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Cosmic crystallography in a circle

A.F.F. Teixeira !

Centro Brasileiro de Pesquisas Fisicas
22290-180 Rio de Janeiro-RJ, Brazil

Abstract

In a circle (an S') with circumference 1 assume m objects distributed pseudo-
randomly. In the univeral covering manifold R! assume the objects replicated ac-
cordingly, and take an interval L > 1. In this interval, make the normalized his-
togram of the pair separations which are not an integer. The theoretical (expected)
such histogram is obtained in this report, as well as its difference to a similar his-
togram for non-replicated objects. The whole study is of interest for the cosmic
crystallography.
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1 Introduction

Cosmic crystallography (CC) is a method to unveil the topology of the universe, and
initially looked for spikes in a pair separation histogram (PSH) [1]. Since spikes are
absent in hyperbolic spaces, it appeared that the method was useless in such spaces.
However, it was soon shown that not only a Clifford translation (responsible for a spike)
press its fingerprint on a PSH, but also the other isometries of the space [2].

When spikes are absent, the PSH of a ball containing repeated images — the ¢™(I)
— is very similar to that of a ball with same radius and same geometry, but without
duplication of images — the ¢°(I). A suggestion was then made, of studying the difference
of the multiply and the simply connected histograms, ¢™ (1) — ¢°(1) [3].

To improve the method, expected functions gb;?xp(l) were derived to replace the his-
tograms ¢°(l) obtained from computer simulations, for all three geometries with constant
curvature [4]. Graphs of ¢™() — ¢, (1) were obtained, clearly evincing the topology of an
euclidian, an elliptic, and a hyperbolic three-space [5]. The contribution of each individual
isometry g to a PSH was examined, and normalized histograms ¢9(l) (defined in ref.[2])
were obtained from computer simulations [5]; these simulations also gave histograms of
(1) — ¢%,,(1), a previously unsuspected quantity [6].

Recently the exact (noiseless) functions ¢¢, (I) were given for the euclidian isometries
[7]. In the present report we finally have a first acquaintance with functions ¢¢,,(1), the
exact (noiseless) counterparts of the 'uncorrelated’ normalized histograms ¢*(I) defined
in [6]. We examine a one-dimensional system: a universe with topology S*, a circle with
circumference 1; we assume the horizon at a distance L/2 on each side of an observer, so
the visible universe has total length L; clearly if L > 1 then there are repeated images
in this visible universe. In section 2 we give a detailed description of how to obtain the
expected uncorrelated signature of ., (1) when 1 < L < 2. In section 3 we exhibit the
generalization for arbitrary horizon L/2. In the Conclusion we make a few comments,

and in four Appendices we derive a few somehow lengthy mathematical results stated in

the report.
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2 When 1< L <2

In a computer simulation, we usually execute the following set of prescriptions to obtain

the uncorrelated signature Y (1):

‘ //p\ ‘ /7-<\\ ‘ //p\ ‘

0 x 1 L

Figure 1 The distribution of objects in the interval (1, L) is an exact copy of the distribution
in (0,x); here p =3 and m = 8.

1. in an interval (0, 1) randomly distribute m objects; see figure 1;

2. in the side interval (1, L) make an exact replica of the p objects laying in (0, z);

3. measure the (m + p)(m + p — 1)/2 separations [ between the total m + p objects,

and discard the p correlated separations (those which have | = 1 exactly);
4. make a normalized histogram of the
D= smtp)mip—1)—p (1<L<2 &
uncorrelated separations;

5. make a large number of new normalized histograms, by repeating the steps 1 to 4

with same m (although p usually varies);

6. take the mean of these histograms, < ¢¥ ; (I) >, and construct the quantity

< b (l) >= (n = 1= 3 vy)[< G (D) > =630, (2)
where
2 l
¢i(l):z(1—z), 0<Il<L, (3)

and where the factor n — 1 — > v, = (m — 1)L — z(1 — z)/L is explained in the

appendix 1;
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7. the (computer simulated) wuncorrelated signature < % (I) > is the quantity <

o (1) > when m — oo; in practice m > 50 usually suffices. See figure 2.

