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ABSTRACT

We exhibit, at the self-organized critical state, a power-law sensitivity to the initial condi-
tions in the system of competing logistic maps introduced by Suzuki and Kaneko (1994),
and which modelizes the battle of birds for defending their territories. From the associated
exponent we obtain the value for the entropic index ¢ which defines the recently intro-
duced nonextensive generalization of the Boltzmann-Gibbs thermostatistics. In addition
to that, we calculate the dynamical exponent z. We obtained ¢ ~ —0.69 and z ~ 1.32 for
a mean-field-type calculation (d = c0), and ¢ ~ —0.39 and z ~~ 1.12 for the square lattice
(d=2).
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Self-organized criticality is an interesting and quite ubiquitous phenomenon. Indeed, it
is experimentally observed and theoretically studied in a wide variety of physical systems,
which include sandpiles, ricepiles, earthquakes and others [1]. It has also been observed in
the model introduced by Suzuki and Kaneko [2] who propose a set of coupled logistic maps
to mimic the singing imitation games which constitute the basis of the battle for territory
defense in various species of birds. This model has successfully described a variety of
biologically relevant features. However, its sensitivity to the initial conditions has never
been focused up to now, to the best of our knowledge. This property, which essentially
characterizes chaotic behavior, is herein quantitatively studied. Moreover, we show that
it is intimately related to thermostatistical nonextensivity in the sense we now describe.

It has been known for many years [3] that standard statistical mechanics fails to
describe pathological systems such as those which include long-range interactions (as
well as long-range microscopic memory, or fractal boundary conditions in space-time,
among others). To discuss this type of anomalous systems, one of us proposed {4] a

thermostatistics based on the following generalized entropic form:

S, = kLT L= P _qz_:%l A (1)
where W is the total number of configurations, {p;} are the associated probabilities, & is
some suitable positive constant and ¢ € R is the index that allows for the generalization.
It is straighforwardly verified that, in the ¢ — 1 limit, Eq. (1) reduces (by using p!™" ~

K

14 (¢—1) lnp;) to the well known expression:

w
S1=—kg ZP@' In p;. (2)
i=1

Let us mention that if we consider a system composed by two independent subsystems A
and B (in the sense that the composed probabilities factorize into those of A and B), we
easily verify that S;(A+ B) = S,(A) + S,(B) + (1 — q)S,(A)S,(B), which clearly exhibits
nonectensivity if g # 1.

The above generalization has been applied to a wide variety of physical situations
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including self-gravitational systems [5,6], turbulence in pure-electron plasma [6], dynamic
linear response for nonextensive systems [7], Lévy-like [8] and correlated-like [9] anomalous
diffusions , solar neutrino problem [10], cosmology [11], long-range fluid and magnetic
systems [12], optimization techniques [13].

This formalism has been shown [14,15] to be connected to the sensitivity of nonlinear
dynamical systems. More precisely, the numerical analysis of logistic-like maps as well as
of the Bak-Sneppen model for biological evolution has shown that, whenever quantities
like the Lyapunov exponent vanish (e.g., at the onset of chaos), the standard, exponential
type, sensitivity to the initial conditions is often replaced by a weaker, power-law type,
one. Furthermore, it has been shown [14] that the associated critical exponent equals
1/(1 —q) (de,if t — oo, limAz(Q)_,OAAJ;é% o t1/1=9) for d = 1 nonlinear maps), which
provides q. Also, it has been possible to generalize, for arbitrary ¢, the Pesin connection
between the Kolmogorov-Sinai entropy and the Lyapunov exponent.

In the present work, we show how these ideas apply to the Suzuki and Kaneko imitation
games [2]. After some transient, this model spontaneously evolves towards a critical state
located at the edge between chaos and periodic windows , .e., in a parameter region where
the Lyapunov exponent of individual maps is close to zero. This peculiar steady-state-like
behavior is sometimes referred to as intermittent chaos or weakly chaotic.

