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Abstract

It is a well-known fact that the �rst and last non-trivial coe�cients of the char-

acteristic polynomial of a linear operator are respectively its trace and its determi-

nant. This work shows how to compute recursively all the coe�cients as polynomial

functions in the traces of successive powers of the operator. With the aid of Cayley-

Hamilton's theorem the trace formulae provide a rational formula for the resolvent

kernel and an operator-valued null identity for each �nite dimension of the underly-

ing vector space. The 4-dimensional resolvent formula allows an algebraic solution

of the inverse-metric problem in general relativity.
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1 Introduction

The eigenvalue problem arises in a variety of di�erent branches of mathematical
physics. For instance, it is well-known that quantum systems reach stationary states
that are the eigenvectors of a suitable linear operator de�ned throughout a complex vec-
tor space representing the physical quantum states.

In the in�nite dimensional case real and complex analytical methods have been devel-
oped to compute the eigenvalues of a linear operator. We mention, for instance, global
variational methods, which consist of investigating stationary levels of a suitable energy
functional, and local perturbative methods by means of complex analytical continuation.

On the other hand, if the underlying vector space is �nite dimensional the eigenvalue
problem becomes an algebraically well-posed problem by means of the characteristic poly-
nomial. It is exactly this feature that justi�es our algebraic approach in this work. Fol-
lowing this general device, the algebraic environment is set by the complex number �eld.
After working out a few tools, the most important of these being Newton's identities, and
setting very fundamental concepts and basic results in complex linear algebra, we succeed
in achieving the mathematical core of this work: a recursive algorithm to compute the
coe�cients of the characteristic polynomial as algebraic functions in the traces of the
successive powers of the linear operator.

With the aid of Cayley-Hamilton's theorem the trace formulae already obtained pro-
vide an operator-valued null identity for each �nite dimension of the underlying vector
space. As a by-product it sheds light on the algebraic structure of the associative algebra
of complex linear operators. The computational skill just attained is enough to yield an
operator-valued polynomial with rational coe�cients for the �nite-dimensional resolvent
kernel, which improves a known result by revealing its rational dependence with respect
to the spectral variable, as well as with respect to the linear operator.

In the context of general relativity, the 4-dimensional characteristic formula endows
a polynomial expression for the volume scalar density. Furthermore, the 4-dimensional
resolvent formula yields a tensor-valued third-degree polynomial for the inverse metric,
thus avoiding the computacional and formal drawbacks of the Neumann series.

2 Newton's Identities

The fundamental theorem of algebra [1] together with Euclid's division algorithm im-
ply algebraic closureness [2] of the complex number �eld; this basic result is encompassed
without proof by

Theorem 0 If p(z) = zn + D1z
n�1 + � � � + Dn�1z + Dn is a polynomial with complex

coe�cients Dk then there exist complex numbers �1; �2; : : : ; �n, called roots of p, such
that p(z) = (z � �1)(z � �2) � � � (z � �n).

As a consequence of the identity principle, the following relations between coe�cients
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and roots hold:
�D1 = �1 + �2 + � � �+ �n;

+D2 = �1�2 + � � � + �n�1�n;
...

(�)kDk =
P

k-products of �'s;
...

(�)nDn = �1�2 � � ��n:

(1)

The right-hand side of (1) de�nes the elementary symmetric functions [3] in the vari-
ables �1; �2; : : : ; �n. Next to them, the most important symmetric functions are the
sums of like powers:

T1 = �1 + �2 + � � �+ �n;

T2 = �1
2 + �2

2 + � � �+ �n
2;

...
Tk = �1

k + �2
k + � � �+ �n

k;
...

(2)

Dk and Tk, besides being symmetric, are homogeneous functions of degree k in the
variables �1; �2; : : : ; �n. We shall derive a set of recursive relations connecting D's and
T 's by which the �'s are eliminated from (1) and (2).

To pursuit this goal we need two lemmas. The �rst one is an improved version of the
remainder theorem.

