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ABSTRACT

We calculate, in the case of a differential operator contain
ing a géugelfield,tcoefficients:of a new Heat Kernel . .egpansion
obtained in a preceeding paper. That expansion alldWS't to:. show
that the meromorphic structure of the generalized -zeta-function
is much richer than it was previously known. Also, an - applica-
tion to anomalies is done, reshlting in a general formula ‘for
arbitrary dimension D, The sgpecial cases D =2 and D=3 are in-

vestigated.
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I. INTRODUCTION

In a previous.'note!’ 1t has - been obtained an asymptotic
expansion - to. the diagonal part-df'the Heat Kernel = associated
to a given elliptic operator Hof order m, based on the connec-
tion, trough a Mellin transform, between the Heat Kernel and
the Seelex's Kernel K(s;x,y)? of the complex s-th power H°
of the operator H, and the meromorphic properties of Ki{s;x,x).
We recall that "Heat Kernel" means the solutibﬁ of the '“"Heat

equation”,

|m

F(t;x,y) = HF(t:x,y) (1.1)

a2

t

where t is a "time" or "temperature" parameter, and x and vy
are, in the case we are interested in, points of a D-dimensidnal
compact manifold, M. The Seeley's Kernel is defined for

Re(s)< -D/f, such that

H®f (%) =-f dyK(s;x,y)E({y} .
M

.The expansion mentioned above .is obtained by. analytic

continuation of K in the<variable s,.and reads,

o j=p _
P(esd,x) =- ) eH(%¢ - ¢m "F(E-ﬁl)R.-.(x) . (1.2)
£=0 T 's={ i a7/
The sum over j is .such that we take j = 0,1,2,... ex-

aiwding the Lenms such Ihat (j—D)/ﬁ =0,1,2,..., and Rj(x) is
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the residue of K(s;x,x) at the pole s = (j-D)/m,

R,(x) = - J-dgj.dl A m b__; (%€, (1.3)
] :|.1'rl(211r)m-1 g '
|[£]=1 T

where I' is .a curve coming from « along a ray of minimal growth,
clockwié; on a small circle around the origin, then going back
to =, The quantities b-g—j are obtained from the coefficients
of the symbol of H.(see section 3}, and [{| = 1 means: “that
thelsetwﬁivariables {£} is constrained to be at the surface
of the unit sphere in a D-dimensional space. . The - function
¢ (s) 1s introduced to account for the coincidence of “the

poles of the gamma-function I (-s) and those of K(s:;x,x) . at

the positive intergers £, and is defined by,
T(-s)K(s:x,%) & ¢ (s) | (s=8)* , (1.4)

for s % £,

- As was remarked in Ref, 1, the expanéion (1.2) ,is :ira-
ther different from de Witt's ansatz currently used", In
particular, it contains fractionary powers at even dimensiOn 
and even operator order, coming from the second term in the
expansion.

In the rest of the paper we explore some consequences of
that new expansion_-In Section 2 we show that the generaliied
zeta—functiop E(s) has an infinity of poles at real values of
s. In Section 3 we calculate the coefficients of the leading

and of the next?lo&leading terms in (1.2). In Section 4 We
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obtain a geperal formula for the anomaly in arbitrary di-
mensgion D, and particularize to the special cases D = 2 and

D = 3.

II. MEROMORPHY OF THE GENERALIZED.ZETA-FUNCTION

One of the implications of the series (l.2) is of a math
ematical character and.concernS'the meromorphic structure of
the Hawking's generalized zeta-function?, which is much
richer than the structure previously known. . .This may be |
easily seen as follows:

The generalized zeta-function is written as,

oL
E(s) = I'l(s') Jdtts_i?--ﬂ'(t:x,x) +Q(s) , (2.1)
0 T .

L4

where Qf(s) converges.for all-é.

Let us take D = 4 and consider an operator of order m=2.
Replacing in (2.1) F(t;x,x) by the series (l1.2) we see that
the first term of the expansion gives no poles due to  the
factor 1/T'{s) in front of the integral in (2.1). From the

second term of the expansion we have the sum,

1 4- 1 a+3-3
-t D ()R oo [aee St
J .
' 0

which gives-pples at s

(]j—4)/2 # 0:1123--- .

