′(t)+ ∂V (X(t))
∂X

+M
∫ t
0 dsγ(t− s)X ′(s)ds = ξ(t) with the

memory-friction γ(t) obeying the fluctuation-dissipation theorem: 〈ξ(t)ξ(t′)〉 = kTMγ(|1− t−s|).
Note that the usual damping term (γ(t− s) → δ(t− s) is obtained only by a suitable choice of

the parameters ({mi, {wi}) made by hand ([1]), namely: in order to reproduce the usual damping

term one has to choose a somewhat phenomenological artificial bath always in thermal equilibrium!.

In this paper, we intend to implement similar environment studies, but with the environment

being modeled firstly (section 2) by a Random phonon field at zero-temperature (a turbulent-out

of equilibrium reservoir), secondly (section 3), a reservoir modeled by a classical gas in thermal

equilibrium and finally (in section 4), a bath made by thermalized quantum oscillators all with the

same mass and same frequency.

All the studies presented will be implemented at the particle quantum level for the main object

on the Feynman path integral framework: the Particle Quantum Propagator (important object to

study “Dissipative Tunneling Rates”! [1]) and not for the quantum particle probability amplitude

(see Appendix 4).
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Besides and for completeness, we present in four Appendices complementary studies on the

results presented on the text.

2 The Path Integral for Damped Quantum Systems

Let us start our study by considering as a macroscopic reservoir a random one dimensional

classical vibration field

1

c2
∂2

∂t2
φ(x, t)− ∂2

∂x2
φ(x, t) = 0 (1)

φ(x, 0) = 0 (2)

∂φ

∂t
(x, t)|t=0 = f(x) (3)

where the initial date f(x) belongs to an ensemble of random initial vibration field velocities in

order to produce the environment randomness and is supposed to satisfy the white-noise statistics

with strenght γ > 0

〈f(x)〉 = 0 (4)

〈f(x)f(x′)〉 = γδ(x− x′) (5)

From textbooks, the quantum mechanical amplitude is built from the classical action through

the following formulae

∂

∂t
S(x, t) +

1

2M

(
∂S(x, t)

∂t

)2

= V (x) (6)

lim
|t−t′|→0

〈(x, t)|(x′, t′)〉 = A(t, t′) exp
(
i

�
S((x, t; x′, t′))

)
(7)

and(xN = x; x0 = x′) (8)

〈(x, t)|(x′, t′)〉 = lim
N→∞

{
N−1∏
k=1

∫ +∞

−∞
dxk〈xk+1, tk+1|xk, tk〉

}
(9)

In order to write the associated (formal) Feynman path integral associated to the interaction

of the above quantum particle with the reservoir eq. (1)-eq. (3), one needs on base of above

written equations only to know the effective classical action S(x, t) of this particle in order to

build the finite time Feynman propagator eq. (9). In order to write the explicit expression for this
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classical damped action, we consider firstly the classical particle trajectory X(t) interacting with

the “oscillators reservoirs”

M
d2X(t)

dt2
= −gkφk(t) (10)

d2φk(t)

dt2
= −k2

c2
φk(t)− gkX(t) (11)

Here, the random wave field is considered as a random motion of the harmonic oscillators

associated to its plane wave expansion problem, namelly:

φ(x, t) =
∫
1

Λ
< |k| < Λ

dk φk(t)e
ikx (12)

φ−k(t) = φ∗
k(t) (13)

φk(0) = 0 ,
∂φk(0)

∂t
=
∫
dkf(k)eikx ≡ fk (14)

Note that we have considered the usual weak reservoir coupling linear interaction in eq. (10)-eq.

(11). ([2]).

At this point, we solve the classical problem eq. (10)–eq. (11) of the particle interacting

with the reservoir by means of the Laplace transform and obtain, thus, the following result in the

frequency domain

Ms2X̃(s) = − g(∫ Λ
1/Λ dk

)


∫
1/Λ|k|<Λ

dk.k
[
fk − gkX̃(s)

] c2

k2


1− s2

s2 +
(
k
c

)2




 (15)

The motion equation in the time domain, thus, is given by

MẌ(t) = (c2g2)X(t)− λ(Λ)dX

dt
(t) + E(t) (16)

where the damping term is given explicitly in terms of the system macroscopic parameters by

λ(Λ) =
2πg2c

Λ
. It is worth remarking that the external random force E(t) coming from the ran-

domness of the reservoir oscillators initial velocities satisfies the white-noise Gaussian statistics

(see appendix 2)

〈E(t)E(t′)〉 = g2

Λ2
γc2

∫
1/Λ<|k|<Λ

dk sen

(
kt

c

)
sen

(
kt′

c

)
=

g2γc3

Λ2
δ(Λ)(t− t′) (17)

The interaction, thus, is of the kind of Brownian reservoir ([3]), with a relaxation term and an

external random forcing.
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At this point we propose to consider the following analogous equation for defining the phase

of our quantum damped particle on basis of similarity of eq. (16) for very short time quantum

propagation (t ∼ 0+) (see eq. (7)-ref. [5])

∂S(x, t)

∂t
+

1

2M

(
∂S(x, t)

∂x

)2

= −λ(Λ)S(x, t) + φ(x, t) (18)

instead of the well known Caldirola-Kanai lagrangean ([4]).