-02 N 08

Figure 2 Computer simulated functions < ¢ (1) > for {m = 2,L = 1.7} and {m = 30,L =
1.3}

We now develop an analytical method to obtain the uncorrelated signature % (7). We
are dropping the subscript exp in all expected (theoretic, analytic, mean) probability

distributions. Initially define the lengths x and y (see figure 1)
r=L—-1 y=1—-2z (1<L<2), (4)

and assume that m objects are randomly distributed in (0, 1); the probability that p

objects be in the interval (0,z) and m — p objects be in the interval (z, 1) clearly is

m)!

Prpe = CEaPy™ P CF = ——; 5
3 pl(m —p)! ®)
irrespective of the values of m and x we have

p=0

We denote as ¢y, ;. (I)dl the probability of finding in (0, L) an uncorrelated pair with
separation between [ and [+ dl, when there are m objects in (0, 1) and p objects in (0, x);

clearly it satisfies

[ =1 (7

Recall that a pair (P, Q) is said g-correlated when the isometry ¢ brings one of the

members to the other; the pair is uncorrelated when no such g exists. To investigate

mpr (1) when 1 < L < 2 we first call A the interval (0,z), call B = (,1), and call
C = (1, L), and note that there are
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e waq = p(p—1)/2 pairs with both members in A;

e wup = p(m — p) pairs with a member in A and the other in B;

e wac = p(p — 1) uncorrelated pairs, with a member in A and the other in C;
e wpp = (m —p)(m — p—1)/2 pairs with both members in B;

e wpc(= wyup) pairs with a member in B and the other in C;

e wee(=waa) pairs with both members in C.

In total , there are D,,, (eq.(1)) pair separations to be considered.

A short reflection gives that the density ¢, (I) can be decomposed as

" 1
mpL(l> = sz

P

[wAA¢AA(l) + wappap(l) + wacpac(l) +

wppdpp(l) + wpcopc(l) + wCCﬁbCC(Z)} ) (8)

where each ¢xy(l) is the probability density of finding an uncorrelated pair of objects
separated by [, one in X and the other in Y’; clearly all obey

/O Y e ()l = 1. 9)

There are two basic types of ¢xy (1), according as X =Y or X #Y. When X =Y,
suppose a segment of length u, and randomly select two points of it; the probability that
their separation lie between [ and [ + dl is ¢7,(/)dl with (see figure 3)

0 :%(1-&), 0<l<p. (10)
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Figure 3 Pair separation density function for an interval p. The underlying area is 1.

When X # Y, consider two intervals with lengths o and 3, with separation ¢ (see
figure 4); randomly select one point in each a and ; the probability that the separation

between these points lie between [ and [ + dl is ¢sa gy(1)dl, with the density @5 (l) as
depicted in figure 5.

d)s(aﬁ)(l)

I/BT

<— 38— 0 St 61 Sto
- -k 1B ; :520] *
or 0 a B otp [
S i /B T~ =Pl
- 5 0 5 5+ o+2B |
i BT/\ [5=0, a=B]
0 B 2B l

Figure 4 Intervals with lengths o and 3, with separation J; assume a < 5.

Figure 5 The probability density ¢s(s)(l) for a < 8 (see figure 4); three particular cases are

also displayed; all underlying areas are = 1.

The functions ¢xy (I) appearing in eq.(8) are as displayed in the figure 6, for the case

with x < y; for x > y a similar set has to be constructed, see figure 7.
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Figure 6 The normalized functions ¢xy (l) when 1 < L <2 and z < 0.5 .

Figure 7 The same functions when x > 0.5 .

