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ABSTRACT

Through a recently introduced renormalization group méthod,
we study the behaviour of the spontaneous surface and bulk mag-
netizations as ﬁmﬁtions'of the temperature for the Ising ferro-
magnet in a gsemi-infinite cubic lattice for various ratios
JS/JB (JS and JB respectively are the surface and bulk coupling
constants). In particular we study the extraordinary transiticn
where the surface maiﬂtains its magnetization as the bulk dis-
orders; we find a discontinuity on iha §inst derndivative of the
surface'magnetization at the bulk trénsition-temperature. The
criticality of the system (universality classes, critical  ex-
ponents and amplitudes) ‘is discussed as well. Finally, we ob-
serveaaﬁ unexpected slight lack of monotonicity . of the surface

magnetization as a function of JS/JB for'Js/JB <<<],

Key-words: Surface magnetism; Phase transitions; Renormalization

group:; Ising problems.

PACS index: 75.30.Pd, 68.35.Rh, 05.50+q, 75,40.Cx
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1 INTRODUCTION

Surface magnetism has attracted considerable interest dur-
ing recent years due to its various applications (catalysis,
corrosion, etc.) and its intrinsic theoretical ard experimental
richnessl.. Some experiments using techniques such as spin po-
larized photo emissionz, spin-pclarized low-energy electron
diffraction® and electron-capture spectroscop&“ are able to
get information on the surface critical behaviour of ferromag-
nets such as Ni, Cr and Gd, showing that the local magnetiza-
tion at the surface behaves, near the bulk transition temperature
Tf,in-a different way than the bulk magnetization does. On the

oretical grounds, surface magnetic order has been treated within

different frameworks: Mean Field approximationsfeffective field

6

theories®, Kikuchi type theories’, Spin-fluctuation theories?,

%, Monte Carlo techniques'!® and Re-

random-phase-approximation
normalization Group'® (RG) methods (see ref. 12 and 13 for re-
views of reciprocal-space and real-space approaches . respec-
tively).

Usually RG technigques have been applied to semi~infinite
magnetic solids to obtain critical exponents and phase dia-
gramsl“. Until now, RG calculations for these systems have not
yet been performed to obtain tl*esu.‘r-:face magnetization as function
of the temperature, for asbitrary values of it, i.e., the e~
quation of state. Recently, a real space RG formalism was in
"troduced! ® which allows, for thermal systems, the direct cal-

culation (without going through the calculation of the therme

dynamic energy) of the equation of state for arbitrary values
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of the external parameters. In the present work, we use an ex-

16 (where

tension of this formalism to the nonhomogeneous case
we rallow for different coupling cohstants in the system) to study
the Ising ferromagnet in semi-infinite dubic lattice with a
free surface (001). The free surface coupling constant Jg (J¢>>0)
is not.négessarily equal to the bulk coupling constant J, >0.

We obtain the surface and bulk magnetization. Cgurves as
functions of the temperature and we study their behaviour as
JS/JB varies. We obtain the exponents .Band amplitudes A
of the surface and.bulk magnetizations fo; thefvarious.L“types
of transitions which may occur.

In section 2 we present the model and the formalism and in

section 3 the results; finally,we conclude in section 4.

2 MODEL AND RG FORMALISM

We consider a semi-infinife simple cubic lattice with a (001)
free surface. The first-neighbouring sites interact ferromagne

tically accordiay to

= - J,.0.0, (¢, = 1,V1)
% <i§j> 11+ 1 ’

where the coupling constant Iy equals Ty (3 20) if both sites:

i and j belong to the free surface and equals JB.(JB »0) other

wise (let us introduce & = JS/JB -1).

The phase diagram for this gystem is known to be as given
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in Fig. 1. If A < A_; for temperatures below the critical bulk

temperature (T < Ti) we have the bulk ferromagnetic (BF) phase,
where both the bulk and the surface are magnetically ordered;

for T » Tz, the bulk and the surface are disordered . (paramag-

netic (P) phase). If 4 > A , a third phase becomes possible at
intermediate values of T, between the bulk ferromagnetic and

paramagneéic'phaseé. At this region, for T above Tﬁ_and up to
Ti(A), the surface remains magneticallf ordered while the bulk
order is absent (surface ferromagnetic (SF) phase).

