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I. INTRODUCTION

The advent of high-Tc superconductivity [1], in 1986, brought about a great excitation in both the theoretical and
experimental physical panorama, drawing attention for the issue of formation of Cooper pairs in planar systems. In the
late 90�s, there arose a �eld-theoretical approach to address the mechanism of electronic pairing: the evaluation of the
electron-electron M�oller scattering as a tool for the attainment of the e�e� interaction potential in the nonrelativistic
approximation. This line of action searches for an attractive potential in such a way to induce the formation of
correlated electron-electron pairs, (the charge carriers of the high-Tc superconductors). The present work shall follow
this general procedure.
By direct application of the Gauss�s law in (1+2)-dimensions for the massless gauge �eld, the Coulombian interaction

takes on the form of a con�ning potential (ln r). The Kato condition [2] establishes the �niteness of the number of bound
states, in D = 1 + 2; associated to a certain potential V; and can be used as a criterion for determining the character
con�ning or condensating of the potential. The fact the logarithmic potential to be con�ning (according to the Kato
criterion) indicates it does not lead to bound states, becoming clear the need of a �nite range, screened interaction.
The Chern-Simons (CS) term [3] is then introduced as the generator of (topological) mass for the photon, implying
an intensive screening of the Coulombian interaction. The Maxwell-Chern-Simons (MCS) model, a particular case of
Planar Quantum Electrodynamics - QED3; then arose as a theoretical framework able for providing an attractive but
not con�ning electron-electron interaction. This model was then used by some authors [4], [6], [8], [9] as basic tool for
evaluation of the M�oller scattering amplitude at tree-level, whose Fourier transform (in the Born approximation) yields
the e�e� interaction potential. In a general way, these works have led to the same result: the electron-electron potential
comes out attractive whenever the topological mass (#) exceeds the electron mass (me). Georgelin and Wallet [10]
started from two MCS-QED3 Lagrangians, the �rst (second) with the gauge �eld nonminimally coupled to fermions
(bosons), in such a way to consider the introduction of the anomalous momentum of the electron in the problem.
Working in the perturbative regime (1=k � 1); these authors found an attractive potential for fermions (V  < 0) ;
and also for scalar bosons (V'' < 0) ; in the nonrelativistic approximation. The presence of the nonminimal coupling
seems to be the key-factor for the attainment of the attractive potential between charges with the same sign. In this
case, however, the potential remains negative even in the limit of a small topological mass (#� me), under a suitable
choice of parameters. The nonrenormalizability of this model (due to the nonminimal coupling), however, implies a
restriction to the validity of their results only at tree-level calculations.
All the MCS models, except the one exposed in Ref. [10], failed under the perspective of yielding a realistic electron-

electron condensation into the domain of a Condensed Matter system due to the condition # > me; necessary for
making the e�e� pairing feasible. One must believe to be unlikely the existence of a physical excitation with so large
energy in a real solid state system (the superconductors usually are characterized by excitations in the meV scale).
We will see that the introduction of the Higgs mechanism in the context of the MCS-Electrodynamics will bring out
a negative contribution to the scattering potential that will allow a global attractive potential despite the condition
# > me.
In a recent paper [14], we have derived an interaction potential associated to the scattering of two identically

polarized electrons in the framework of a Maxwell-Chern-Simons QED3 with spontaneous breaking of local-U(1)
symmetry. Our result revealed the interesting possibility of an attractive electron-electron interaction whenever the
contribution stemming from the Higgs sector overcomes the repulsive contribution from the gauge sector, which can be
achieved by an appropriate �tting of the free parameters. In the present work, we generalize the results attained in Ref.
[14], contemplating the existence of two fermionic families ( +;  �) ; and performing the numerical evaluation of the
e�e� binding energies. The procedure here accomplished is analogous to the one enclosed in Ref. [14]: starting from
a QED3 Lagrangian (now built up by two spinor polarizations,  +;  �) with SSB, one evaluates the M�oller scattering
amplitudes (in the nonrelativistic approximation) having the Higgs and the massive photon as mediators and the
corresponding interaction potential, that now emerges in three di�erent expressions: V"" ; V"# ; V## (depending on the
spin polarization of the scattered electrons). The same theoretical possibility of attractiveness, pointed out in Ref.
[14], is now manifested by these three potentials. A numerical procedure (variational method) is then implemented
in order to carry out the binding energy of the Cooper pairs. Having in mind the nonrelativistic approximation, a
reduced potential is implemented into the Schr�odinger equation, whose numerical solution provides the data contained
in Tables I, II, III. The achievement of binding energies in the meV scale and correlation length in the 10� 30�A scale
is an indicative that the adopted MCS-QED3 model may be suitable for addressing an eventual electronic pairing in
a system endowed with parity-breaking.
This paper is outlined as follows: in Section II, we present the QED3 Lagrangian, its general features and one

realizes the spontaneous breaking of U(1)-local symmetry that generates the Higgs boson and the Maxwell-Chern-
Simons-Proca photon; in Section III, one evaluates the amplitudes for the M�oller scattering; their Fourier transform
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will provide the e�e� interaction potentials V
""
; V

"#
; V

##
(despite the complex form of these potentials, they maintain

the theoretical possibility of being attractive); in Section IV, one performs an analysis in order to obtain the e�e�

binding energies by means of the numerical solution of the Schr�odinger equation (by the variational method), whose
results are disposed in Tables I, II, III. In Section V, we present our General Conclusions.