2—-3/2, for_integer values of j .and
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Thus the poles of the generalized zeta-function are not
situated just only at s =1 (j =2) and s =2 {(j =0}. We also have
péles at s =3/2 (3 =1) and s =1/2 (j =3), and for j =5,7,... we
have an infinity of poles in s at the negative half-integers.
There are no poles at negative integers due bo the vanishing
of the residues of K(s;x,x) at those values?. The residues

at the poles are given by the corresponding coefficients
'[%/F(2—j/2)]P(£§%)Rj(x) in (2.2).

‘IIT, 'APPLICATION TQ A DIFFERENTIAL OPERATOR

Let us consider a differential operator H of order m = 2,

= - Hv : ¥ R
H = - E; (x) (au +B-u(x))£.(3v +B\,(x_)). + P(x)] ' (351)
acting on a D-dimensional compact manifold M, endowed with a .
metric %hﬁx)(u,v =1,2;,+..D}. In (3.1} P(xX) is a non-differen-

tial operator and,
. 3 + ’ ] -
Bu(x) gAu(x) nu(x) (3.2)

Aﬁ(x) and g being respectively the gauge field and a coupling
constant (to not confuse with the metric tensor nor with its
determinant). The quantity-nu(x) contains information  about
curvature and torsion. The usual convention of summation over

repeated indices will be adopted.
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In Seeley's notation the operator H must be written in the

form,

H =

el el o alel
-1) 1% O ey

{m;}%alsz. 1% ox(l...ax)D .

where |a| = @) Feeot ap.

Expanding (3.1) and comparing with (3.3) we obtain the set

of coefficients H]ql. (x),
UI...GD

(2) _L(2) . MY = o

391...aD(X) _HO...Ol(u)g;..olfv)wgﬁﬁﬁxé :.gpv(x) B (3.4a)
(1) (1) | i iy mM i

Hal"'ub(X) _H'L.€01(V)lk..0 = ziguV(X)B (X)~ . (3cdb)
(0) o (0) ) e e ﬁ V_ HoV,

Hulg..u (x) _HO...O...O(K) guv(x)fa B -B"B") -Px).(3.4c)

D

-

Now, to calculate the coefficients of the second term of

the expansion (1.2) we need the quantities b_ (éee eq. (3.3)),

2-]
-which are expressed in terms of the coefficients az_k(x,g) of;

the symbol of H?2,

a,  (x,£) = 3  wmlZkl poy  eon (3.5)
2~k |d{§2%k al..,a” 1 D '

by the following set of equations,

™

£ = 0: b_zlaz(x,g) - 11 =1 (3.6a)
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-5-
£ ol alal,
| Tab v 3% 3l%4 |
o e e [ enlely 2P P TR
-2=-£72 . _ oy o ¥ T o ’
jaok | {ql_aél .+ 9E]D afg,,an.axl...axg
_]‘_... . : . . -
with j <&, j +k +|a] =£. (3.6b)
The coefficients a,_, are easily obtained from equs. (3.4),
a,(x,8) = g, &Y = [g]* (3.7a)
= - HooypV
a; (x,8) = - 2ig,, (x)B (x)E (3.7b)
a,(x,£) = - %vtx}?_(a“n"-.—n“n‘.’) - P (x) {3.7¢)

Then the first two quantities b-z—j that we need for calculating
the leading and the next-to-leading contributions in the second

term of the expansion (1.2) are given by,

1

b_,(x,8,0) = (] &% =2)~ :(3.8)

2iB.E  _ 8|3
(1E]2=-0% (|g)2-2)?

b_, (x:E,2) (3.9)

where the scalar product is defined with the metric guv(x).