We use, for the imitation games, the logistic maps

o1 () =1 —a(i) 2} (1) (3)
that play by pairs (3,j); (z.(i) € [-1,1];a(¢) € [0,2];4 = 1,2, ..., N). Initially, each map
starts with random values for both z¢(:) and a(z), and repeats its dynamics for a time
T, (rel stands for relaxation) long enough to approach its individual attractor. Then,
during a time Tin; (imi stands for imitation), the ¢-th map (for all values of ¢) modifies
its dynamics (imitates) with a feedback from the j-th map (we describe later on how is

chosen the sequence for j)

Zop1 (1) = 1= a (&) [(1 = e (i) & (1) + € (1) 2a())* (4)
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where the {€(7)} are the parameters (random numbers uniformly distributed between zero
and one, and chosen once for ever) that characterize how strong the imitation is. After
this time, the i-th map returns to its own dynamics (this is to say, it runs with Eq. (3)
starting from its current value for z,) during a period Tp. During time Tp a quantity
D (1,7) is calculated that measures the distance between the imitated values {x, (i)} and

the original ones {z, (7)}:

Tret+Timi+Tp
DG = Y. (@) -2 () (5)

n=Tre;+Timi+1

For the present work, and following reference [13], we adopt Tye; = Timi = Tp = 30.

By inverting the role of the two maps, and repeating the same procedure, the quantity
D (j,1)is calculated. If D (z,7) < D (g, ¢) then we will say that the :-th map imitates better
the j-th map than the other way around, hence the i-th map "wins”. By "wins” we mean
that the parameter a (j) is substituted by a value in the vicinity of a (¢), more precisely, it
becomes @ (7)+ 6, where 6 is a small random number, representing a mutational possibility;
following [2], & is extracted from the Lorentzian distribution P (8) = p/ (p® + 62) with
p = 0.001. If D(z,5) > D(j,%), the "winner” now is the j-th map, and we proceed as
before, i.e., we change the parameters of the ¢-th map. We have not used homogenous
random distributions for determining é because, as noted in [2] and confirmed by us, this
can lead to parameters {a} which get trapped at intermediate, meaningless, values. Let
us add that no further variations were performed on the e-parameter distribution because,
as noted by Susuki and Kaneko [2] and confirmed by our own simulations, the distribution
of this parameter appears to be essentially "irrelevant”.

In order to determine the values of a that often win, and following the lines of [2],
we define a score for each value of a. We increase by one a counter associated with the
value of a of the winning map, and by zero the counter corresponding to the looser. In
Figure 1 we show the score as a function of a. Note the importance of the period-three and
period-four windows. Figure 2 shows the score as a function of the logistic-map Lyapunov

exponent (A). Note now the peak on the zero value. Let us recall that, for a single logistic
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map, A = 0 precisely corresponds to g # 1, i.e., to a power law (instead of exponential)
dependence of the sensitivity to the initial conditions.
The Hamming distance between two systems (the original and its replica) of N maps

each, at any time n, is defined as:

Y \an (1) — ar (1
- el ) "
where the prime stands for the replica sample. Note that the Hamming distance is cal-
culated over the parameters {a} of the maps, and not over the entire phase space (which
includes the z variables) because it is the {a} (and not the {z}) which self-organize. In
our simulations, we have let a system of N maps (N = 125, 250, 500, 1000) to relax,
and then we have constructed a replica by randomly changing (in £0.001) the parameters
{a} of (typically) 10 randomly chosen maps. After this is done, we calculate the 7initial”
damage or Hamming distance Ho. It is clear that, for increasingly large values of N and
since we have fixed in 10 the number of different maps in the replica, the Hamming dis-
tance tends to zero. By so doing we numerically approach the definition of the Lyapunov
exponent, which demands a vanishingly small initial discrepancy between the replicas.
By allowing both the original and the replica systems to follow the previously described
dynamics, with identical sequences of random numbers (in accordance with the standard
spreading-of-damage procedure), we calculated the ratio H,/Ho. We use as unit time (n
is increased by one) each single game between two birds. In Figure 3 it is shown, for
the mean-field-like model (every bird plays with each one of the others), the log-log time
dependence of the average (over 50 realizations) of H,/Hy for various system sizes . It is a
general feature that H,/Ho grows with time following a power-law (basically the same for
all sizes) up to a size-dependent point, after which a stationary plateau is reached. The
slope of the first part of the curves is 0.5940.02. Since this value equals [14] 1/(1—q), we
determine ¢ = —0.69 + 0.02. For the d=2 square lattice model (with periodic boundary
conditions) we have obtained ¢ = —0.39+0.02. These values can be compared with those