It is known that this system is asgsociated .with -several
universality | classes. To  illustrate them, we recall
the khermal critical behaviour associated'with the.maguﬁizathﬁ
The bulk magnetization MB behaves near l'.[f, for ‘all values .of A, as

3D - :
& . The critical -. behaviowr - .associated

- B

My (T) ~ Ay (1 =T/T0)
with the surface magnetization.MS
'I."B Bo::d _ B)ﬁgp

MS(T) v Aora(l - T/ c) ; (ii)- for & =ac,MS(T)'uAspCl—?VTc 3

~iss (i) for & < ﬁc}

B. 2D

(i1i) for A > & , Ms o As_(l --'I'/'I“l:'(ix‘)')‘3 . We also expect a
fifth_hon trivial singularity to be present in this problem:
for &4 > A , M_ near TB behaves as

c s c

ex
a_(1 -T/TE)B for T +TL ~0
P b, |
MS.(.T) MS.‘-TC) "

B pex
-A+-(T/Tc -1)

for T +T2 +0
since it is reasonable that it reflects somehow the bulk sin-
~gularity.

To obtain the surface and bulk spontaneous magnetizations

as functions of the temperature we.will briefly summarize the
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RG method previously mentioned, while applying it to our sys-
tem, |

- We first consgider a dB-dinmsicnial bulk lattice of linear size L
with a privileged surface.ih.ds—dimensibns, the .diménsionléss
coupling constants being K, = Js/kB‘I‘ at this surface and KB =
J,/kT in the bulk. We consider the special limit L »=  such
that the.;rivileged surﬁacngives rise to a free surface in a
semi-infinite lattice. In this limit,we define the bulk  and
surface .Qrde.r parameters as MB = Ni GKB‘.)/Ld}3 aﬂ_Mig.-=Ni:ﬁ<B,Ks)A.d53,
where NE(NE) is the thermal average number of bulk {surface)
sites whose spin is pointing along the easy magnetization d4i-
rection minus those whose spin. . is - in the opposite direction.
We associate with each site of the semi-infinite lattice a dimen-
sionless magnetic dipole u> We could in brinciple'choose =1,
but we will rather leave it as a variable of our . transforma-
tion; just as Ky and'KSf' '

We transform (following Kadanoff ideas) the original sys-
tem into a similar one of linear size'L'(B Z linear expansion
factor = L/L' > 1) with renormalized variables Kfl;Kg and u'.
Through.renormalizatiqn,both the total bulk magnetic momentand
the toial surface magnetic mement must be preserved, since they

are extensive guantities. We have, for the total bulk magnetic

system
Np, (Rp)W' = NP (K )u ()

where the thermal averages Nf(Kﬁ)'and NE(KB) are to be . taken

over the bulk sites of our system. We have a simp~
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ilar equation’ for the .total surface magnetic
ﬁoment, which involves thermal averages'such'as Nf.(KéfKé) and
NE(KB,KS}, taken at the sites associated with the surface. We
will work only with the bulk relation for simplicity  dnd  at
the end we will recover the corresponding relation for. the swrface

Dividing both sides of (1)} by LdB, we obtain:
1y ! = pdB '.
My (Kt = BOBM, (K} (2)

' = B iy «dp
where MB(KB) NL'(KB)/L .

(o)

Starting with KB and u . and performing n ‘iterations in -

(2), we have:
Cem)y, () _ pndp L (0Y
ManB n B MB(KB)P_ (3)
In the n + = limit, arbitrarily-choosing u(é) = 1 we obtain

(n), (M)
Mo(K> 7))
B B (4a)

M_(K,) = Zim
BB N Bndn-
Analogously, we also find a relation for the surface.order pa
rameter: .
(n) _(n), (n)
M (KB- ’KS )u .