Proposition 1 If p(z) = zn+D1 z
n�1+ � � �+Dn�1 z+Dn is a polynomial with complex

coe�cients Dk and � is a complex number then

p(z)� p(�)
z � �

= zn�1 + (�+D1) zn�2 + (�2 +D1 � +D2) zn�3 + � � �
+(�n�1 +D1 �

n�2 + � � � +Dn�1):

Proof: By induction on the degree. For n=1, p(z)�p(�) = (z+D1)� (�+D1) = z��:

For generic n, p(z) � p(�) =

= (zn +D1 z
n�1 + � � �+Dn�1z +Dn)� (�n +D1 �

n�1 + � � �+Dn�1� +Dn)

= z (zn�1 +D1 z
n�2 + � � � +Dn�1)� � (�n�1 +D1 �

n�2 + � � �+Dn�1)

= z ((zn�1 +D1 z
n�2 + � � � +Dn�1)� (�n�1 +D1 �

n�2 + � � �+Dn�1)) +

+ (z � �)(�n�1 +D1 �
n�2 + � � � +Dn�1):

From the inductive hypothesis the last expression reads

z (z � �) (zn�2 + (� +D1) zn�3 + � � �+ (�n�2 +D1 �
n�3 + � � �+Dn�2))+

+ (z � �)(�n�1 +D1 �
n�2 + � � �+Dn�1)

= (z � �)(zn�1 + (�+D1)zn�2 + � � �+ (�n�2 +D1�
n�3 + � � �+Dn�2) z+

+(�n�1 +D1�
n�2 + � � �+Dn�1)):

The second lemma is a contribution of di�erential calculus to algebra.
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Proposition 2 If �1; �2; : : : ; �n are the complex roots of the nth-degree polynomial p

and p0 is its derivative polynomial, then

p0(z) =
nX

k=1

p(z)

z � �k
:

Proof: p can be written as p(z) = d0 (z��1)(z��2) � � � (z��n), from which one obtains
its derivative as

p0(z) = d0 (z � �2)(z � �3) � � � (z � �n) + d0 (z � �1)(z � �3) � � � (z � �n) + � � �
+d0 (z � �1)(z � �2) � � � (z � �n�1)

=
p(z)
z � �1

+
p(z)
z � �2

+ � � � + p(z)
z � �n

:

Thus, we are able to get

Theorem 1 (Newton's formulae [4]) If �1; �2; : : : ; �n are the complex roots of the
polynomial p(z) = zn +D1 z

n�1 +D2 z
n�2 + � � � +Dn�1 z +Dn with complex coe�cients

Dk and Tk = �1
k + �2

k + � � � + �n
k for k = 1; 2; : : : ; n then the following relations hold:

T1 +D1 = 0;
T2 +D1 T1 + 2D2 = 0;

...
Tk +D1 Tk�1 + � � �+Dk�1 T1 + k Dk = 0;

...
Tn +D1 Tn�1 + � � �+Dn�1 T1 + nDn = 0:

Proof: Propositions 1 and 2 yield

nzn�1 + (n� 1)D1z
n�2 + (n� 2)D2z

n�3 + � � �+Dn�1

=
nP

k=1

�
zn�1 + (�k +D1)zn�2 + (�2k +D1�k +D2)zn�3 + � � �

+(�n�1k +D1�
n�2
k + � � �+Dn�2�k +Dn�1)

�

= nzn�1 + (T1 + nD1)z
n�2 + (T2 +D1T1 + nD2)z

n�3 + � � �
+(Tn�1 +D1Tn�2 + � � �+Dn�2T1 + nDn�1):

Equating coe�cients we obtain

(n � 1)D1 = T1 + nD1;

(n � 2)D2 = T2 +D1T1 + nD2;
...

(n � k)Dk = Tk +D1Tk�1 + � � �+Dk�1T1 + nDk;
...