Here φ(x, t) = E(t)x is the stochastic potential responsible for the randomness of the environ-

ment

〈E(t)E(t′)〉 = λδ(t− t′) (19)

where we have introduzed the phenomenological bath viscosity λ by the relationship
g2γc3

Λ2
= λ.

For completeness, we are going to discuss the complete three-dimensional case in our discussions

from now on, namely:

∂S("r, t)

∂t
+

1

2M
|"∇S("r, t)|2 = −λS("r, t) + V ("r, t) + φ("r, t′) (20)

Here S("r, t) is the 3D-version of the damped particle quantum phase V ("r, t) is the deterministic

potential, −λS("r, t) with λ > 0 denotes the term which is related to the damping effects on the

motion of the particle as showed above and φ("r, t) is the (intrinsic) stochastic Gaussian noise

potential responsible for the classical stochastic behavior of the Brownian particle ([3]).

Note that “Brownian motion” analitical form of this three-dimensional Gaussian random po-

tential should posseses the form of a homogeneous “Electric potential drift φ("r, t) = "E(t) ·"r and its

two point correlation function is given explicitly by (compare with eq. (19) for the one-dimensional

case)

〈φ("r, t)φ("r ′, t′)〉 = 〈Ei(t)Ej(t
′)〉rir′j

= (λ)δijδ(t− t′)rir′j (21)

In the Feynman path integral formalism, one should define as a quantum transition amplitude

for the damped quantum particle, eq. (1), the following sum over quantum trajectories (see

Appendix 4 for a detailed discussion)

G (("r, t); ("r ′, t′)) =
∑
{C}

〈
exp

(
i

�
S [("r, t); ("r ′, t′)]

)〉
φ
. (22)
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Here C is some trajectory of the classical system, S(("r, t); ("r ′, t′)) is the classical action of the

system and < · · · >φ denotes the stochastic average over all realization of the environment random

potential φ("r, t) acting on the particle.

The above formula, Eq. (21), is symbolic, but while in the case of non-damping λ = 0 and no

stochasticity, i.e, φ("r, t) ≡ 0, we know how to decipher and compute it ([1],[7]). But in the general

dissipative case, Eq. (21), such knowledgement is not available presently ([4]). Let us propose a

formal solution for this problem.

As a first step, we solve the generalized Hamilton-Jacobi equation, Eq. (20). Its solution is

easily seen to be given by

S("r, t) = e−λtS(0)("r, t) (23)

with S(0)("r, t) satisfying the usual Hamiltonain-Jacobi equation with time dependent parameters,

including the mass term, i.e,

∂

∂t
S(0)("r, t) +

1

2Meλt

∣∣∣"∇S(0)("r, t)
∣∣∣2 = eλt(φ("r, t) + V ("r, t)) . (24)

An exact solution of Eq. (24), in terms of the action functionals, is easily given in terms of the

Caldirola-Kanai action ([2])

S(0)("r, t) =
∫ t

t′
dσeλσ


M
2

(
d"r

dσ

)2

− (φ("r(σ), σ) + V ("r(σ), σ))


 . (25)

which, by its turn, leads to the following expression for our complete phase factor, Eq. (23):

S("r, t) =
∫ t

t′
dσeλ(σ−t)


1
2
M

(
d"r

dt

)2

− (φ("r(σ), σ) + V ("r(σ), σ))


 . (26)

Following now our procedure exposed in Ref. [4], we consider the discreticized version of Eq.

(26), i.e.,

Ŝ (("xk+1, tk+1); ("xk, tk)) = eλ(tk−tk+1)

[
1

2
M

"xk+1 − "xk)
2

ε2
− εV ("xk, tk)− εφ("xk, tk)

]
. (27)

At this point of our study, we remark that the short-time transition amplitude, in the Feynman

path integral and propagator formalism, is given explicitly by the asymptotic result, i.e.,

G(("xk+1, tk+1); ("xk, tk)) ∼= A(tk+1, tk) exp
(
i

�
Ŝ(("xk+1, tk+1); ("xk, tk))

)
, (28)
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where tk+1 − tk → 0.

The pre-factor in Eq. (28) is easily obtained from the t → 0+ condition, i.e.,

lim
(tk+1−tk)→0

G(("xk+1, tk+1); ("xk, tk)) = δ(D)("xk+1 − "xk) , (29)

and leading, thus, to the exact result:

A(tk+1, tk) = e
Dλ
2

(tk−tk+1)

[
M

2π�(tk+1 − tk)

]D
2

. (30)

As a consequence of the above displayed formulae, we obtain the finite time propagator, i.e.,

G(("r, t); ("r ′, t′)) = lim
N→∞

∫ (
N−1∏
k=0

d"rk

)
exp

{
Dλ

2

[
N∑
k=0

(t′ +
t− t′

N
k)− (t′ +

(t− t′)
N

(k + 1))

]}

N−1∏
k=1

(
M

2π�(tk+1 − tk)