associated with other models, namely the logistic map at its threshold to chaos (¢ = 0.24
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[14]}, the Bak and Sneppen model for biological evolution at the self-organized critical
state (¢ = —2.1 [15]), and the ricepile model (¢ = —0.12 [16]).

The dynamical exponent z is usually defined through 7 ~ L? where 7 is the time
during which the systems behaves dynamically and L is the linear size of the system. More
precisely, the time 7 is defined as the time needed for the damage to reach, except for
statistical fluctuations, its stationary value. So, 7 was estimated through the intersection,
in Figure 3, of the two straight lines respectively defined by the plateau-like stationary
value and by the power-law increasing regime. It was found (see Figure 4) that the
dynamical exponent z equals 1.32£0.01. For the d = 2 square lattice model we obtained
2z = 1.12 + 0.02. These values can be compared with those obtained for the Bak and
Sneppen model (z = 1.56 [15]), the ricepile model (z = 1.3 [16]), and the square lattice
Ising ferromagnet (z = 2.16 [17]).

In addition to the above results, we have checked the sensitivity to the initial conditions
of the set of values {z}. After a simple transient, a rather trivial diffusive-like behavior
is observed, which reconfirms that, in the present problem, it is in the space of the {a}
that the nontrivial results are conveniently revealed.

Summarizing, we have studied, at the self-organized critical state, the sensitivity to
initial conditions of the Suzuki and Kaneko model for imitation games between birds.
We have exhibited nontrivial power-law behaviors, which enable, among others, the con-
nection with nonextensive statistics. In other words, we have herein illustrated how the
entropic exponent ¢ can be derived from the knowledge of the microscopic dynamics.

We sincerely acknowledge useful discussions with F.A. Tamarit, S.A. Cannas and A.R.
Plastino. We are also grateful to K. Christensen for communicating to us his results prior

to publication. This work was partially supported by CLAF/CNPq Brazil.
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FIGURE CAPTIONS

Figure 1.- Stationary score versus a for 100 logistic maps playing all with all (mean-
field-like model). The sum was calculated during ~ 10® time steps after a long relaxation
period. One time step is a single two-birds game. Period three window, period four
window and the onset of chaos are pointed by arrows; other remarkable peaks correspond

to other windows and bifurcations.

Figure 2.- Stationary score versus Lyapunov exponent (A). Is the result of calculating

on Figure 1. Note the peak around A = 0. It was used a bin size of 0.0001.

Figure 3.- Log-log plot of the Hamming distance wersus time for various system sizes.
All the curves coincide rather well on the straight line part. The time step is a game

between two maps.

Figure 4.-Log-log plot of time T needed to reach the "knee” (in Fig. 3) versus system
size. The slope of the straight line is 1.32 with good accuracy. The time units are the

same as in Figure 3.



CBPF-NF-030/97

period-4 window

period-3 window

onset of chaos

600

it i TR GRS




SCORE

CBPF-NF-030/97

2500
2000 ;
1500 ;
1000 ; : Z
500 é ?%;

Lyapunov exponent

Figure 2

10



CBPF-NF-030/97

1000 _ T T II|III‘ T T YIIIH[ T T IIYTTT] T T IIIIIII T T IYTXII:
L N=1000 -
N=500
100 =
E N=250 1
H/H, | N=125
10 - E
1 i3 I IJlIH] i ] Illl!ll 1 1 llillil H 1 Alll‘lll 1 1 NN
1.e+0 1.e+1 1.e+2 1.e+3 1.e+4 1.e+b
time

Figure 3



CBPF-NF-030/97 12

10000 , , e

¥ T LR

1000
100 1 L ) ! 1 { 1 I
100 1000

N

Figure 4