Dn�1 = Tn�1 +D1Tn�2 + � � �+Dn�2T1 + nDn�1;
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from which follow the (n� 1) �rst relations to be shown. Since each �k is a root of p it
veri�es 0 = �nk +D1�

n�1
k + � � �+Dn�1�k +Dn. The addition of these relations yields

0 =
nX

k=1

�
�nk +D1�

n�1
k + � � �+Dn�1�k +Dn

	
= Tn +D1Tn�1 + � � �+Dn�1T1 + nDn;

which is the remaining formula to be proved.

3 The Trace Formulae

The characteristic polynomial [5] of a complex linear operator T in a �nite dimensional
complex vector space nV is de�ned by p(z) = det (zI�T), where I is the identity operator
in nV. The degree of p as a polynomial in the complex variable z equals the dimension of
nV as a complex vector space; its roots are called the characteristic values of T and the
set of characteristic values is called the spectrum of T.

These de�nitions and properties lead to

Proposition 3 The trace of a complex linear operator T equals the sum of its charac-
teristic values counted with multiplicities.
Proof: det (zI�T) = (z��1)(z��2) � � � (z��n). By the matrix representation T i

j of T
we cast the left-hand side as zn � (T 1

1 + T 2
2 + � � �+ T n

n) zn�1+ terms of order � n� 2.
In the right-hand side we have zn � (�1 + �2 + � � �+ �n) zn�1+ terms of order � n � 2.
Equating coe�cients we obtain

T 1
1 + T 2

2 + � � �+ T n
n = �1 + �2 + � � �+ �n:

The roots of unity in the complex �eld yield the following factorization lemma in the
associative algebra of complex linear operators.

Proposition 4 If T and W are commuting complex linear operators and � = ei2�=k =
cos 2�

k
+ i sin 2�

k
with k a positive integer, then

Tk �Wk = (T�W)(T� �W)(T� �2W) � � � (T� �k�1W):

Proof: As T and W commute we collect terms as

(T�W)(T� �W)(T� �2W) � � � (T� �k�1W) =
= Tk + d1T

k�1W+ d2T
k�2W2 + � � �+ dk�1TW

k�1 + dkW
k;

where the complex numbers d1; d2; : : : ; dk are the coe�cients of the polynomial (z�1)(z�
�)(z��2) � � � (z��k�1). But f1; �; �2; : : : ; �k�1g is the set of roots of the polynomial zk�1,
as (�j) k =

��
ei2�=k

�
j
�
k = 1 for each j = 0; 1; : : : ; k � 1. Therefore we conclude that

zk�1 = (z�1)(z��) � � � (z��k�1), which implies dk = �1 and dj = 0 for j = 1; : : : ; k�1.

From the multiplicative and homogeneity properties of determinants we get
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Proposition 5 If �1; �2; : : : ; �n are the characteristic values of the complex linear op-
erator T then �1

k; �2
k; : : : ; �n

k are the characteristic values of the linear operator Tk.
Proof: For the particular case where W = zI, proposition 4 yields

Tk � zkI = (T� zI) (T� �zI) � � � �T� �k�1zI
�
;

(�)k�1 �zkI�Tk
�
= (zI�T) (�zI�T) � � � ��k�1zI�T

�
:

Taking determinants of both sides and de�ning pk(w) = det
�
wI�Tk

�
the last equality

reads (�)(k�1)npk(zk) = p1(z)p1(�z) � � � p1(�k�1z) =
= (z � �1) � � � (z � �n) (�z � �1) � � � (�z � �n) � � � (�k�1z � �1) � � � (�k�1z � �n)

= (�)kn(�1 � z)(�1 � �z) � � � (�1 � �k�1z) � � � (�n � z)(�n � �z) � � � (�n � �k�1z)

= (�)kn(�1k � zk) � � � (�nk � zk)

= (�)(k�1)n(zk � �1
k) � � � (zk � �n

k):

Thus pk(w) = (w � �1
k)(w � �2

k) � � � (w � �n
k).