)D
2

exp

{
i

�

N∏
k=0

εe
λ
2
(tk−tk+1)

(
M

2

("rk+1 − "rk)
2

ε2
− V ("rk, tk)− φ("rk, tk)

)}
.(31)

Now it is easy to evaluate the sum in Eq. (30) where D is the space-time dimension:

exp

{
Dλ

2

[
N−2∑
k=0

(t′ + εk)− (t′ + ε(k + 1))

]}
= exp[−

Dλ
2

(t−t′)] , (32)

and thus arrive at the following computable Feynman path integral (without making the evaluation

of the classical stochastic average over the random potentials at this point of our study), i.e.,

Gφ(("r, t); ("r
′, t)) = exp−

(
Dλ(t− t′)

2

)∫
�r(t′)=�r ′;�r(t)=�r

DF ["r(σ)]

exp


 i

�

∫ t

t′
dσeλ(σ−t)


1
2
M

(
d"r

dσ

)2

− V ("r(σ), σ)− φ("r(σ), σ)




 . (33)

Note that, in constrast to previous studies (Ref. [4] and [5]), the dissipative anomaly in Eq.

(32) decays to zero at the equilibrium limit t → ∞, independent of the discretization procedure

used to define the Path-integral.

At this point we take the average of Eq. (33) in the ensemble of the classical stochastic

potentials {φ("r, t)} eq. (21) with the result of a harmonic oscillator action with a time dependent

imaginary frequency Mw2
0 = {iλ exp[2(σ − t)]}/�, namely

〈
exp

{
i

�

∫ t

t′
dσ exp(λ(σ − t))φ("r(σ), σ)

}〉
= exp

{
− λ

2(�)2

∫ t

t′
dσ exp(2λ(σ− t))("r(σ))2

}
(34)

It is worth point out that this result is a direct consequence of the form of eq. (19).
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The complete Brownian propagator takes, thus, the final form

G(("r, t); ("r ′, t′)) = e−
Dλ(t−t′)

2

∫
�r(t′)=�r ′;�r(t)=�r

DF ["r(σ)] exp


 i

�

∫ t

t′
dσeλ(σ−t)


1
2
M

(
d"r

dσ

)2

− V ("r(σ), σ)






exp

{
−λ exp(−2tλ)

2(�)2

∫ t

t′
dσe(2λσ)("r(σ))2

}
(35)

Note that the path integral weight in the above proposed propagator for the quantum version of

a Brownian classical particle described be eq. (20) differs from the usual Caldirola-Kanai action by

an over all factor eλt. At this point we remark that the appearence of this factor makes the problem

of writing local Schrödinger equations associated to the effective propagator eq. (35), a difficult

problem ([5]). It is our opinion that only path integrals techniques are available for analysing these

“bath integrated out” particle quantum transitions amplitudes given by the proposed propagator

eq. (36), similar to those techniques used in the “Polaron problem” by R.P. Feynman [1] and [7])

and myself ([5]).

For quantum fields, the interaction with a Brownian reservoir should be given by the following

Caldirola-Kanai Field lagrangean with the random white noise drift eq. (21) as on can see from

considering the harmonic oscilator field expansion with each harmonic oscilator coupled to the

reservoir ([6]).

Ldam(ϕ, ∂tϕ,∇ϕ) =
∫ +∞

−∞
d"x
∫ ∞

0
dt eλt

[
(ϕ̇)2 − ("∇ϕ)2

]
("x, t)

+
∫ +∞

−∞
d"x
∫ ∞

0
dt eλt(E(t)ϕ("x, t) +

g

4!

∫ +∞

−∞
d"x
∫ ∞

0
dt eλt(ϕ("x, t)4 (36)

the above lagrangean leads, by its turn, to the classical Brownian field equation(
∂2

∂t2
−∆

)
ϕ("x, t) = −λ ∂

∂t
ϕ("x, t) + E(t)ϕ("x, t) +

g

3!
(ϕ(x, t))3 (37)

Let us, thus, write the quantum field generating functional associated to the second quantization

of eq. (35) by means of a Feynman path integral averaged over all white-noise drifts E(t), namely

Z[J("x, t)] =

〈
1

Z(0)

∫
DF [ϕ(x, t)]e

i

�

∫ ∞

0
dt
∫ +∞

−∞
d"xLdam(ϕ, ∂tϕ, "∇ϕ)

e

i

�

∫ ∞

0
dt
∫ +∞

−∞
d"x(ϕ · J)("x, t)〉

E

(38)
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A Feynman diagrammatic expansion can be easily implemented to eq. (38) as follows.

The free-field causal Feynman infrared regularized by the damping constant ν propagator (in

the range [0,∞)) satisfies the motion equation

eλt
(
∂2

∂t2
+ λ

∂

∂t
−∆x

)
G(("x, t); ("x′, t′)) = δ("x− "x′)δ(t− t′) (39)

or in the momentum space

(
d2

dt2
+ λ

d

dt
+ ("k)2

)
Ḡ("k, t, t′) = e−λtδ(t− t′) (40)

with the explicitly solution.