When z < 0.5 the density ¢}, (1), eq.(8), is a sequence of four straight segments with

endpoints at [ = 0, x,y, 1,

mpz.(0)
?an(x)
gan (y>

mpr(1)

and L (in this order), and values

[ 2+2 % (11)
Dmp wBBy wAAx )

1 2(y — x) 1
Doy [wBBT + 2wAB;] (z <0.5),

L 2 1] (x <0.5)

WAB— T .

Dmp AB = )

1 1 u
Dmp [wAC;L mpL(L) =0.

When z > 0.5 the sequence of endpoints changes to [ = 0,y,2,1, and L, and the

values of ¢, ; () at [ =y and [ = x become

gan (y)

umpL (z)

2(x —y) 1

[Q’LUAA72 + 2wAB—]
T T

(z > 0.5) (12)

mp

1 1
[QUJAB; + wac

Y (2>05)

mp

Two examples of functions ¢y, (1) for 1 < L < 2 are shown in figure 8.
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Figure 8 The probability density ¢y, (1) for m = 3,p = 2, and two values of L: 1.4 and 1.6 .

Both underlying areas are 1.

Having the m + 1 functions ¢y, (I ), p=0,...,m, we introduce the probability density
Z PmpﬂfgbmpL( ) (13)
p=0

whose interpretation is obvious: ¢¥ ; (1)dl is the probability that two uncorrelated objects

randomly selected in L have separation between [ and [4dl, when m objects were randomly

distributed in the interval (0, 1). Examples of ¢¥ ;(I) are given in figure 9.

Figure 9 Probability densities ¢p» ; (1) for 1 < L < 2. The graph of ¢7 (1) is given in dotted line,

for comparison.

Cosmic crystallography is mostly interested in systems with m >> 1. In this limit the
function ¢, (1) closely resembles the simple triangular function ¢35 (1) (eq.(3), fig. 3), so

one is led to define the difference

pi(l) = lim mL[gk, (1) — ¢1.(1)], (14)

m—00

the asymptotic uncorrelated signature of L.
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We soon find that the function ¢¥(l) has a number of symmetries:

©1(0) =i (L/2) = 7 (L) =0, ¢p(x) = —pi(1). (15)

In other words, every ¢%(I) with 1 < L < 2 is composed of three line segments, with the
first segment parallel to the third (see figure 10). As expected, the entire graph of ¢} (1)
is uniquely fixed by the number f(L), the value of Y () at [ = x; in the appendix 2 we
show that

f(L):iI:—f (1< L<2). (16)

A plot of f(L) valid for arbitrary L > 1 is given in figure 11.

Figure 10 Geometro-topological signature ¢} () for L =1.1 , 1.5, and 1.9 .
Figure 11 The function f(L), the absolute maximum of ¢ (1) (which occurs at | = x); three

particular values of L are marked, those used in figure 10.

3 When L >2

The generalization of the previous results for arbitrary values of L is straightforward but
lengthy, so we only state the final results in this section. See the appendix 3 for details.

The graph of the uncorrelated signature (14) with
L=X+z, MeZ,, 0O<z<l (17)

has the aspect of a slanted saw; see figure 12, drawn for A =5 and x = 0.2.
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Figure 12 The function ¢} (l) for L =5.2 .

There are A\ maxima, which occur in the positions | = z,1 4+ z,...,(A — 1) + = , and
there are A minima, which lay in the positions [ = 1,2, ..., \. A straight line connects the
maxima, another one connects the minima, both have angular coefficient —8zy/L?. The
A + 1 segments with positive angular coefficient are parallel, as well as the \ segments
with negative slope. As expected, the value of L is the sufficient datum to draw ¥ (1),

since

ph(a) = o5 = 2, (18)

as shown in the appendix 4. The graph of f(L) = 8\zy/L? is given in Figure 11.

4 Conclusion

In our first contact with the cosmic crystallography it appeared plausible that the nor-
malized expected functions ¢y, (1) and @2, (1) were the same, since both are concerned

with separations between objects isometrically unrelated [2]. However, in our computer

S

s2p(1) made imperative

simulations a persistent non-nullity of the difference < ¢*(l) > —¢
a more close exam. It soon became evident that a difference indeed existed, and that it
diminished as the number n of objects present in the sample increased.