Collecting the former results we are ready to achieve the recursive formulae enclosed
by

Theorem 2 If p(z) = zn +D1z
n�1 + � � � +Dn�1z +Dn is the characteristic polynomial

of the complex linear operator T and Tk = trace (Tk) then

Tk +D1 Tk�1 + � � �+Dk�1 T1 + k Dk = 0; k = 1; 2; : : : ; n:

Proof: It is a straightforward consequence of theorem 1 together with propositions 3 and
5.

The key content of theorem 2 shall be stood out by the trace formulae statement:
the coe�cients of the characteristic polynomial of a linear operator can be
recursively computed as polynomial functions in the traces of its successive
powers.

The trace formulae Dk = Dk(T1; T2; : : : ; Tk�1; Tk) for the coe�cients of the
characteristic polynomial are listed below for k up to 10.

D1 = �T1;
D2 =

1
2T1

2 � 1
2T2;

D3 = �1
6T1

3 + 1
2T1T2 � 1

3T3;

D4 =
1
24
T1

4 � 1
4
T1

2T2 +
1
3
T1T3 +

1
8
T2

2 � 1
4
T4;

D5 = � 1
120T1

5 + 1
12T1

3T2 � 1
6T1

2T3 � 1
8T1T2

2 + 1
4T1T4 +

1
6T2T3 � 1

5T5;

D6 =
1
720T1

6 � 1
48T1

4T2 +
1
18T1

3T3 +
1
16T1

2T2
2 � 1

8T1
2T4 � 1

6T1T2T3

+1
5
T1T5 � 1

48
T2

3 + 1
8
T2T4 +

1
18
T3

2 � 1
6
T6;

D7 = � 1
5040T1

7 + 1
240T1

5T2 � 1
72T1

4T3 � 1
48T1

3T2
2 + 1

24T1
3T4 +

1
12T1

2T2T3

� 1
10T1

2T5 +
1
48T1T2

3 � 1
8T1T2T4 � 1

18T1T3
2 + 1

6T1T6 � 1
24T2

2T3

+ 1
10T2T5 +

1
12T3T4 � 1

7T7;

(3)
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D8 =
1

40320
T1

8 � 1
1440

T1
6T2 +

1
360

T1
5T3 +

1
192

T1
4T2

2 � 1
96
T1

4T4 � 1
36
T1

3T2T3

+ 1
30
T1

3T5 � 1
96
T1

2T2
3 + 1

16
T1

2T2T4 +
1
36
T1

2T3
2 � 1

12
T1

2T6 +
1
24
T1T2

2T3

� 1
10
T1T2T5 � 1

12
T1T3T4 +

1
7
T1T7 ++ 1

384
T2

4 � 1
32
T2

2T4 � 1
36
T2T3

2

+ 1
12
T2T6 +

1
15
T3T5 +

1
32
T4

2 � 1
8
T8;

D9 = � 1
362880T1

9 + 1
10080T1

7T2 � 1
2160T1

6T3 � 1
960T1

5T2
2 + 1

480T1
5T4 +

1
144T1

4T2T3

� 1
120

T1
4T5 +

1
288

T1
3T2

3 � 1
48
T1

3T2T4 � 1
108

T1
3T3

2 + 1
36
T1

3T6 � 1
48
T1

2T2
2T3

+ 1
20
T1

2T2T5 +
1
24
T1

2T3T4 � 1
14
T1

2T7 � 1
384

T1T2
4 + 1

32
T1T2

2T4 +
1
36
T1T2T3

2

� 1
12
T1T2T6 � 1

15
T1T3T5 � 1

32
T1T4

2 + 1
8
T1T8 +

1
144

T2
3T3 � 1

40
T2

2T5

� 1
24T2T3T4 +

1
14T2T7 � 1

162T3
3 + 1

18T3T6 +
1
20T4T5 � 1

9T9;