A}

From (1.2), (1.3}, (3.8) and (3.9), those  contributions,
the coefficients of the powers t-D/2 and t(l_D)IZ, are given

respectively by,

D D 1 wDI2 2 -1
. 2’7o 2 21(2“YD+1 J ‘ 1
|gj=1 T

(3.10)
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(gl —n?
: o . (1=D)/2 _
- age.afg]? | Aa——— 82 (3.11)
B AN NSRS
|&]=1 -

where we take'thg integration path T as the curve“coming from
-» along. the negative real axis then clockwise‘along the unit
circle around the origin then backwards to -« aloﬁg the negative
vreal axis. Since we must restrict the {'s'to the surface of the
‘unit D-dimensional sphere with the metric guu(x), we have
| ig]2 =1, and to avoid the singularity at A = 1, we introduce

a regulator p > 1.2 Then (3.10) and (3.11l) became,

D D 1 ao [ amaT®/2 (- et 0/2K]
=T (--2-) RO- {x} =T (E)W J dag 2sin )J pimA iJ: 18
. (2 '
o |

p-e

(3.12)

- (1-D)/2
~r(BE —-r(22h__ L infT=D\ [ A
r(3Hr, w0=-r(&) e J de( B. £|:2isin( )j e

(1/2)(,,3-11)3 : (1-p)/2
+ij e o7 ] -g.2]1 &l [zism (i D’)j ) +

(p-e (p-2)*®
™

(i/2)(3-D)B .
fij e ———1 (3.13)
4 (p_e )., . -
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In (3.12) and (3.13) and in the subsequent formulae, the

integrations over ' the E's are constrained to the unit

sphere |£] J& (x)E,'u 1.
In dimension D =4, :making .:the -;change_'hofla vvariables
p 17253872 _ i® i1e integrations over A and 8 may be performed.

The results, after suppression of the regularization are,

- TR (x) = 1 fs@E (3.14)
(2m)*

and

3. 1l = ' . . 113 15w , 2 UV
=T (3R, (x) = ST (3) (5-3«/2-51{ dgB.£ =[R2+ 13T +% | ace.Ag . xIEHEY)
21 (2m) & 2 [6 _ 4 uv o

(3.15)

Analogously, in dimension D =2, the coefficients ‘of : the

two first powers of the second term in (1.2) (powers £} and

tml/2 respectively) are obtained from (3.12) and (3.13),

= TR (x) = ——l——J ac (3.16)
2(2w)?

1
2)

-I‘(-;'-)Rl\tx) =T (3 {1-m/2 -i)JdEB g -

Z(w)

- [(4 +I31r)/8 -i‘:lj dte.d (gw;(x)EuEv ) (3'.-17)_
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As an example we calculate the coefficients (3.16) and (3.17)
in the Penrose compactified 2-dimensional Minkowskii space® which
has the metric g =1 ( . In this case the . unit: sphere
|E] =1 is the piece of hyperbole depicted in (Fig. 1). Using
polar coordinates (r,8) and the well known formula for the in-
duced metric on a (D-l}-dimensional surfacerembedded,aindn-dimeg
siconal metric space, it is easy'to see that the intdgration on
the "surface" [&]| =1 reduces simply to integration“over 8 between

the limits el,-e and 81 + T, 82 +1f,

2
_ e, g,
_ j df (Pennose) =I as +-f de
& |=1 ! Lt
with 6, = arctg(1l/w?)- (3.18a)
8, = arctg me (3.18b)
We obtain,
- T(1)R_(x) (Penrose) = (8, =6_) (3.19)

(2“12 2_ 1

- I‘(l/2)R (x) (Penrose) = J—J'-&(l -n/2 - i)/" (—l—'"z—i)
(2m) 3

ﬁ?(a —3-2 ff)+ F o, ——)— 2E{a,’ --—) l i S 8 +B +7, 82+B + )

+ (8, ,90,) | (3.20)
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where I and E are the elliptic integrals of the third and of the
second kind respectivelly, F is the generalized  hypergeometric

series and ¢ is the function,

8 . -_ §2+ﬂq
68,0 =J'zcosede +J cos6 de
r . il ’
Ur ] eimwe 4, AInZE
1 1

IV. ANOMALIES

In this Section we apply our expansion (l.2) to study :ano-
malies using the Heat: Kernel method®. We ‘borrow some of the nota
tions and methods employed in a recent work by = Cognola . :and
Zerbini’; since they are suitable for our purposes. U;ing  the
g@xxalized.zeﬁa—function regularization, the anomaly may be

written in the form,

1

f =-q Lim Tr (x+Y')—1—'Jdt-:t“"-l._E‘(t;x,x) - P, (x.x)] S

80 I'(s) o S
(4.1
where g =-1, 1/2 or 1, for fermions neutral or charged bosons
respectively, X = Xl + X2 ;s ¥ = Yl + Yz are operators satisfy-
ing the relation 8§K(J) = (GJX1 + Yr6J)K + K(YZGJ +§JX2): K(J) is
such that H(J) = K(J) for bosons and H(J) = K2(J) for fermions,