Further investigation suggested to define the uncorrelated signature [6]

(1) = (n = 1= > wg) 0L, (1) — 6%, (1)], (19)
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where v, = N,/n , with N, =number of g-pairs in the observed universe; for the cosmic
crystallography we usually have n >> 143" v,.

Earlier attempts to find ¢¢,,(I) for three-dimensional balls failed, and also for 2D
balls; we then focussed our attention on a 1D ball, this report. When we compare the
final theoretical result (14) with the mean of an increasing number of histograms obtained
from computer simulations, we note a rapid agreement of the two approaches in the region
of large separations [ > L/2, while in the region where | < L/2 a quite larger number of
simulated catalogs is demanded. This can be seen in Figure 2, where we observe that the
statistical fluctuations for [ large are sensibly less pronounced than those for small [.

When L < 1, then there is no replication of objects; in this case ¢} () = ¢7 () and
clearly ¢% (1) = 0. When L > 1 is an integer, then objects are replicated; nevertheless still
o1 (1) = ¢5 (1) and Y (1) = 0. This can be seen in the figure 11, where we note that f(L)

vanishes for L = integer > 0.
Appendix 1

We evaluate the quantity n — 1 — > v, for a universe S with circumference 1 and
observed universe with total amplitude L = A4z, being A a positive integer and 0 < z < 1.

Assuming m objects along the circle S* with radius 1/(27), then the expected number
of objects in L is n =m/L. The sum Y v, =v_y +v_yy1+ ...+ v+ v+ ..+ vag + 1
indeed simplifies to 2(v; + vo + ... + 1)), since v_; = v;.

Now remember that for ¢ a positive integer ny; is the expected number of pairs of

objects in the observed universe whose separation is ¢ < A [2]; its value is
ny; = m(L —1). (20)
As a consequence Y. v, = A(L —y)/L, and finally

n—1—Zug:(m—1)L—x—Ly. (21)
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Appendix 2

11

We show that Y (z) = 8xy/L* when 1 < L < 2: from (11) or (12) we have at [ = 1

L plp—1)
u 1 —
mpL( ) Dmp T )
so we have from (13)
1 = Pm X
mr(l) = — =p(p - 1),
L x pz;) Dip

1

whose value is sought, correct to order m™" when m >> 1. In this limit we have

U k(k—1 _ _
S Pl = ot + ME Dy oty o),
p=0
and consequently
m Ty d2 3
Y PupaF(p/m) = F(x) + %@F(I) +O0(m™).

p=0
For m >> 1 in eq.(1) we find that

plp—1) 26 2026+ 1)(€— 1) B 3
Dpp  (E+1)2 + m(€+1)* +0(m™), &:=p/m,

so from (25) we obtain

Ui —1 222 2022+ 1)(z — 1 d? 222
$p MOD) |2 m@eiNao) ol 2y
= Dy (1+2) m(1l+ z) 2mdx? (1 + x)
222 8z%y _9
= IZ g T O

Since ¢3 (1) = 2z/L?, we finally have from (14), (23), and (27)

u 8y

(22)

(23)

(24)

(25)

(26)

_2>

(27)

(28)
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Appendix 3

We generalize for arbitrary L > 1 the results obtained for 1 < L < 2, in particular the
equations (1) and (16). We first decompose the total interval (0, L) into 2A+1 subintervals

according to figure 13, drawn for A = 5.

Ay By Ay By A3 By A By A By Ay
0 = 1 2 3 A1 AL
Figure 13 The one-dimensional observed universe with length L = \ + x, partitioned into A+ 1

intervals A; with length x and A intervals B; measuring y = 1 — z.