D10 =
1

3628800
T1

10 � 1
80640

T1
8T2 +

1
15120

T1
7T3 +

1
5760

T1
6T2

2 � 1
2880

T1
6T4 � 1

720
T1

5T2T3

+ 1
600

T1
5T5 � 1

1152
T1

4T2
3 + 1

192
T1

4T2T4 +
1
432

T1
4T3

2 � 1
144

T1
4T6 +

1
144

T1
3T2

2T3

� 1
60T1

3T2T5 � 1
72T1

3T3T4 +
1
42T1

3T7 +
1
768T1

2T2
4 � 1

64T1
2T2

2T4 � 1
72T1

2T2T3
2

+ 1
24
T1

2T2T6 +
1
30
T1

2T3T5 +
1
64
T1

2T4
2 � 1

16
T1

2T8 � 1
144

T1T2
3T3 +

1
40
T1T2

2T5

+ 1
24T1T2T3T4 � 1

14T1T2T7 +
1
162T1T3

3 � 1
18T1T3T6 � 1

20T1T4T5 +
1
9T1T9

� 1
3840T2

5 + 1
192T2

3T4 +
1
144T2

2T3
2 � 1

48T2
2T6 � 1

30T2T3T5 � 1
64T2T4

2

+ 1
16
T2T8 � 1

72
T3

2T4 +
1
21
T3T7 +

1
24
T4T6 +

1
50
T5

2 � 1
10
T10:

We can thus write down the following characteristic formulae for dimensions up to
5:

det (zI�T) = z � T1

det (zI�T) = z2 � T1z +
1

2
(T1

2 � T2);

det (zI�T) = z3 � T1z
2 +

1

2
(T1

2 � T2)z � 1

6
(T1

3 � 3T1T2 + 2T3);

det (zI�T) = z4 � T1z
3 +

1

2
(T1

2 � T2)z
2 � 1

6
(T1

3 � 3T1T2 + 2T3)z +

+
1

24
(T1

4 � 6T1
2T2 + 8T1T3 + 3T2

2 � 6T4) (4)

det (zI�T) = z5 � T1z
4 +

1

2
(T1

2 � T2)z
3 � 1

6
(T1

3 � 3T1T2 + 2T3)z
2 +

+
1

24
(T1

4 � 6T1
2T2 + 8T1T3 + 3T2

2 � 6T4)z +

� 1

120
(T1

5 � 10T1
3T2 + 20T1

2T3 + 15T1T2
2 � 30T1T4 � 20T2T3 + 24T5)
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4 Null Identities

The polynomial p(z) = d0z
n + d1z

n�1 + � � � + dn�1z + dn with complex coe�cients
dk is said to annihilate the complex linear operator T if p(T) = d0T

n + d1T
n�1 + � � �+

dn�1T+ dnI = O, the identically null operator.
The knowledge of the principal ideal [6] of polynomials that annihilate a linear operator

T is essential to attain computational skill in the associative algebra generated by T. To
ensure this goal we state without proof one of the fundamental results in linear algebra.

Theorem 3 (Cayley-Hamilton [7]) The characteristic polynomial of a linear operator
annihilates it.

Joining Cayley-Hamilton's theorem with trace formulae statement we conclude that
for each �nite dimension of the underlying vector space there is a fundamen-
tal null identity in the associative algebra of linear operators. For instance, in
dimensions up to 4, the characteristic formulae (4) yield the following null identities:

T � T1I = O;

T2� T1T+ 1
2(T1

2 � T2)I = O;

T3�T1T2+ 1
2(T1

2 � T2)T�1
6(T1

3 � 3T1T2 + 2T3)I = O;

T4�T1T3+1
2(T1

2 � T2)T
2�1

6(T1
3 � 3T1T2 + 2T3)T+

+ 1
24(T1

4 � 6T12T2 + 8T1T3 + 3T22 � 6T4)I = O:

5 The Finite-Dimensional Resolvent Kernel

The resolvent of a complex linear operator T is the operator-valued function R de�ned
by R(z) = (zI�T)�1. It is a well-known fact that R is an operator-valued analytic
function outside the spectrum of T. We shall re�ne such result in the �nite dimensional
case showing that, in this case, R is an operator-valued rational function completely tied
by a �nite set of complex-valued rational functions, whose coe�cients are exactly the
trace formulae.