For ("k)2 > λ2/4:

G("k, t, t′) =
1√(

("k)2 − ν2

4

)e−λ
2
(t−t′)sen



√
(("k)2 − (

λ2

4
)(t− t′)


 θ(t− t′) (41)

For ("k)2 < λ2

4
:

G("k, t, t′) =
1

2
√

λ2

4
− ("k)2

e−
λ
2
(t−t′)θ(t− t′)

×

e

λ
2
(

√
1−4

(�k)2

λ2 )(t−t′) − e
−λ

2
(

√
1−4

(�k)2

λ2 )(t−t′)


 (42)

and for ("k)2 = λ2

4
.

G("k, t, t′) = (t− t′)e
−λ

2
(t− t′)

(43)

The interaction vextex are the same of the usual massless gϕ4-Field theory but now with an explicit

interaction with the “classical” source field eλt and with the white-noise drift E(t), which should

be averaged at the end of the diagrammatic computations. At this point is worth remark that

is unphysical to consider for the range of time t the whole range (−∞,∞) since this system is

damped and does not have time invariance (eλt �= e−λt!) (see eq. (36)).

A complete study of these diagrammatic computations will be presented elsewhere.
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3 The Quantum Propagator of a Particle Interacting with

a Classical Gas

Let us start this section by considering the grand canonical partition functional of a classical

gas in a volume Ω ⊂ R3 at temperature T = 1/kβ with a two body interaction potential V ("r)

Z(z, β,Ω) =
∞∑
n=0

znZn(β; Ω) (44)

where Zn(β,Ω) denotes the N -body partition functional

Zn(β,Ω) =
1

(�)3nn!

N∏
i=1



∫
Ω
d3"ri

∫ +∞

−∞
d3"pi exp


−β


 n∑

i=1

p2
i

2m
+

n∑
i<j

V ("ri − "vj)






 =

=

(
2πm

β�2

) 3n
2 n∏

i=1



∫
Ω
d3"ri exp


−β


 n∑

i<j

V ("ri − "rj)






 (45)

Let us represent eq. (44) by means of the functional integral of a field theory on the volume Ω

(a closed manifold on R3!)

Z(z, β,Ω) =
∫
DF [φ("r)] exp

{
−
∫
Ω
d3"r φ("r)(Lφ)("r)

}
exp(α

∫
Ω
d3"r exp(iγφ("r)))

det≡ 〈1〉φ (46)

with the following coupling identifications

γ2 = β =
1

kT

α = z

(
2πm

β�2

)3/2

exp
(
1

2
β V ("0)

)
. (47)

The kinetic term of the gas field theory eq. (46) has the two-body potential as the Green

function namely

LV ("r − "r ′) = δ(3)("r − "r ′) (48)

A proof of eq. (46) is easily obtained by considering the power expansion on α of the Exponential

Field interaction and evaluating the resulting gaussian functional integrals obtained on the process.

As a result one obtains the validity of eq. (46).

At this point, we consider the interaction of a quantum particle of mass M with the gas by

the simplest linear interaction of strenght g of the field φ("r) with the Feynman particle trajectory
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current "r(σ) (as it is usually made on the treatment of Feynman path integrals for quantum particles

on the presence of a electromagnetic field). Namely, the Effective Particle propagator representing

the interaction of our quantum particle with the classical gas as a reservoir is proposed to be given

by (see Appendix 4 for a detailed discussion)

G(("r, t); ("r ′, t′)) =
∫
�r(t)=�r;�r(t′)=�r ′

DF ["r(σ)] exp


 i

�

∫ t

t′

M

2

(
d"r

dσ

)2

dσ




〈
exp(

i

�
g
∫ t

t′
dσ φ(r(σ))

〉
φ

(49)

Here the average 〈 〉φ is defined by the (euclidean) path integral eq. (46).

A closed expression for our proposed “Bath-interaction” quantum propagator is easily written

down by considering again a α-perturbative calculation similar to that one used to show the

functional integral representation eq. (46). We, thus, have the following result

G(("r, t); ("r ′, t′)) =
∞∑
n=0

αn

n!

∫
Ω
d3r1 · · · d3rn

[∫
�r(t)=�r;�r(t′)=�r ′

DF ["r(σ)]

exp


 i

�
dσ

∫ t

t′

M

2

(
d"r

dσ

)2

× exp


−γ2

n∑
(k,j)

V ("rk − "rj)


 exp

(
−γ

�

n∑
k=1

dσ V ("r(σ)− "rk)

)

exp

(
− g2

2�2

∫ t

t′
dσ

∫ t

t′
dσ′V ("r(σ)− "r(σ′))

)]
(50)

In the regime of higher-temperature γ → 0, the leading contribution on γ is exactly given by

the self-avoiding interaction trajectory path integral

G(("r, t); ("r ′, t′)) ∼
∫
�r(t)=�r;�r(t′)=�r ′

exp


 i

�

∫ t

t′
dσ

(
M

2

)(
d"r

dσ

)2



exp

(
− g2

2�2

∫ t

t′
dσ

∫ t

t′
dσ′ V ("r(σ)− "r(σ′))

)
(51)

At this point the reader should compare eq. (51) with the Brownian quantum propagator

eq. (35). As a conclusion of this analysis we conclude that the Bath-reservoir physical nature

affects drastically the mathematical structure of the quantum system in interaction with the above

mentioned environment.
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4 The Quantum Propagator of a Particle Interacting with

a reservoir of thermalized Quantum Oscilators

In this section we consider the motion of a quantum free particle in the presence of a thermalized

lattice of harmonic oscillators. Let us, thus, write the effective particle propagator interacting with

the environment (the thermalized lattice) by means of a microscopic interaction potential Ṽ ("x).