II. THE MCS QED3 WITH SPONTANEOUS SYMMETRY BREAKING AND TWO SPINOR

POLARIZATIONS

The action for a QED3 model built up by two polarization fermionic �elds ( +;  �), a gauge (A�) and a complex
scalar �eld ('), mutually coupled, and endowed with spontaneous breaking of a local U(1)-symmetry [12], [14], reads
as

SQED�MCS =

Z
d3xf�1

4
F��F�� + i +


�D� + + i �

�D� � +

1

2
���v�A�@vA� �me( + + �  � �) +

� y( + + �  � �)'�' +D�'�D�'� V ('�')g; (1)

where V ('�') represents the sixth-power self-interaction potential,

V ('�') = �2'�'+
�

2
('�')2 +

�

3
('�')3; (2)

which is responsible for the SSB; it is the most general one renormalizable in 1+2 dimensions [13]. The mass dimensions
of the parameters �; �; � and y are respectively: 1,1,0 and 0. For the present purpose, we are interested only on stable

vacuum, restriction satis�ed by imposing some conditions on the potential parameters: � > 0; � < 0 and �2 � 3�2

16� :
The covariant derivatives are de�ned as: D� � = (@�+ ie3A�) � and D�' = (@�+ ie3A�)'; where e3 is the coupling

constant of the U (1)-local gauge symmetry, here with dimension of (mass)1=2, particularity that will be more explored
in the numerical analysis section. In (1 + 2)�dimensions, a fermionic �eld has its spin polarization �xed up by the
mass sign [17]; however, in the action (1), it is manifest the presence of two spinor �elds of opposite polarization. In
this sense, it is necessary to stress that we have two positive-energy spinors (two spinor families), both solutions of
the Dirac equation, each one with one polarization state according to the sign of the mass parameter, instead of the
same spinor with two possibilities of spin-polarization.
Considering h'i = v; the vacuum expectation value for the scalar �eld product '�' is given by h'�'i = v2 =

��= (2�) +
h
(�= (2�))

2 � �2=�
i1=2

; while the condition for minimum reads as: �2 + �
2v

2 + �v4 = 0. After the

spontaneous symmetry breaking, the scalar complex �eld can be parametrized by ' = v+H + i�, where H represents
the Higgs scalar �eld and � the would-be Goldstone boson; the SSB will be manifest when this parametrization is
replaced in the action (1). Thereafter, in order to preserve the manifest renormalizability of the model, one adopts

the �t Hooft gauge by adding the �xing gauge term
�
SgtR� =

R
d3x[� 1

2� (@
�A� �

p
2�MA�)

2]
�
to the broken action;

�nally, by retaining only the bilinear and the Yukawa interaction terms, one has,

SSSBQED =

Z
d3x

�
�1
4
F��F�� +

1

2
M2
AA

�A� � 1

2�
(@�A�)

2 +  +(i=@ �meff ) + +  �(i=@ +meff ) � +
1

2
���v�A�@vA� +

+ @�H@�H �M2
HH

2 + @��@�� �M2
� �

2 � 2yv( + + �  � �)H � e3
�
 +=A + +  �=A �

��
; (3)

whose mass parameters are:

M2
A = 2v2e23; meff = me + yv2; M2

H = 2v2(� + 2�v2); M2
� = �M2

A (4)

where � is an unphysical dimensionless gauge parameter.
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III. THE ELECTRON-ELECTRON SCATTERING POTENTIAL IN THE NONRELATIVISTIC LIMIT

In the low-energy limit (Born approximation), the two-particle interaction potential is given by the Fourier transform
of the two-particle scattering amplitude [18]. It is important to stress that, in the case of the nonrelativistic M�oller
scattering, one should consider only the t-channel (direct scattering) [18] even for indistinguishable electrons, since in
this limit they recover the classical notion of trajectory. The M�oller scattering will be mediated by two particles: the
Higgs scalar and the massive gauge �eld. From the action (3), one reads o� the propagators associated to the Higgs
scalar and Maxwell-Chern-Simons-Proca �eld:

hH(k)H(�k)i = i

2

1

k2 �M2
H

; hA�(k)A�(�k)i = �i
�

k2 �M2
A

(k2 �M2
A)

2 � k2�2

�
��� � k�k�

k2

�
+

+
�

(k2 � �M2
A)

k�k�
k2

+
�

(k2 �M2
A)

2 � k2�2
i����k

�

�
: (5)

The photon propagator can be split in the following form,

hA�A�i = �i
�

C+

k2 �M2
+

+
C�

k2 �M2
�

�
(��� � k�k�

k2
) +

�i�k�k�
k2(k2 � �M2

A)
+ i

�
C

k2 �M2
+

� C

k2 �M2
�

�
����k

�;

with the positive de�nite constants C+; C�; C and the quadratic masses poles M2
+ and M2

� given by:

C� =
1

2

"
1� �p

4M2
A + �2

#
; C =

1p
4M2

A + �2
; M2

� =
1

2

�
(2M2

A + �2) � j�j
q
4M2

A + �2
�
: (6)

From the action (3), it is easy to extract the vertex Feynman rules: V �H � = �2ivy;V A = ie3

�: Since in the

low-energy limit only the t-channel must be considered, the whole scattering amplitudes are written in the form:

�iM�H� = u�(p1)(�2ivy)u�(p
0

1) [hH(k)H(�k)i] u�(p2)(�2ivy)u�(p
0

2); (7)

�iM�H� = u�(p1)(�2ivy)u�(p
0

1) [hH(k)H(�k)i] u�(p2)(�2ivy)u�(p
0

2); (8)

�iM�A� = u�(p1)(ie3
�)u�(p
0

1) [hA�(k)A�(�k)i]u�(p2)(ie3
� )u�(p
0

2); (9)