In this vein we need an improved version of the remainder theorem in the associative
algebra of complex linear operators, whose content is the extension of proposition 1 to
operator-valued polynomials.

Proposition 6 If p(w) = wn+D1w
n�1+ � � �+Dn�1w+Dn is a polynomial with complex

coe�cients Dk and T and W are commuting complex linear operators then

p(W)� p(T) = (W�T)
�
Tn�1 + (W+D1I)T

n�2 + (W2 +D1W+D2I)T
n�3+

+ � � � + (Wn�1 +D1W
n�2 + � � �+Dn�1I)I

�
:
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Proof: by induction on the degree. For n = 1 we have

p(W)� p(T) = (W+D1I)� (T+D1I) = W�T:

For generic n we obtain

p(W)� p(T) = W(Wn�1 +D1W
n�2 + � � � +Dn�1I) +DnI+

�T(Tn�1 +D1T
n�2 + � � � +Dn�1I)�DnI

= (W�T)(Wn�1 +D1W
n�2 + � � �+Dn�1I)+

+T

�
(Wn�1 +D1W

n�2 + � � �+Dn�1I)+

�(Tn�1 +D1T
n�2 + � � �+Dn�1I)

�
:

From the inductive hypothesis the right-hand side of the last equality reads

(W�T) (Wn�1 +D1W
n�2 + � � �+Dn�1I)

+T(W�T)
�
Tn�2 + (W+D1I)T

n�3 + � � �
+(Wn�2 +D1W

n�3 + � � �+Dn�2I)I
�

= (W�T)
�
Tn�1 + (W+D1I)T

n�2 + � � � + (Wn�2 +D1W
n�3+

+ � � � +Dn�2I)T+ (Wn�1 +D1W
n�2 � � �+Dn�1I)I

�
:

We are ready to achieve a rational formula for the resolvent kernel.

Theorem 4 If p(w) = wn+D1w
n�1+� � �+Dn�1w+Dn is the characteristic polynomial of

the complex linear operator T and z is any complex number not belonging to the spectrum
of T then

(zI�T)�1 = 1
p(z)

Tn�1 + z +D1

p(z)
Tn�2 + z2 +D1z +D2

p(z)
Tn�3 + � � �

+
zn�1 +D1z

n�2 + � � �+Dn�1

p(z)
I:

Proof: It is enough to consider Cayley-Hamilton's theorem for the linear operator T and
set W = zI in proposition 6; notice that in such case Wk + D1W

k�1 + � � � + DkI =
(zk +D1z

k�1 + � � �+Dk)I for each k = 1; 2; : : : ; n.

The joint content of theorem 4 and the trace formulae statement shall be pointed
out as : for each �nite dimension of the underlying vector space there is a
fundamental rational formula for the resolvent kernel of a linear operator. For
instance, in dimensions up to 4, the trace formulae (3) provide the following resolvent
formulae:
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(zI�T)�1 = (z � T1)
�1I;

(zI�T)�1 =

�
z2 � T1z +

1

2
(T1

2 � T2)

��1 �
T+ (z � T1)I

�
;

(zI�T)�1 =

�
z3 �T1z2 + 1

2
(T1

2 � T2)z � 1

6
(T1

3 � 3T1T2 + 2T3)

��1�
T2+

+(z � T1)T+

�
z2 � T1z +

1

2
(T1

2 � T2)

�
I

�
;

(zI�T)�1 =

�
z4 � T1z

3 +
1

2
(T1

2 � T2)z
2 � 1

6
(T1

3 � 3T1T2 + 2T3)z+

+
1

24
(T1

4 � 6T1
2T2 + 8T1T3 + 3T2

2 � 6T4)

��1 �
T3+

+(z � T1)T
2 +

�
z2 � T1z +

1

2
(T1

2 � T2)

�
T+

�
z3 +

�T1z2 + 1

2
(T1

2 � T2)z � 1

6
(T1

3 � 3T1T2 + 2T3)

�
I

�
:

(5)

6 Application to General Relativity

In general relativity the fundamental physical object is an e�ective geometry math-
ematically represented by a non-degenerate covariant tensor �eld g of the second rank,
de�ned throughout a suitable manifold. In a local coordinate system x = (x�) the metric
tensor can be written as g = g��dx� 
 dx� .