The formal expression for the effective quantum propagator is, thus, given by similar expression

to eq. (49)

G(("r, t); ("r ′, t′)) =
∏

(i∈Lattice)

{∫
Ω
dQi

[∫
Qi(0)=Qi(β)=Qi

DF [Q(s)]

exp


− ∫ β

0
ds


1
2
m

(
dQ

ds

)2

+
1

2
mΩ2Q2(s)









∫

�r(t)=�r;�r(t′)=�r ′
DF ["r(σ)] exp


 i

�

∫ t

t′

M

2

(
dr

dσ

)2



exp

(
i

�

∫ t

t′
dσ

∫ β

0
ds Ṽ ("r(σ)− "Q(s))

)]}
(52)

In order to have more tractable analytical expression for eq. (52), let us rewrite eq. (52) in

the following form taking into account all the correct combinatoric factors of the lattice product

on eq. (52)

G(("r, t); ("r ′, t′)) =
∫
�r(t)=�r;�r(t′)=�r ′

exp


 i

�

∫ t

t′
dσ

M

2

(
dr

dσ

)2

 exp[+W ("r(σ)] (53)

Here W ("r(σ)) is the effective piece of the path-integral weight coming from the interaction with

the thermolized lattice and given by following path-integral

W ("r(σ)) = ρ
∫
Q(0)=Q(β)=�0

DF [Q(s)] exp

(
−
∫ β

0
ds
[
m

2
Q̇2(s) +

1

2
mΩ2Q2(Ω)

])

exp

(
i

�

∫ t

t′
dσ

∫ β

0
ds Ṽ ("r(σ)− "Q(s))

)
(54)

where ρ = N/V is the particle density of the lattice.

It is worth remark that the path-integral weight on eq. (52) can be exactly evaluated if one

has the interaction of the harmonic oscillator type among the lattice particles and the particle:

Ṽ ("x) = 1
2
k|"x|2 = 1

2
kx2.
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In the case of ρ << 1 (low density lattice), one obtain the leading result

G (("r, t); ("r ′, t′)) ∼
∫
�r(t)=�r;�r(t′)=�r ′

DF ["r(σ)] exp


 i

�

∫ t

t′
dr

m

2

(
dr

dσ

)2




1 + ρ


∫

Q(0)=Q(β)=0
DF [Q(s)] exp


− ∫ β

0
ds


M
2

(
dQ

ds

)2

+
1

2
MΩ2Q2(s)






exp

(
− i

�
k
∫ β

0
ds Q2(s)(t− t′)

)

exp
(
− i

�
kβ

∫ t

t′
dσ r2(σ)

)
exp

(
+
2i

�
k
∫ β

0
ds Q(s)

(∫ t

t′
dσ r(σ)

))]}
+O(ρ2) (55)

Exactly evaluation of eq. (55) is a straightforward procedure ([7]) and left to the reader and

should be compared again with eq. (35) and eq. (51) given on the text. Another time we see that

the Open quantum particle propagator depends heavily on the physical nature of the environment.

Acknowledgement: Luiz C.L. Botelho is thankful to CNPq – Brazil for financial support and to

Prof. Helayël-Neto from CCP-CBPF – Brasil for warm hospitality.
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Appendix 1 – The damped classical phase

In the appendix we make an alternative and more invariant deduction for the basic equation

(18) of our paper.

Let me, thus, consider the usual Schrödinger wave equation in its polar form and associated to

the Feynman (initial value) Propagator, namely

ψ("x, t) = ρ("x, t)exp
{
i

�
S("x, t)

}
(A.1)

∂

∂t
S("x, t) +

1

2m
|∇�xS("x, t)|2 + �

2

2m

∆ρ("x, t)

ρ("x, t)
= −grad V ("x) (A.2)

S("x, 0) = 0 (A.3)

∂

∂t
ρ("x, t) + div(ρ("x, t)"∇S("x, t)) = 0 (A.4)

ρ("x, t) = δ(3)("x− "x′) (A.5)

I postulate that the interaction of our quantum particle with the bath is of the Brownian form,

namely, I added to the right-hand side of eq. (A-2) relaxation terms coming from the damping

and the randomness as a result of the interaction with the reservoir of our quantum particle

∂

∂t
"v(x, t) +

1

2m
("v · "∇)"v(x, t) = − �

2

2m
"∇ ·

{
∆ρ("x, t)

ρ("x, t)

}
− "∇ · V ("x)− ν "v("x, t) + "F ("x, t) (A.6)

where "v("x, t) is the gradient of the wave function, phase ("v("x, t) = "∇ · S("x, t)). Note that I have

preserved all others equations (A-1), (A-3), (A-4) and (A-5). Besides, I postulate that the bath

random force "F ("x, t) is a white-noise gaussian process with strenght D > 0 and in analogy with

turbulence theory (ref. [8]) in order to have local expressions in my exposition

〈Fi("x, t)Fj("x
′, t′)〉 = Dδ(3)("x− "x′)δ(t− t′) (A.7)

It is well-known that it is impossible to write local Schrödinger wave equation for the set eq.