�iM�A� = u�(p1)(ie3
�)u�(p
0

1) [hA�(k)A�(�k)i]u�(p2)(ie3
� )u�(p
0

2): (10)

The �rst two expressions represent the scattering amplitude mediated by the Higgs particles for equal and opposite
electron polarizations, while in the last two ones the mediator is the massive Chern-Simons-Proca photon. The spinors
u+(p); u�(p) stand for the positive-energy solution of the Dirac equation, satisfying the normalization conditions:
u�(p)u�(p) = �1: Working in the center-of-mass frame, the momenta of the interacting particles and the momentum
transfer take a simpler form, useful for writing the spinors u+(p); u�(p), as it is properly shown in the Appendix.
With these de�nitions, one carries out the fermionic current elements, also displayed in the Appendix, so that the
evaluation of the scattering amplitudes (for low momenta approximation), at tree-level, associated to the Higgs and
the gauge particle become:

MHiggs = �2v2y2
�

1
�!
k 2 +M2

H

�
; (11)

M"A" =M1 +M2 +M3; M#A# =M1 �M2 +M3; M"A# =M#A" =M1 +M3;

with:

M1 = e23

"
C+�!

k 2 +M2
+

+
C��!

k 2 +M2
�

#
; M2 =

e23
�!
k 2

me�

"
C

�!
k 2 +M2

+

� C
�!
k 2 +M2

�

#
; M3 =

�i sin�
(1� cos �)

M2; (12)

where it was used
�!
k 2 = 2p2(1�cos�). Furthermore, it is clear that the Higgs amplitude is independent of the electron

polarization, while the gauge amplitude splits into three di�erent expressions, depending on the polarization of the
scattered electrons. The terms M1,M2 correspond to the real part of the M�oller scattering amplitude, while M3
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describes the Aharonov-Bohm amplitude for fermions [4], [8], [10]. The interaction potentials are obtained through

the Fourier transform of the scattering amplitude (inside the Born approximation limit): V (�!r ) = R
d2k
(2�)2Mei

�!
k :�!r :

According to this approximation, Eq.(11) yields an attractive Higgs potential,

VHiggs(r) = � 1

2�
2v2y2Ko(MHr); (13)

while in the gauge sector there appear three di�erent potentials (depending on the polarization state):

Vgauge ""(r) = V1(r) + V2(r) + V3(r); Vgauge "#(r) = V1(r) + V3(r); Vgauge ##(r) = V1(r) � V2(r) + V3(r);

V1(r); V2(r); V3(r) being respectively the Fourier transforms of the amplitudesM1;M2;M3, given explicitly by:

V1(r) =
e23
2�

�
C+Ko(M+r) +C�Ko(M�r)

�
; (14)

V2(r) = � e
2
3

2�

C

meff

�
M2

+Ko(M+r)�M2
�Ko(M�r)

�
; (15)

V3(r) = 2
e23
2�

Cl

meffr

�
M+K1(M+r)�M�K1(M�r)

�
: (16)

The complete potential expressions are obtained joining the Higgs and gauge contributions: V (r) = VHiggs+Vgauge:

V (r)"" = � 1

2�
2v2y2Ko(Mhr) +

e23
2�

�
(C+ � C

m
M2

+)Ko(M+r) + (C� +
C

meff

M2
�)Ko(M�r) +

+ 2
Cl

m
eff
r
(M+K1(M+r)�M�K1(M�r)

�
; (17)

V (r)"# = � 1

2�
2v2y2Ko(Mhr) +

e23
2�

�
C+Ko(M+r) +C�Ko(M�r) + 2

Cl

meffr
[M+K1(M+r) +

�M�K1(M�r)
�
; (18)

V (r)## = � 1

2�
2v2y2Ko(Mhr) +

e23
2�

�
(C+ +

C

meff

M2
+)Ko(M+r) + (C� � C

meff

M2
�)Ko(M�r)

+ 2
Cl

meffr
(M+K1(M+r)�M�K1(M�r)

�
: (19)

Here, Ko(x) and K1(x) are the modi�ed Bessel functions and l is the angular momentum. The last three equations
represent the tree-level potentials evaluated at the Born approximation. Now, it is convenient to de�ne the limit of
validity of the potentials (17), (18), (19). They have been derived in the low-energy limit, consequently they must
be valid in the perturbative regime, where the loop corrections are negligible before the semi-classical terms. For a

typical MCS model, the perturbative limit is given by e2

�
� 1; in the case of the present model, nevertheless, there

are four dimensionless parameters e23=m, e
2
3=MH , e23=M+, e23=M�. According to the discussion realized in Ref. [14],

the pertubative regime is valid whenever e23=M+ � 1 and y � 1 (the �rst condition obviously implies e23=m� 1).
A remarkable point to be highlighted concerns the attainment of three di�erent potentials: V (r)""; V (r)"#; V (r)##.