For m objects randomly distributed in the universe (0,1) we expect p = mx objects
in each interval A; and m — p = my objects in each B;. The number of objects in
the observed universe (0, L) being mA + p, the total number of pairs of objects in it is
(mA +p)(mA +p — 1)/2; if we deduct the pA(A + 1)/2 correlated pairs with members in
the A’s, and the (m — p)(A — 1)A/2 correlated pairs with members in the B’s, then we

obtain the expected number of uncorrelated separations (cf eq.(1)):
Dy = %(m)\ +p)(mA+p—1)— %)\(/\ 1) — %)\(/\ —1)(m—p). (29)
We next note in (0, L) the existence of
e wy, 4, =p(p—1)/2 pairs with both members in A;;
e wpp, = (m—p)(m—p—1)/2 pairs with both members in B;;
® Wa, 4, = 2wa, 4, uncorrelated pairs, with a member in A; and the other in A;.;;
® wpg,p,. , = 2wp,p, uncorrelated pairs, with a member in B; and the other in Bj.;;
® wy,p,., = p(m — p) pairs, with a member in A; and the other in Bj>;;

® WpA;.; = WA,B,, DAIrs, with a member in B; and the other in A;;.
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There is a total of (2A + 1)(A + 1) such numbers wyy, and their sum clearly is the D,,,
given in (29).
With the probability densities ¢xy (1) defined as before, the normalized probability

density ¢ 1 (I) is written similarly to eq. (8),

Gmpr.(1) = L > wxyoxy (). (30)

Dy XY

As a matter of fact, there are only three essentially different wyy, which we dub w44, wag,
and wgp, as in sec. 2. Also, there are indeed only 3\ + 1 different functions ¢ ;Y(l), each
appearing with variable multiplicity mxy. These functions, together with the correspond-

ing mxy and weights wxy, are displayed in figure 14, drawn for L = 5.2.

%//;f Al 26 2(—1) 6 4 2
WAA /N /N ;
0z i 2 3 a1 AL
i 26 20-1) 6 4 2
“AB NV VN N\,
0 L
217/ & 20-1)20—2) 4 2
wpR y* ,
0 L

Figure 14 The 3\ + 1 different functions qb;(éy(l) when £ < 0.5. On top of each function the
corresponding multiplicity mxy is written. On the left side the corresponding weight wxy is

also given. The value L = 5.2 was taken for definiteness.

When z > 0.5 the set of functions ¢Z, (1) has a different aspect; see figure 15, drawn
for L =5.8.
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2/x \A+1
Wi 1/z 20 2(A-1) 6 4 2

0y =] p) 37 1 an Lt
z: 20 201 6 4 2
AB vV V. V.V \ -

0

2/, y\x 20-1)200-2) 4 2

wpp  1/y1
0 A it

Figure 15 The 3\ + 1 different functions ¢§Y(l) when xz > 0.5. The multiplicities myxy and

weights wxy are indicated as in figure 14. The value L = 5.8 was taken for definiteness.

It is now clear that the functions ¢y, ;(I) are a sequence of 3\ + 1 segments, each
segment having endpoints either at an integer or separated x from an integer; as a con-
sequence, also the functions ¢, (1) (eq.(13)) have that behavior, as well as the functions

ot (1) (eq.(2)). See figure 16.

Figure 16 The function ¢ ; (1) for m = 2 and L = 5.2. A straight line connects the points with
abscissa | =i+ z (i =0, ..., \); another, parallel, connects those with [ =i+ y (i =0,...,\ — 1);
also the points with [ =integer are aligned.

Appendix 4

We generalize eq.(28) for arbitrary L > 1. For m >> 1 and D, as in eq.(29) we have

plp—1) 2¢” L2 NE D)

Doy @A mra O Gy




CBPF-NF-032/00 15

while eq.(27) now reads

w 222 8A\x?y _9
me(X) = 75 = +O(m™). (32)
Finally (28) becomes

u 8Azy
©i(A) =— 73 L>1. (33)

The graph of f(L) = 8\zy/L? is given in figure 11.
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