(A-5), eq. (A-6). However it is possible, in principle, to write a path integral expression for the

Feynman propagator defined in the text by eq. (9). In order to exhibit this new result, I should

firstly write the Feynman propagator in the usual small step form of eq. (6)-eq. (9) as it is given

in the text

〈(x, t)|(x′, t′)〉 = lim
N→∞

∫ (
N−1∏
k=1

dxk

)
f(tk+1, tk) exp

{
i

�
(S(xk+1, tk+1)− S(xk, tk)

}
(A.8)
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which may be written in the following form for the damped case (remember that "v("x, t) = "∇ ·
S("x, t)!)

〈(x, t)|(x′, t′)〉dam = F (t− t′)
∫
"x(t′) = "x′

"x(t) = "x

DF ["x(σ)]

〈
exp

{
i

�

∫
�x(σ)

"v("x(σ), σ)d"x(σ)

}〉
F

(A.9)

where 〈 〉F denotes the average of all realizations of the random external source eq. (A-6)

through the “hydrodynamical equations” eq. (A-5), eq. (A-3), eq. (A-4) and eq. (A-5).

An explicitly path-integral expression for this random average in terms of a weight defined by

the “quantum current” "v("x, t) = "∇ · S("x, t) is easily obtained by means of the functional variable

shift "F ("x, t) → "v("x, t) (see ref. [8] – eq. (7))

〈 〉F def≡
∫
DF ["F ("x, t)] exp

{
− 1

D

∫ ∞

0
dt
∫ +∞

−∞
d3x|"F (x, t)|2

}
∫
DF ["v("x, t)]detF

[
δ

δvk("x, t)

{
eq. (A-5) without the term "F ("x, t)

}]
=

exp


− 1

D

∫ ∞

−∞
dt
∫ +∞

−∞
d3x

∣∣∣∣∣ ∂∂t "v +
1

2m
("v · "∇)"v +

(
�

2

2m
"∇
{
∆ρ

ρ

}
("v)

)
+ "∇ · V + ν"v

∣∣∣∣∣
2

("x, t)




def≡ 〈 〉�v (A.10)

where I have, in principle, solved exactly the “quantum fluid hydrodynamical density” equation

(A-4) ρ("x, t) = F ["v("x, t)] in terms of the “quantum current” "v("x, t), and substituted the resulting

functional expression in the quantum potential term h2

2n
∆ρ(x,t)
ρ(x,t)

≡ !2
2n

{
∆ρ
ρ

}
("v("x, t)) and expressed it

solely in terms of the “quantum current” "v("x, t). Unfortunately, we were not able to solve the first

order partial differential equations (A-4) and (A-5) and obtained the exact functional form of the

quantum potential in terms of "v("x, t) (however see appendix 3 for a path-integral solution for this

problem).

Note that the functional determinant (the functional jacobian) in eq. (A-9) is unity, and the

“pre-factor” term F (t, t′) in eq. (A-8) is obtained after the evaluation of the average〈
exp

{
i

�

∫
�x(σ)

"v("x(σ), σ)d"x(σ)

}〉
�v

≡ exp [−Sdam("x(σ), σ)] (A.11)

by imposing the boundary condition limt→t′〈"x, t|"x, t′〉 = δ(3)("x − "x′): in the Feynman propagator

eq. (A-8) – eq. (A-9).

At this point we deduce the basic eq. (26) of our study presented in the bulk of our paper. For

short time propagation tk+1 − tk ≈ 0, we can see that the 〈 〉�v(�r,t) - average is entirely dominated
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by the “vanishing” D → 0 randomness limit with the hypothesis of ρ("x, t) =constant in this small

step limit. In this case, the average eq. (A-10) is given by (with tk < σ < tk+1!)

exp

{
i

�

∫
�x(σ)

"vCL("x(σ), σ)d"x(σ)

}
def≡ exp[−Sdam("x(σ), σ)] (A.11’)

where "vCL("x, t) satisfies the classical motion equation (the functional minimum of the weight on

eq. (A-9)) (see refs. [9])

∂

∂t
"vCL("x, t) +

1

2m

[
("vCL · "∇)"vCL

]
("x, t) = −ν "vCL("x, t) + "∇ · V ("x) (A.12)

"vCL("x, 0) = "0 (A.13)

In order to solve eq. (A-12) and eq. (A-13) under the hypothesis of "v("x, t) = "∇S("x, t), we

firstly consider the variable change

"vCL("x, t) = e−νt "v(0) ("x, t) (A.14)

yielding the result

∂

∂t
"v(0)("x, t) +

1

2(meνt)