Our results put in explicit evidence the dependence of the potential on the spin state. Were parity preserved, this
would not be the result; however, by virtue of the explicit breaking of parity, as induced by the Chern-Simons term,
expressions (17), (18), (19) di�er from one another as it can be understood on the basis of parity transformation
arguments. Another signal of parity-breaking is the linear dependence of V on l: l ! �l is not a symmetry of the
potential.
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Although the gauge invariance is broken by the appearance of a Proca mass during the SSB, one expects that the
interaction potential associated to the system comes to preserve the characteristics of the original Lagrangian (before
the SSB). This fact leads us to study a way to assure the gauge invariance of the e�ective interaction potential.
Analysis of the Galilean limit of the �eld theories in (1+2) dimensions, carried out by Hagen [7], have shown that
the 2-body scattering problem, as mediated by a gauge particle, must lead to an e�ective potential that preserves the
structure of a perfect square form (l��2)2, and can be identi�ed with the Aharonov-Bohm scattering potential. The
quartic order term

�
�4
�
is related to the presence of 2-photon diagrams induced by the seagull vertex ('�'A�A�), and

thus associated to the gauge invariance of the resulting potential. In this way, the potential structure (l��2)2 must be
also pursued in more complex electron-electron scatterings panoramas, in order to ensure gauge invariance. Actually,
this is just the signal of a more general result. Electron-electron scatterings, in general, no matter the complexity
of the interactions, must exhibit the combination (l � �2)2 for the sake of gauge invariance of the �nal result. This
kind of procedure is found in Ref. [8], where a nonrelativistic interaction potential was derived in the context of a
MCS-QED3 (without scalar sector), in the perturbative regime, 1=k� 1; with k being the statistic parameter (in our
present case k � 4��=e23). In this reference, in order to ensure the gauge invariance, at the low-energy approximation,
one takes into account the two-photons diagrams, which amounts to adding up to the tree-level potential the quartic

order term
n
e2

2�� [1� �rK1(�r)]
o2

, turning out into the following gauge-invariant e�ective potential form [4], [8]:

VMCS(r) =
e2

2�

�
1� �

me

�
K0(�r) +

1

mer2

�
l � e2

2��
[1� �rK1(�r)]

�2

: (20)

In the expression above, the �rst term corresponds to the electromagnetic potential, whereas the last one incorporates
the centrifugal barrier

�
l=mr2

�
; the Aharonov-Bohm term and the 2-photon exchange term. One observes that this

procedure becomes necessary when the model is analyzed or de�ned out of the pertubative limit. In Ref. [10], for
instance, one accomplishes an evaluation of the scattering potential, in the Born approximation, whose �nal result

is not supplemented by the term
n
e2

2�� [1� �rK1(�r)]
o2

, under the justi�cation that derivation has been done in the

pertubative regime (1=k� 1) : In such a regime, the 2-photon term becomes negligible (for it is proportional to 1=k2)
and shows itself unable to jeopardize the gauge invariance of the model.
In a scenery where one searches for applications to Condensed Matter Physics, one must require � � me, and the

scattering potential given by Eq.(20) then comes out positive. This implication prevents a possible application of this
kind of model to superconductivity, where the characteristic energies are of meV order. Since the e�ective electron
mass (meff = me + yv2) is � 105eV; energy scale much greater than that corresponding to the condensed matter
interactions (meV ), one must impose the following condition on the physical excitations of the model:

meff � #;MA;M� . (21)

In the limitMA ! 0; one has: M+ � #; in this situation, the dimensionless parameter e23=M+ reduces to e23=#; that
now lies outside the pertubative regime, since # is now small (� meV ). Therefore, in this energy scale, our results may
not be restricted to the pertubative limit; the consideration of the 2-photon term to Eqs.(17, 18, 19) becomes then
relevant in order to assure the gauge invariance of these potentials. As a �nal result, one rewrites the three expressions
for the e�ective-gauge-invariant scattering potentials:

Ve�"" (r) = �
1

2�
2v2y2K0(MHr) +

e23
2�

��
(C+ � C

meff

M2
+

�
K0(M+r) +

�
C� +

C

meff

M2
�

�
K0(M�r)

�

+
1

meffr2

�
l +

e23
2�
Cr[M+K1(M+r) �M�K1(M�r)]

�2

; (22)

Ve�"# (r) = �
1

2�
2v2y2K0(MHr) +

e23
2�

[C+Ko(M+r) + C�Ko(M�r)] +
1

meffr2

�
l +

e23
2�
Cr[M+K1(M+r) +

�M�K1(M�r)]
�2

; (23)

Ve�##(r) = �
1

2�
2v2y2K0(MHr) +

e23
2�

��
C+ +

C

meff

M2
+

�
Ko(M+r) +

�
C� � C

meff

M2
�

�
Ko(M�r)

�

+
1

meffr2

�
l +

e23
2�
Cr[M+K1(M+r) �M�K1(M�r)]

�2

; (24)
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where l2

mr2 represents the centrifugal barrier, and the term proportional to C2 comes from the 2-photon exchange.
In the energy scale given by condition (21), the proportionality coe�cients of V2(r) become negligible:

meff � #;MA;M� =) C

meff

M2
+ � 1;

C

meff

M2
� � 1: (25)

As a consequence of these considerations, one can observe that only the �rst term of the expressions (22, 23, 24) is
attractive, which corresponds to the Higgs interaction. At the same time, the potential V2(r) reveals itself small before
V1(r) and V3(r); leading to a simpli�cation in the expressions (22) ; (23) ; (24), that degenerate to a single form:

Ve�(r) = � 1

2�
2v2y2K0(MHr) +

e23
2�

�
C+Ko(M+r) + C�Ko(M�r)

�
+

1

meffr2

�
l +

+
e23
2�
Cr[M+K1(M+r)�M�K1(M�r)]

�2

; (26)