J being a classical source.P0 is the projector onto the zero

modes. Por the axial anomaly, X = Y = iYS.
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We replace in (4.1), F(t;x,x) by (1,2) and after some simple
manipulations we see that the sole contribution to the anomaly
comes from the coefficiént :of the power t%, giving, for arbitra

ry dimension D,

A = -q Tr(x+Y) E—(d:b/dé)l - P, {x,x)] e (4.2)
Now, from (1.4} and the formula,
(z) = T {z+2+1) £ 1
2} = T3 =1 z#l-n !
we have for integer £ > 0,
d¢ P Vi K(£3%,%) (4.3)
ds gmf Z! _

where the Seeley's Kernel for integer £ ia’

6

K(L5%,%X) =—2s ) (4.4)

-1 %2 (2m

5'fd£; '-d-ttzb__.z_u_n (x,,tel
J 2-

Thus, taking arg » = 8 = v in (4.4) the anomaly may be ob-

tained for arbitraay dimension D, from (4.2), with

a¢
ds

I = =1
s8=0 (27)

D:f dg fdtb_z_n(x,g,et) - (4.5)
h O .
Next we apply (4.2) to the cases D = 2 and D = 3. The .case
D = 3 is particularly interesting, since, in spite of the well

known difficulties in defining the matrix vy 5 in 0dd gilension?, cer
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tain aspects of even dimensional axial anomaly could appear in
gdd-dimensional f£ileld theories - see Niemi and Semenoff® and
other references therein. This is due to the fact.that the -
connection between zero modes of Dirac operators and = non-tri-
viality of the background field topology is valid ifor any
" value of D as showed by Callias!?.

Moreo;e:; there ié a technical difficulty to (formally}cal_
culdting.anomalies in odd-dimension using the de Witt ansatfz in
.the Heat Kernel method which is not present with our expansion:
when one uses the de Witt ansatz fdr expanding F(t), the anoma-

ly depends on.the coefficient of the power tD{2

;, which does
not exist for odd values.of.D, while with our expansion the
anomaly depends directly on the coefficient:of the zero—thjxmer
~of t, given by (4.5}, for any dimension, even or odd. -
Calculations for a general coordinate dependent metric are
extremely involved. Here, we;;estnki;ourselves to the Simpler

situation of a symetric, coordinate independent metric tensor

guv' In this case we obtain,

Ay = —= (x-+Y)'.J @ Ets”_(aus\,)a"’ﬂsqw(a'Ba"—B“B") + B (x) +

¥ 2(3.5}2] (4 56)
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for D = 3:

As

g wf ar T BV n 200 NP TRV TR
2 Tr  (X+Y) | 4§ I:g (auaua )Ec-l.—2i (B.E)(gw(a B -B"B") +

—2¢1H 1o wnVy, ¥ . [ Py RO P a0
+ P{x)) -2i R (aua )E,, +1E gpd(au._a B +B auB + (auB })B~ +

+ 15¥9,P (x) ~F(B.£)° -3 £¥E(B:E) (3,87) -

-

16 ., H,.v. . 0 ;
3 ig -E\____E.-c-,- (.»aua_v-a_ }] ' (4.7)

In the Penrose compactified 2-dimensional Minkowskii space?,

(4.6) gives the result;

A, (Penrose) = —c-z-:—)-z- Tr { (X+Y) [(02—61)((§% +i) (BBI']'Bx?, +

. N . 1 sinﬁz(Bi .___331)
- ano/ax) +(2—i)3031 +P(x)) + £n sinel - + ;; -

»

2 .
1 n 00802 B0 _BBO

where the angles 91, ez_aredgiven by (3.18a,b) and Bo’ B1 are

the components of Bu{x)_given by (3.2}.
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-14=

FIGURE CAPTION

Fig. 1 - E-variables submitted to the constraint guvgugv =1
in the Penrogse compactified 2-dimensional Minkowskii.

space.
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