[
("v(0) · "∇)"v(0)

]
("x, t) = eνt("∇ · V ("x)) (A.15)

which, by its turn, has the exact solution (see eq. (24) for the phase S("x, t))

"v(0)("x, t) = "∇�x

{∫ t

0
dσ eνσ

(
1

2
m|"̇x(σ)|2 − V ("x(σ))

)}
. (A.16)

After collecting eq. (A-15); eq. (A-14), we see that for tk ≤ σ ≤ tk+1, we have the functional

form of the “damped” classical particle action used in the text eq. (26)

Sdamp("x(σ), σ) =
∫ t

t′
dσ eν(σ−t)

(
1

2
m|"̇x(σ)|2 − V ("x(σ))

)
(A.17)
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Appendix 2 – The Bath reaction

In this short appendix we give a proof of eq. (17) (the random piece of the bath reaction on the

classical particle).

This term comes from the following expression (see eq. (15)) in the frequency domain s and

associated to the random initial conditions eq. (4)–eq. (5)

Ẽ(s) = −



g(∫ 1
1/Λ

)
dk


∫

1/Λ<k<Λ
dk · kfk

s2 +
(
k
c

)2




 (A.18)

Note that fk are random variable satisfying the same white-noise statistics of eq. (5) (the

environment randomness)

〈fk〉 = 0

〈fkfk′〉 = γδ(1)(k + k′) (A.19)

As a consequence of the above written equations, we have as a straightforward result the eq.

(17) given on the text

〈E(t)E(t′)〉 = −
(
g2

Λ2

)
γ
∫
1/Λ〈<(k,k′)<Λ

dkdk′
(
sen(ckt)

ck

)
·
(
sen(ck′t′)

ck′

)
δ(1)(k + k′)(kk′)

= eq.(17) (A.20)
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Appendix 3 – The Path-Integral Solution of a Transport

Equation

In this appendix we exhibit a closed analytical path-integral solution for the transport equation

∂

∂t
ρ("x, t) + div(ρ("x, t)"∇S("x, t)) = D∆ρ("x, t) (A.21)

lim
t→t′

ρ("x, t) = δ(3)(x− x′) (A.22)

In order to write a path-integral expression for the Green function G[("x, t); ("x , t′)] solution of

eq. (A.21) and eq. (A.22), we compare it with the analogous problem in Quantum mechanics of

a particle interacting with a electromagnetic vector potential field "A and a potential field force φ.

In this quantum mechanical case, the associated Schrödinger equation reads

i�
∂

∂t
ψ("x, t) =

{
− �

2

2n
∆ψ +

ie�

mc
div( "Aψ) +

e2

2mc2
( "A2)ψ + φψ

}
("x, t) (A.23)

At this point we make the following analytic continuation on eq. (23)

� = −i ; "A = −∇S ; φ = − 1

4D
( "A)2

m =
1

2D
;
e

c
=

1

2D
; c = 1 (A.24)

One can see that eq. (A.23) becomes formally identical to eq. (A.21). In terms of path

integrals, we, thus, have the following (Euclidean-Wiener) path integral representation for the

above transport Green function

G[("x, t); ("x ′, t′)] =
∫
�Z(t′)=�x ′;�Z(t)=�x

DF ["Z(σ)] exp


− 1

4D


∫ t

t′
dσ


d"Z
dσ

− ("∇S)("Z(σ), σ)








(A.25)

At the limit (singular) D → 0, where equation (A.21)-(A.22) reduces to the first-order equation

(A.4), the (Functional) integral is given exactly by the following expression

G[("x, t); ("x ′, t′)] = δ(3)["x− "Z[t; ("x ′, t′)]] (A.26)

Here "Z[t; ("x ′, t′)] satisfies the functional minimum of the positive path integral weight on eq.
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(A.25), i.e. the trajectories "Z[σ, ("x ′, t′)] satisfies the following Storm-Liouville problem:

d"Z[σ, ("x ′t′)]
dσ

= ("∇.S)("Z[σ, ("x ′, t′)]dσ) (A.27)

lim
σ→t

"Z[σ, ("x , t′)] = "x (A.28)

lim
σ→t′

"Z[σ, ("x; t′)] = "x′ (A.29)

As a consequence we obtain the closed analytical expression for eq. (A.4)

ρ("x, t) = δ(3)("x− "Z[t, ("x; t′)]) (A.30)

However it is very combersome write the quantum potential term !2
2m

(
δρ
ρ

)
("x, t) in terms of an

amenable functional on the “current” "v("x, t) = (∇."S)("x, t) as it is needed on eq. (A.10).
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Appendix 4

In this Appendix we make some clarifying comments on the quantum effective propagator used

in section 3 and 4.

Let us, thus, start from a general point of view from the complete system quantum Hamiltonian,

namely:

H = H(p) +H(bath) + gH int (A.31)

Here H(p) is the particle hamiltonian acting on the particle Hilbert states Hp. H(bath) the bath

hamiltonian acting on the bath Hilbert statesH(bath) and gH
int denotes the interaction hamiltonian

between the particle and the bath.