The fact that C� > 0; 8 #;MA makes the second term (proportional to e2=2�) of the equation above to be positive,
revealing the repulsive nature of gauge sector. This trivial analysis shows that the potentials (22) ; (23) ; (24) will
be attractive only when the contribution originated from the Yukawa interaction overcomes the one coming from the
gauge sector, which can be achieved by accomplishing a suitable �tting on the model parameters. The ful�llment of
this condition can render the formation of e�e� bound states feasible , once the above potentials are \weak" in the
sense of Kato criterion, analyzed by Chadan et al. [2] in the context of the low-energy scattering theory in (1 + 2)
dimensions.
Finally, it is instructive to show how the gauge sectors of the potentials (22), (23),(24) behave in the limit of a

vanishing Proca mass: MA ! 0. In this case, the propagator of the gauge �eld reduces to the Maxwell-Chern-Simons
one, leading to the following limits:

M+ �! �;M� �! 0;C+ �! 1;C� �! 0;K1(M�r) �! 1

M�r
;C �! 1

�
; (27)

lim
MA�!0

V
""
(r) =

e23
2�

(1� �

meff

)Ko(�r) +
1

meffr2

�
l � e23

2��
(1� �rK1(�r))

�2
; (28)

lim
MA�!0

V
"#
(r) =

e23
2�
Ko(�r) +

1

meffr2

�
l � e23

2��
(1� �rK1(�r))

�2
; (29)

lim
MA�!0

V
##
(r) =

e23
2�

(1 +
�

meff

)Ko(�r) +
1

meffr2

�
l � e23

2��
(1� �rK1(�r))

�2
: (30)

One remarks that Eq. (28) encloses exactly the same result achieved by Dobrolibov [8] et al. and others [4], [9] for
the scattering of two up-polarization electrons, which enforces the generalization realized in this paper.

IV. NUMERICAL ANALYSIS

The numerical procedure adopted here consists on the implementation of the variational method for the Schr�odinger
equation supplemented by the interaction potential (26). In this sense, it is necessary to expose some properties of
the wavefunction representing the e�e� and of the two-dimensional Schr�odinger equation.
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A. The composite wave-function and the Schr�odinger equation

The Pauli exclusion principle states the antisymmetric character of the total two-electron wavefunction (	) with
respect to an electron-electron permutation: 	(�1; s1;�2; s2) = �	(�2; s2;�1; s1): Assuming that no signi�cant spin-
orbit interaction takes place, the function 	 can be split into three independent functions: 	(�1; s1;�2; s2) =
 (R)'(r)� (s1; s2), which represent, respectively, the center-of-mass wave function, the relative one, and the spin
wave function (R and s being the center-of-mass and spin coordinates respectively, while r is the relative coordinate
of the electrons). Taking into account the Pauli principle, the total wavefunction 	 in the center-of-mass frame reads
as

	S=1 = 'odd(r)�
S=1
even(s1; s2) ; 	S=0 = 'even(r)�

S=0
odd (s1; s2) ; (31)

where �S=0; �S=1, 'even(r); 'odd(r) stand respectively for the (antisymmetric) singlet spin-function, the (symmetric)
spin triplet, the even space-function (l = 0: s-wave, l = 2: d-wave), and the odd space-function (l = 1: p-wave: ,
l = 3: f-wave).
Within the nonrelativistic approximation, the binding energy associated to an e�e� pair is given by planar

Schr�odinger equation for the relative space-function '(r);

@2'(r)

@r2
+
1

r

@'(r)

@r
� l2

r2
'(r) + 2�eff [E � V (r)]'(r) = 0 ; (32)

where V (r) represents the interaction potential given by Eq. (26), and �eff =
1
2meff; is the e�ective reduced mass of

the system. By means of the following transformation '(r) = 1p
r
g(r), one has

@2g(r)

@r2
� l2 � 1

4

r2
g(r) + 2�eff [E � V (r)]g(r) = 0 : (33)

B. The Variational Method and the Choice of the trial function

To work out the variational method, one must take as starting point the choice of the trial function that represents
the generic features of the e�e� pair. The de�nition of a trial function must observe some conditions, such as the
asymptotic behavior at in�nity, the analysis of its free version and its behavior at the origin. For a zero angular
momentum (l = 0) state, the Eq.(33) becomes�

@2

@r2
+

1

4r2
+ 2�eff [E +CsK0(MHr)]

�
g(r) = 0; (34)

whose free version (V (r) = 0), for l = 0 state,
h
@2

@r2 +
1
4r2 + k2

i
u(r) = 0 ; has as solution u(r) = B1

p
rJ0(kr) +

B2
p
rY0(kr), with B1 andB2 being arbitrary constants and k =

p
2�effE. In the limit r ! 0, this solution goes simply

as u(r) �! p
r + �

p
r ln(r): Since the second term in the last equation behaves like an attractive potential, �1=4r2,

this implies the possibility of obtaining a bound state (E < 0) even for V (r) = 0 [2]. This is not physically acceptable,
leading to a restriction on the needed self-adjoint extension of the di�erential operator �d2=dr2 � 1=4r2. Among
the in�nite number of self-adjoint extensions of this operator, the only physical choice corresponds to the Friedrichs
extension (B2 = 0), which behaves like

p
r at the origin, indicating this same behavior for u(r). In this way the behavior

of the trial function at the origin is determined. The complete equation, V (r) 6= 0, will preserve the self-adjointness
of free Hamiltonian, if the potential is \weak" in the sense of the Kato condition:

R1
0 r(1 + j ln(r)j)jV (r)jdr < 1 :