. S
M.(K_,K.,) = 2im
S§"B'"S now phds

(4b)

The equations {(4a) and (4b) are to be used together - with
the: RG recurrence equations for K; and Ké. For Ising ferromag-
netic systems with a free surface, these equations will give

rige to a phase diagram with three distinct regions, ' namely
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the P, BF and SF ones (see Fig. l). In the paramagnetic region,
(KB,KSJ is attracted through successive renormalizations towards

(®) g(=),
'8

(Kg = (0,0). Since Mtgxé”')) = 0 and Mstxé“zxé“’)) =0, we

obtain (through (4a) and (4b})
MB(KB) = 0 (5a}
Ms(KB,Ks)-= 0 (5b)

in the entixte paramagnetic region, thus reproducing the well
known result. If (K;,K;) is attracted towards (K'g') ,Ké“))=(=°,°°}.
which is associated with the bulk ferromagnetic phase,.we have
_MB(Kéy)) = 1 and MS(Kéh),KéQ)) = 1 (conventional valué for the
order parameters M, and M. when both the bulk and the - surface

are completely ordered). Then (4a) and {4b) gives

(n)'

M, (K.) = £im & 6
p (Kp) o BR9B (6a)
( ) = &4 u () (6b)
M_(K_,K.) = £im
S'"B'"'s o »e ptds PR

for the bulk ferromagnetic bhase. In the surface ferromagnetic
region, {KB*KS)'iS attracted towards“{ng),Kéw)) = (0,»)}) which
corrésponds to the situation :where the surface ié completely
ordered and the bulk--disordered.nThen we.have:MB(Kéﬁ)) = (0 and

MS{Kéw),Kémll-% 1 which yields, through (4a) and (4b}-
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_;-'7_'.
My (Kp) =0 { (7a)
M (KB'K ) = “fm ;’:Tg (7a)

for the surface ferromagnetic phase.

To cldse the procedure we must now specify how to obtain
the RG recurrence relations for K ,K and u.

We shall use the same kind of simple Migdal—Kadanoff like
cluster transformations already introduced!®. for the Potts (amd
related models) surface magnetism. The cells for the -bulk and the
free surface are shown respectively in Figs. 2(a) and-2&ﬁ. The
transformation indicated in Fig. 2(a)approaches,_thr6ugh the
standard bond-moving procedure, the bulk of our  system, In
Fig. 2{ty) the transformation is of the same type: the larger cell
is assumed to lay on the free surface.ofjour system in such a
way that 1/3 of its initial 27 Ponde are outside the .semi-in
finite lattice, and therefore 9 bonds are absent.

At this point, we shall remark that as we are in fact ap-
proximating a Bravais lattice by hierarchical ones (see caption

of Fig. 2) the factors B8 and BYS in Egs. 5,6 and 7 must  Dbe
bb' - 4bb!’

replaced by B8  and BYS , which will be defined in what fol
lows.
Suppose we are only interested in the homogeneous = case

(KB =KS). The graph Glth) with chemical distance between ter-

minals b1 = 3(b2 =3) and Nb1 = 27(Nb = 18) bonds is renormalized
2 :

into the graph Gi(Gé), with chemical distance b{ =1(b) =1) and

Nél —l(N' =1} bonds. The linear expansion factor B of these
2 .
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transformations is B = bi/bi = by/by = 3. . The ngraph G, (G,),
through successive iterations,generates an hierarchical lattiC§fWith in~-
- 1 )
trinsic fractal dimensionality 7 db £nN, /£n L {d = InN, 2/I!T.n b,);

analogously; G (G') is associated W1th d ZnNgi/znbi(dbi =
1

='= e b' = . )

bi_ b1 Nbi b2 1l in Fig. 2, which leaves

db; and db' undetermined; nevertheless it can be shown that
1 2

the correct answer for this trivial case is db' = dbé = 1,). It.