The effective particle propagator used in our studies of section 2 is obtained from the system

complete quantum propagator after integrating out the bath reservoir degrees of freedom and

leading, thus, to an effective propagator on H(p) as written in next equation

Up
eff (t) = TrH(bath)

[
exp it(H(p) +H(bath) + gH int)

]
(A.32)

It is worth that it differs from the usual matrix density propagator of a particle interacting

with a bath in thermal equilibrium which is defined by (see eq. (49) and eq. (52))

Ũp(t) = eitH
(p) ×

{
Trbath[ρe

it Hint]

Trbath[ρ]

}
(A.33)

where ρ is the bath matrix density (a trace eigenfunctions of the Bath Hamiltonian)

ρ =
∑
i

exp
{
− 1

kT
εi

}
|σi > ⊗ < σi| (A.34)

where

H(bath)|σi >= εi|σi > (A.35)

At this point it is worth remark that it does not make sense from a thermodynamical point of

view to consider the quantum amplitude transition of a single quantum particle sharing (possessing)

the same temperature of the bath as it was considered by H. Kleinert (“Path-Integrals-World

Scientific (1990) - section 18-6) in his “Matrix density and path integrals studies on the subject.

The correct procedure is to consider a gas made of the particles in contact with the thermal
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reservoir at the temperature T . In this case one should consider instead of transitions amplitudes,

the effective (bath integrated out dynamical degrees!) particle effective partition functional

Z
(
β =

1

kT

)
=

Trbath{exp(−β[H(p) +H(bath) + gH(int)]}
Trbath[exp(−βH(bath))]

(A.36)

Let us new consider as the physical object to be studied the quantum mechanical probability

density within a volume V ∈ R3 of the quantum particle without taking the environment average

yet

ρ
Ω
(t) =

∫
Ω
dDx ψ(x, t)ψ∗(x, t) =

∫ +∞

−∞
dDydDy ψ(y, 0)ψ∗(y′, 0)

×
∫
Ω
dDx G(x, y, t)G∗(x, y′, t) (A.37)

In the Feynman path-integral framework we can write the product propagators of eq. (A-37)

in the following form

G(x, y, t)G∗(x, y′, t) =



∫
z(0)=y
z(t)=x

DF [z(σ)]e
i
!
∫ t

0
L





∫

r(0)=x
r(−t)=y′

DF [r(σ)]e
i
!
∫ −t

0
L


 (A.38)

where L denotes in a condensed notation the complete particle Lagrangean which by its turn

includes the term interacting with the environment which is written as Lint. At this point, we

make use of the time translation path-integral invariance to re-write eq. (A-38) in the more

suitable form (σ = σ + t)

∫
r(0)=x
r(−t)=y′

DF [r(σ)]e
i
!
∫ −t

0
Ldσ =

∫
r(t)=x
r(0)=y′

DF [r(σ)]e
i
!
∫ 0

t
Ldσ (A.39)

As a consequence of eq. (A-39), we formally introduce an ensemble of closed Feynman trajec-

tories {z(α)} where the “time” α is now running along the complete real line (−∞,∞), but these

trajectories z(α) have the constraint that at the physical time α = t, z(t) coincides with the point

x. It is worth remark that we have made the usual homotopical-homological identification of the

initial and final time (0, 0) in eq. (A-38)-eq.(A-39) to the points α = −∞ and α = +∞.

As a result of the above displayed discussion we have as the object to be studied the following

Feynman closed path integral

∮
z(−∞)=y;z(∞)=y′

DF [z(α)e
i
!
∫ +∞
−∞ Ldα

δ(ν)(z(t)− x) (A.40)
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Note that it differs from the usual Schwinger-Feynman-Vermon closed time path integrals for

transition amplitudes of the form |(x, t|y, 0)|2 = G(x, y, t)G(y, x,−t).
At this point, one proceeds as in the main text by considering the environment integrated out

object

〈ρ
Ω
(t)〉 =

∫ +∞

−∞
dDy

∫ +∞

−∞
dDy′ ψ(y, 0)ψ∗(y′, 0)

∫
Ω
dDx



∮
z(−∞)=y
z(∞)=y′

DF [z(x)]e
i
!
∫ +∞
−∞ L0dαδ(D)(z(t)− x)〈e i

!
∫ +∞
−∞ Lintdα〉


 (A.41)

where 〈 〉 denotes the operation of integrating out the environment degrees of freedom as imple-

mented in the text.

Finally, we point out that similar effective (environment integrated out) for others quantum

mechanical observables can be path integral represented in a similar way as eq. (A-41).

For instance, the important quantum mechanical current is represented by the same eq. (A-41)

but with the insertion of the quantum mechanical momenta operator

〈"j
Ω
(t)〉 =

∫ +∞

−∞
dDy

∫ +∞

−∞
dDy′ ψ(y, 0)ψ∗(y′, 0)

×
∫
Ω
dDx



∮
z(−∞)=y
z(∞)=y′

DF [z(x)]e
i
!
∫ +∞
−∞ L0dα

(
−i�"∇x · δ(D)(z(t)− x)

)
〈e i

!
∫ +∞
−∞ Lint·dα〉


(A.42)
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