Provided the interaction potential, given by Eq. (26), satis�es the Kato condition, the self-adjointness of the total
Hamiltonian is assured and the existence of bound states is allowed. On the other hand, at in�nity, the trial function
must vanish asymptotically in order to ful�ll square integrability. Therefore, a good choice can then be given by
g(r) = f(r) exp(��r); where f(r) is a well-behaved function that satis�es the limit condition: limr!0 f(r) =

p
r. By

simplicity, the trial function (for zero angular momentum) read as

g(r) =
p
r exp(��r) ; (35)

where � is a free parameter whose variation approximately determines an energy minimum.
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An analogous procedure can be undertaken to determine the behavior of the trial function when the angular momen-

tum is di�erent from zero (l 6= 0). In this case, and in the limit r ! 0, Eq.(33) reduces to
h
@2

@r2
� l2� 1

4

r2
+ k2

i
u(r) = 0 ;

whose general solution reads as u(r) = B1r
(l+1=2) + B2r

(�l+1=2). For l > 0; the choice r(l+1=2) entails a trial function
that is well-behaved at the origin. Since the Schr�odinger equation depends only on l2, any of the choices, l > 0 or
l < 0, is enough to provide the energy values of the physical states and one gets

g(r) = r1=2+l exp(��r) ; (36)

where � is again a spanning free parameter to be numerically �xed in order to maximize the binding energy. Though this
last result is mathematically correct, we should point out that the discussion regarding non-zero angular momentum
states here is merely for the sake of completeness. The true wave-function in this case should include the angular
components which remain precluded in this approach.

C. The Analysis of the Potential and the Numerical Data

The numerical analysis of the potentials Ve�"" ; Ve�"# ; Ve�## is totally dependent on the parameters of the �eld-
theoretical model. As a �rst step, it is convenient to realize an analysis on the relevant parameters and thereafter to
initiate a numerical procedure. The central purpose of this section is to demonstrate that the potentials obtained are
attractive and lead to the formation of bound states e�e�, whose energy is situated into a range relevant to some
Condensed Matter systems, like the high-Tc superconductors.
As well-known, to parallel-spin states (spin triplet) there must be a p-wave (spin triplet and l = 1) associated,

whereas the antiparallel-spin states (spin singlet) are linked to an s-wave (spin singlet and l = 0). Here, despite the
parity-breakdown associated to the state l = 1; the s-wave can also appear as solution, since it is not necessarily
manifested in all states. Given the degeneracy of the potentials Ve�"" ; Ve�"# ; Ve�## on the reduced potential (26), the
issue concerning the wavefunction symmetry looses some of its status: both the s- and p-wave appear as solutions for
the system. According to Eqs. (35), (36), the implementation of the variational method requires a trial-function with
r1=2�behaviour at the origin in the case of an s-wave and a r3=2�behaviour for a p-wave.
Before starting the numerical calculations, it is instructive to show the relevant parameters:

e23 =
e2

l?
=

1

137; 04

1973; 26

l?
=

14; 399

l?
; (37)

� =
#

MA
; (38)

� < 0; � � 3

4

j�j
�2
; (39)

� =
3

4

j�j
�2

=)M2
H = �2j�j; (40)

� =
j�j
�2

=)M2
H = 2�2j�j: (41)

Speci�cally, in D = 1 + 2, the electromagnetic coupling constant squared, e23, has dimension of mass, rather than
the dimensionless character of the usual four-dimensional QED4 coupling constant. This fact might be understood
as a memory of the third dimension that appears (into the coupling constant) when one tries to work with a theory
intrinsically de�ned in three space-time dimensions. This dimensional peculiarity could be better implemented through
the de�nition of a new coupling constant in three space-time dimensions [4], [5]: e! e3 = e=

p
l?, where l? represents

a length orthogonal to the planar dimension. The smaller is l?, the smaller is the remnant of the frozen dimension,
the larger is the planar character of the model and the coupling constant e3, what reveals its e�ective nature. In this
sense, it is instructive to notice that the e�ective value of e23 is larger than e

2 = 1=137 whenever l? < 1973:26 �A, since
1 (�A)�1 = 1973:26 eV . This particularity broadens the repulsive interaction for small l? and requires an even stronger
Higgs contribution to account for a total attractive interaction. Finally, this parameter must be evaluated inside a
range appropriated to not jeopardize the planar nature of the system, so that one requires that: 2 < l? < 15�A. The
parameter � is de�ned as the ratio between the Proca mass and the Chern-Simons mass, while �; � are parameters
of V�potential and are important to assure a stable vacuum, condition given by Eq. (39). The imposition of some
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relations between �; �; �2, like Eqs.(40) e (41), imply a kind of expression for the Higgs mass that exhibit dependence
only on �2 and j�j. This set of conditions impose a lower bound for the Higgs mass: M2

Hmin = 3j�j=4�.
Besides the factors above, the entire determination of the potential (26) also depends on v2; the vacuum expectation

value (v.e.v.), and on y, the parameter that measures the coupling between the fermions and the Higgs scalar. Being
a free parameter, v2 indicates the energy scale of the spontaneous breakdown of the U (1)�local symmetry, usually
determined by some experimental data associated to the phenomenology of the model under investigation, as it occurs
in the electroweak Weinberg-Salam model, for example. On the other hand, the y�parameter measures the coupling
between the fermions and the Higgs scalar, working in fact as an e�ective constant that embodies contributions of all
possible mechanisms of the electronic interaction via Higgs-type (scalar) excitations, as the spinless bosonic interaction
mechanisms: phonons, plasmons, and other collective excitations. This theoretical similarity suggests an identi�cation
of the �eld theory parameter with an e�ective electron-scalar coupling (instead of an electron-phonon one): y ! �es.
The numerical analysis is developed by means of the implementation of the variational method on the Schr�odinger

equation, supplemented by the degenerated potential. The procedure is initiated by the use of the an s-wave trial
function: g (r) = r1=2e��r , given by Eq. (35). Tables I and II exhibit the values of the e�e� bound state and the
average length of the e�e� state (�ab) for Ve�; in accordance with the input parameters (�2; Z; �; y; �), for l = 0: The
degenerated potential obviously assures the following equality: Eee"" =Eee## =Eee"#; �ab"" = �ab## = �ab"#: Table III
contains numerical data generated by the variational method, for l = 1; starting from the following trial function:
' (r) = r3=2e��r ; given by Eq. (36).