Investigations on general relativity are frequently carried out under the assumption

that there exists some background geometry
o
g=

o
g ��dx� 
 dx�. The metric properties

to be assumed on
o
g vary depending on the gravitational scenario. In order to perform

calculations it su�ces to set
o
g a Ricci-at metric, Ric [

o
g] = 0. However, to interpret the

results as physically meaningful it is generally agreed that one should require
o
g to be a

at metric, Riem [
o
g] = 0. Even this case is sometimes thought to be too broad, as some

authors claim to set harmonic coordinates [8] or even cartesian coordinates [9]. We do

not take into account here any suplementary conditions on the background geometry
o
g.

The e�ective and background geometries are related by a tensor �eld h = h��dx
�
dx�

by means of a connecting equation, the generally accepted form of which being g =
o
g+h.

The scalar density
p�gd4x associated with g requires us to compute det (g) = det (

o
g +h).

This can be easily achieved by means of

Proposition 7 If g =
o
g + h; H =

o
g �1h; Hk = trace

�
Hk
�
and the underlying manifold

is 4-dimensional then

det (g)

det (
o
g)

= 1 +H1 +
1
2(H1

2 �H2) +
1
6(H1

3 � 3H1H2 + 2H3)+

+ 1
24(H1

4 � 6H1
2H2 + 8H1H3 + 3H2

2 � 6H4):
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Proof: From g =
o
g + h =

o
g (I+H) it follows that det (g) = det (

o
g) det (I + H). Now

it is enough to consider the 4-dimensional characteristic formula in (4) with z = 1 and
T = �H; notice that Tk = (�)kHk implies Tk = (�)kHk.

The Levi-Civita connection associated with g requires us to compute g�1 =
�
o
g +h

��1
=

(I+H)�1
o
g�1, whereH =

o
g�1h. The known explicit form is given by the Neumann series

[10]
(I+H)�1 = I�H+H2 �H3 + � � �

In local coordinates it reads

g�� =
�
����

o
g ��h��+

o
g ��h��

o
g ��h���

o
g ��h��

o
g ��h��

o
g ��h�� + � � �

�
o
g ��;

where g�� and
o
g �� are well-de�ned by g��g�� = ��� =

o
g ��

o
g ��.

Besides convergence requirements on the above series, we stress that such expression
clearly leads to technical di�culties when developing a Lagrangian variational formalism.
These problems were already dealt with in the literature, the proposed solution being
to modify the above form of the connecting equation [11]. We show how to completely
overcome such drawbacks by means of

Proposition 8 If g =
o
g + h; H =

o
g �1h; Hk = trace

�
Hk
�
and the underlying manifold

is 4-dimensional then

g�1 =
�
1 +H1 +

1
2(H1

2 �H2) +
1
6(H1

3 � 3H1H2 + 2H3)+

+ 1
24(H1

4 � 6H1
2H2 + 8H1H3 + 3H2

2 � 6H4)
��1 �

�H3+

+(1 +H1)H
2 �

�
1 +H1 +

1
2(H1

2 �H2)
�
H+

�
1 +

+H1 +
1
2(H1

2 �H2) +
1
6(H1

3 � 3H1H2 + 2H3)
�
I

�
o
g�1:

Proof: From g =
o
g+h =

o
g (I+H) it follows that g�1 = (I+H)�1

o
g�1. Now it is enough

to consider the 4-dimensional resolvent formula in (5) with z = 1 and T = �H; notice
that Tk = (�)kHk implies Tk = (�)kHk.
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