_ 1 :

¥ - L]
is convenient!® to define abP and dbp through
B S

£nN55/£nb2) (N

N

bb* b
Bl = (8a)
b'
1
dbb' Nbg |
B8 = g (8b)
2
hence
d
4b®’ bibl
BB = 3y {9a)
by 1
d
gbp' b LE I _
gls = ?db! (9b)
i 2
k,
and consequently
- - ' -
R Thood T Fhcind!
' inb - £nb'
- dbztnbz'-dbitnbi |
d, (10b)

s - . '
.C.nb2 -Lnbi
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In the inhomogeneous case (arbitrary Ky and-Ks} we have ex-

tended! ® (8b) to

B . S
as’ Ny, ¥ Np,Ks/Xs .
Bt - w8, +n5 . k /x ab
55 bé s’7B

where NE .ana N5 (N . and N S )} are the numbers of bonds of graph
by By by b2
G, (G}) respectively associated with K, and K (Ké and Kg). De-
finition (l11) is the simplest wantinuous expression which @ pe-
covers the homogeneous definition (8b) in the particular cases
Clarified this point, we come back to the determination of:

the recurrences for K K- ‘and ¥. We impose that the correlation

Bl’
function between the two roots of the graphs G, and Gi(G2 adez)

must be preserved, 1l.e. (see, fdr instance, ref. 18),

-8 ” -8
e P12 T e ,%123 20 112)
3,...,20
?BaCé -—Baﬁéﬁ
e 12 o Tr e 123...14 (13)
3,...,14
with
! R 1)
—B.%Bu = Kpo,0, + Ky (14a)

(associated with graph G}},

-B¥,

KBW G, 40,0, 40, G, % aas + G0, +0_0, +0,0_ +
123...20 :

19 -5 4 78 910

vee b 0,0, + @0, + 040, £ i0l) (14b)
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(associated to graph Gl)'

_f = K'g.o. + KI (14¢)
512

il $°1 2 ]

{(associated to graph Gé) and

_ggf

' = KS(U T, #0,0.,+Ty0 46,0, %00 +0,0
S423....14

13 1°5 7 3°4 56 78

fyuaaz +-06q2 f,agczl + KB(olqg + 9.%11 + 9,%3 + 09?1045

¢19%2 * qlS?i& + °16°2_+ 932%2 + 01403) (144)

Q

B
termined. Equations (12) and (13) uniquely determine

(associated to graph GZ}. K, and Kg are two constants to be de

b
I

= f(KB) (15).

!

and Ky = 9(Ky,Kg) (16)

Following .along the lines of'Raf;’lS,.we.ﬁiil now establish
the recurrence equation for k. In order to break the symmetry
(a bendition-needed " for establishing the equations for the
order parémeter) we impose that in all graphs of Fig. 2 one
of the terminal spins, say spinll, is fixed. We consider all
possible configurations for the other sites and associate with
each configuration the corresponding Boltzmmulwéight and mag-
netic moment.We obtain the magnetic moment m. associated with

a given configuration adding all sites contributions, We cbtain
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the magnetic moment m associated with a given configuration by
adding the:contributions frém all gites. In the hoﬁogemeous
case (Kg/Ky =1) we know that each site contributes proportiona
ly to 1its coordination number®. This is due to the fact ' that
we are approaching a Bravais latticeitranslationally invariant
and consequently having a spatially uniform order parameter)by
a hierardhical one (scate invariant and having a non .uniform
order parameter in space).In the nonhomogeneods case (Ks # Kﬁ)
each site contributes proportionally to its average :cooadina-
tion numben, which is defined by attributing to each bond a
weight proportional to its coupling constant (this _is ~the
simplest continuous-definition which'recovers that of the ho-
mogenecus - case for KS/KB = 1). ~ This definition was already
tested for the Potts ferromagnet in anisotropic square Jattidels,
with results in good agreement with previously known ones. In
Table 1 we present, as an example, a few configurations - for

graphs G, and Gi (associated with the bulk, where we:only have

1
the coupling constant K;). In Table 2 we illustrate the . same

procedure for graphs G, and Gé, which are associated with the

2
surface, where we have both coupling constantsKB.and KS. Final-
ly we impose, as we did in Eq. (la) and (lb), that the thermal
average tofal magneiic moment in the original.ané rengormaliaed
clusters is;preserved, for both the bulk and surface RG trans-

formations respectively:

<my = <m> (17)
Gi Gi

<m> = <m> (18)
G, Gé :
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-12~
These equations have the form
ué = h(KB)uB : {19)
ng = LK Rglug (20)

as we can see inspecting Tables 1 and 2. Eg. (19) must enter
into Eq. (6a), while Eq. (20) must enter into Eq. (6b) and
Egq. (7b).