TABLE I. Input parameters: �2; l? ; �; �;M
2

H = �2j�j and l = 0; output numerical data: Ee�e� and �ab. Trial Function:
' (r) = r1=2e��r

v2(meV) l?(�A) y � � (eV) MH =
p
�2j�j � Ee�e�(meV) �ab(�A)

47:0 10:0 4:0 1:0 4:0 433:0 51:1 �59:2 19:3
47:0 10:0 4:0 0:5 4:0 433:0 51:8 �23:7 19:0

48:0 10:0 4:0 0:5 4:0 438:0 29:8 �50:2 16:6
48:0 10:0 3:9 1:0 4:0 438:0 29:8 �24:8 33:1
60:0 8:0 4:0 1:0 8:0 693:0 71:1 �33:3 13:9

60:0 8:0 4:0 0:5 6:0 600:0 69:2 �32:8 14:3
60:0 8:0 3:9 1:0 5:0 548:0 27:1 �30:4 36:4
70:0 7:0 4:0 0:4 7:0 700:0 89:2 �62:7 11:6

70:0 7:0 4:0 0:6 8:0 748:0 87:5 �54:0 11:3
70:0 7:0 3:9 1:0 7:0 700:0 51:2 �32:3 19:3
70:0 7:0 3:9 0:5 5:0 590:0 50:8 �38:5 19:4
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TABLE II. Input parameters: �2; l? ; �; �;M
2

H = �2j�j and l = 0; output numerical data: Ee�e� and �ab. Trial Function:
' (r) = r1=2e��r

v2 (meV) l?(�A) y � � (eV) MH =
p
2�2j�j � Ee�e�(meV) �ab(�A)

40:0 12:0 4:0 1:0 2:0 400:0 56:1 �54:1 17:6
40:0 12:0 4:0 0:5 2:0 400:0 59:2 �24:5 16:7

40:0 12:0 4:0 0:3 2:0 400:0 58:1 �17:2 17:0
40:0 12:0 4:0 1:0 2:5 447:2 57:9 �31:4 17:0
50:0 10:0 4:0 1:5 6:3 793:7 79:1 �41:1 12:5

50:0 10 4:0 1:5 5:3 728:0 79:1 �63:1 12:5
60:0 8:0 4:0 0:5 3:0 600:0 69:2 �32:8 14:3
60:0 8:0 3:9 0:1 2:0 489:9 51:2 �38:6 19:3

60:0 8:0 3:9 1:0 2:0 489:9 27:2 �62:8 36:3
80:0 6:0 4:0 0:5 4:0 800:0 79:1 �40:2 12:5
80:0 6:0 4:0 0:1 3:0 692:8 78:1 �76:7 12:6

80:0 6:0 3:9 0:5 2:5 632:5 27:1 �36:0 36:4
80:0 6:0 3:9 0:6 2:5 632:5 29:8 �45:7 33:1

TABLE III. Input parameters: �2; l? ; �; �;M
2

H = 2�2j�j and l = 1; output data: Ee�e� and �ab. Trial function:
' (r) = r3=2e��r

v2(meV) l?(�A) y � � (eV) MH =
p
2�2j�j � Ee�e� (meV) �ab(�A)

30:0 16:0 4:0 2:0 �2:0 489:9 55:1 �71:5 53:7
30:0 15:5 4:0 2:0 �3:0 489:9 40:7 �23:2 72:7
30:0 15:5 4:0 3:0 �4:0 489:9 42:2 �56:2 70:1

32:0 15:0 4:0 2:0 �3:0 438:2 70:7 �49:5 41:9
32:0 15:0 4:0 1:0 �2:0 357:8 51:1 �18:0 58:9
50:0 10:0 4:0 1:5 �5:3 728:0 80:9 �43:9 36:6

50:0 10:0 4:0 1:5 �4:0 632:4 79:1 �77:3 37:4
50:0 10:0 4:0 0:8 �3:0 547:7 72:4 �49:5 40:9
50:0 10:0 4:0 0:5 �3:0 547:7 42:9 �25:0 45:0

80:0 6:5 3:8 1:0 �4:0 800:0 61:3 �21:6 48:3
80:0 6:5 3:8 0:5 �3:0 692:8 50:7 �18:8 58:4
80:0 6:5 3:8 0:5 �2:5 632:5 51:8 �52:3 57:1
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From the data of the Tables I, II, III, it is possible to get an understanding of the in
uence of the parameters on
the values of the e�e� energy and �ab. When j�j and �2 increase, the Higgs mass grows up, reducing the range of the
attractive interaction, which is noticed through reduction of the bound state energy. In the same way, the rising of
the ��parameter implies a larger Chern-Simons mass and a reduction of the repulsive interaction range, determining
an increment of the bound state energy. The parameter l? acts directly in the coupling constant e3: the bigger is
l?, the smaller is gauge coupling, and the smaller the repulsive interaction, favoring again the increase of bound state
energy. The parameters �2 and y act on the Higgs interaction coupling, in such a way to promote a sensitive raising
of the biding energy. In the particular case of Table III, it is evident a sensitive enhancement in the value of �ab, a
consequence of the isotropic trial function that behaves as r3=2 at the origin . This isotropic character results in a
non-realistic approximation, since the angular momentum state l = 1 must exhibit some anisotropy. This observation
attributes to the data of Table III a more qualitative aspect without invalidating the fundamental result of this section:
by means of a suitable �tting of the parameters, it is possible to obtain values of the energy and the correlation length
for the pairs e�e� inside a scale usual for some solid state systems.

V. GENERAL CONCLUSIONS

The electron-electron interaction potentials, derived from a MCS Electrodynamics with spontaneous symmetry
breaking, puts in evidence the physical possibility of electronic pairing and the formation of bound states. This
theoretical prediction occurs when the parameters of the model are so chosen that the contribution stemming from
the scalar (Higgs) sector overcomes the contribution induced by the gauge boson exchange (always repulsive in the
energy scale relevant for the solid state excitations, � � me). The numerical results, displayed in Tables I, II and III,
reveal the achievement of binding energies in the meV �scale, and correlation lengths in the scale 10 � 30�A, which
is a possible argument in favour of the MCS QED3 adopted here to address the electronic pairing process in the
realm of some Condensed Matter planar systems, with manifestation of parity-breaking, such as the Hall systems
(there are also some references that discuss the nonconservation of parity symmetry in the context of the high-Tc
superconductors [11]). Finally, we must observe that the present MCS model bypasses the di�culties found by several
other models [4], [6], [8], [9] that attempted to obtain e�e� bound states considering only the exchange of vector
bosons. The v2�values disposed in Tables I, II, III recon�rm the energy scale (10� 100meV ) for the breaking of
U(1)-local symmetry obtained in the framework of planar superconductors [15], and in the case of a parity-preserving
electronic pairing [16].

VI. APPENDIX

In this Appendix one presents the spinor algebra so(1,2) that generates the Dirac spinors, solutions of the Dirac
equation in D = 1+ 2 dimensions. The adopted metric is ��� = (+;�;�); and the Dirac equation is written as:

(=p�m)u+(p) = 0; (42)

(=p +m) u�(p) = 0; (43)

where u+(p); u�(p) stands for the positive energy spinors with polarization \up" and \down" respectively. The
solution of the equations (42,43) are given by:

u+(p) =
=p+mp

2m(E +m)
u+(m;

�!
0 ); (44)

u�(p) =
=p�mp

2m(E +m)
u+(m;

�!
0 ); (45)

where u+(m;
�!
0 ) and u�(m;

�!
0 ) represent an up-electron and down-electron (respectively) in the rest frame:

u+(m;
�!
0 ) =

�
1
0

�
; u�(m;

�!
0 ) =

�
0
1

�
(46)

In D = 1 + 2; the generators of the group SO(1,2) are given by:
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�jl =
1

4
[
j;
l ]; (47)

where the 
 matrices must satisfy the so(1; 2) algebra

[
�; 
� ] = 2i����

�; (48)

and are taken by: 
� = (�z;�i�x; i�y):
Using this convention, the spinors u+(p); u�(p) are written at the form:

u+(p) =
1p

2m(E +m)

�
E +m
�ipx � py

�
;u+(p) =

1p
2m(E +m)

�
E +m �ipx + py

�
; (49)

u�(p) =
1p

2m(E +m)

�
ipx � py
E +m

�
;u�(p) =

1p
2m(E +m)

� �ipx � py E +m
�
; (50)

They obviously satisfy the normalization condition: : u+(p)u+(p) = 1 and u�(p)u�(p) = �1:
In the center of mass frame, the 4-momenta of the scattered electrons (elastic scattering hypothesis) can be written

as:

p1 = (E; p; 0); p
0

1 = (E; p cos�; p sin�);

p2 = (E;�p; 0); p
0

2 = (E;�p cos�;�p sin�);
k = p

0

1 � p1 = (0; p(cos�� 1); p sin�);

where � is the angle de�ned (in relation to the initial direction) by the particles after the scattering.
Adopting this convention, the current terms are evaluated:

h
u+(p

0

1)
0u+(p1)
i
=

(E +m)2 + p2ei�

2m(E +m)
=
h
u+(p

0

2)
0u+(p2)
i
; (51)h

u+(p
0

1)
1u+(p1)
i
= � p

2m
(1 + ei�) = �

h
u+(p

0

2)
1u+(p2)
i
; (52)h

u+(p
0

1)
2u+(p1)
i
=
�ip
2m

(1� ei�) = �
h
u+(p

0

2)
2u+(p2)
i
; (53)

h
u�(p

0

1)
0u�(p1)
i
=

(E +m)2 + p2e�i�

2m(E +m)
=
h
u�(p

0

2)
0u�(p2)
i
; (54)h

u�(p
0

1)
1u�(p1)
i
= � p

2m
(1 + e�i�) = �

h
u�(p

0

2)
1u�(p2)
i
; (55)h

u�(p
0

1)
2u�(p1)
i
=

ip

2m
(1� e�i�) = �

h
u�(p

0

2)
2u�(p2)
i

(56)

These current terms were used in the evaluation of the scattering amplitudes in the nonrelativistic approximation:
p2 � m2: Finally, given the correlation between mass and spin [17], valid in QED3, it is reasonable to enquire if
the spinor u�(p) does not represent an antiparticle rather than the spin-down particle. This issue is solved in the
Appendix of Ref. [12], where one shows that the charge of the spinor u�(p) is equal to the one of the spinor u+(p):
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