Summarizing, we use Egs. (5), (6),(7) together with Egs.
(15),(16) and (19}, (20) to obtain the surface and bulk sponta

neous magnetizations. For the transformation of Fig. 2(a)
bb'

pdB = 27 (homogeneous case)} and for the one. of Fig. 2(h)
LN 9 +9K_/K_.

BYs S'"B

= st — (nonhomogeneous case).
Ks/%p

3 RESULTS

The curves we have obtained for the surface = spontaneocus
magnetization for JS/JB = 0,0,5,1 and 1.5 are presented in
Fig. 3. We also present the curve for the bulk spontaneous mag
netization. Since A < ac(ac = 0.74 in the present RG procedure!"),
the surface and bulk order at, for decreasing temperatures, the
same temperature T: (ordinary transition). We observe that-the
surface magnetization curve, as A is increased, gradually ap-
proaches the bulk one and, for 4 5 4 , it lays above this curve.

If A = 4., the surface still disorders at the same tem-

perature TB than the bulk, but this transition {special transi

tion) is caracterized by a different set of critical exponents.
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The corresponding surface magnetization curve is presented in
Fig. 4 with the bulk curve.
In Fig. 5 we present the surface magnetization curves for

JS/JB = 2,2.5 and 3; these values of JS/JB correspend to 4 » nc
In this case the bulk orders in the presence of an already or
dered surface. We have the surface transition at Ti(a) > Tﬁ
from a ferromagnetic surface phase to a paramagnetic phase
and the extraoadinary transition at Ti, where the surface mag
netization curve is believed to present some kind of soft sin
gularity. We obtain that the temperature first derivative of
the surface magnetization is diécontbuwuératurz,and that fust
abové TE the tendency of the surface to discorder is weaken
than just below. This result might surprise at first sight
since we know that bulk order must enhance sﬁrface order. We
verify that 8°* = 1 and that A_/A+ is roughly equal to 4, for
typical ratios of JS/JB. Mean-field (MF) fheoriess for the

extraordinary transition give

f=1-L2F L8240 ,850
3 8 )
i=1-3t-3E+0E),E<o0

*

with m « Ms and t « (T -T:F), i.e., the leading “sindularity
would occur at 0(t?) (the discontinuity only appears in the
second derivative at t= 0). hurthermore, experimental data of

Rau and Robert® in Gd (which seems to be closeto.a Heisenberg

B

ferromagnet) :give support to the possible continuity, ‘at Eé,-

of the first derivative of MS(TY;EﬁowéVer, an effective field
theory with correlation for an Ising model® has suggesteéd a

discontinuity.*On the other hand, accurate experiments®® mea-
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suring surface tension at the ) transition on 1liquid “HE
{(whose criticaii.ty is expected to be the same as that of scme. sur-
face magnetic systems) suggest a disconfinuify in the first de-
rivative, cpnfli_cting with the the theoretical predictions for the system.

The point is still controversial. Let us present some qualitative arguments
favoring what we find, 1.e., a ddiscontinudity in the first
derivative of M, (T). The bulk acts on the surface magnetization  through
two different physical channels. The first one is the obvious
fact that the bulk magnetization, as long as non-vanishing, acts
as an effective field on the surface, The second channel, more subtle,
refers to bulk susceptibility effects near TE, where the bulk
gusceptibility diverges. In the neighbourhood  of TE’, the
paramagnetic~side amplitude of the bulk susoceptibility is higher
twp times higher in standard mean-field calculations) than
that of the ferromagnetic-side bulk susceptibility. The effect
of the paramagnetic-side bulk susceptibility overccmes both the
effects of the vanishing bulk field and of the bulk susceptibi-
lity just below Tf,_ - thus suggesting an explanation for. the
decnease in the tendency of the surface to disorder in the re-
gion just above TE {i.e., A_>A)). The fact that mean-field cal
culation yleld 'A+ = A_ would be fortultous and possibly related
to the factor 2 mentioned above.

The present RG formalism yields the values of TE’, TS(A) p
(through the recurrence relations for K; and K; in the standard
way), the B exponents for each transition and the corfesponding
amplitudes A. They are showﬁ in Table 3 and compared with other
estimates whenever available.

Let us mention an interesting feature that appears as JS/JB

decreases, for JS/JB' << 1: a slight non-monotonicity of the

surface magnetization. At first sight it might seem that, for
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a given value of Js./.:r we must always hale 'a. surface magnetization

B
curve which is below the one associated with a greater value
of J./J3.. Instead of thak, at J./J,  0.35 we £find that i:he_su_r_
face magnetiz;tion begins to increaséq,_as JS./JB is lowered. We
can see in Fig. 3 the surface magnetization curve for JS/JB =
0.5 which is befow the curves for JS/JB =1,1.5, .as expaétEd.
But the surface magnetization curve for qs/JB = 0, for instance,

is above the JS/JB = 0.5 one.

4 CONCLUSION

A real-space RG scheme has been applied to the Ising model
in a semi-infinite cubic lattice in order to obtain the equa-
tions of state. for this system. The surface and bulk spontaneous
magnetization curves as functioqs of the temperature present the
qualitative behaviour expected for -4 < Ap b =4 and A >A.
We £ind for the extraordinary transition (A > A ) the critical
exponent B°* = 1 and ar&ém@énwy in the first derivative of the
surface magnetization. This last result differs from the mean-
field prediction (continuify in the first derivative). Bulk
susceptibility effects on the surface at‘TE may explain this
discrepancy since mean-field theories do not properly take into
account fluctuations. At the light of the renormalization-group
results presented here, for Bn Ising ferromagnet, we see that the
result.A+/A;-;i experimentally'obtaiﬁEd by Rau and Robert either
is due'to the fact that.Gd seems to be' cleser to a -Heisenberg
ferromagnet than to a Ising.one, or it:should not. be considered

the generic situation, and its comprehension should be seaxched
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elsewhere. We have also dbserved that the surface magnetization as a fune-

tion of JS/JB' fo; JS/JB << 1, presents an unexpected . -slight
non=-monotonicity.

In the vicinity of the various critical temperatures we
have obtained the correspondent B exponents (according to
what is expected on the basis of universality.arguments) and

amplitudes A in reasonable agreement with other estimates when
ever avaflable.

We acknowledge fruitful discussions with E.V.L. de  Mello,
E.M.F. Curado, N. Majlis, §. SelZer, J.L. Moran-Zépez, J.M.
Sanchez and F.Y. Wu as well as useful remarks froh H. Herrmann

and G. Schwachheim.



CBPF-~NF-030/88

CAPTION FOR FIGURES AND TABLES

Fig. 1 - (a) Phase diagram for the Ising ferromagﬂet in the

Figqg.

Fig.

Fig.

2-

3~

4 -

semi-infinite cubic lattice with a (001))free-surface.
In the bulk ferromagnetic (BF) phase, both the builk
and surface are magnetically ordered; in the surface
}erromagnetic (SF) phases only . the surfaée remains

ordered; in the paramagnetié (P) phase both are

disordered. (b) Phase diagram with :the _ . convenient
variables tB=1xmh(JB/kBT) and tg =tarh (J /k,T}, the bulk
and surface-trénsmissivities for the Ising model. The
RG.'_flow is indicated; l] , @ and Q respectively . denote
the trivial (fully stable), éritical (semi-stable) and

multicritical {(fully unstable) fixed points.

RG cell transformation-(a) associated . to. the bulk
(coupling constant'KB); (b} associated to the surface
(coupling constant K,). The lattice generated by dite-

rative application of graph G, is an example of hier-

1
achical lattice.

Surface 5pon£aneous magneti_zation.MS as a function of
the temperature for the Ising ferromagnet  in semi-in
finite simple cubic lattice ‘with free surface (001).

Jg/3y = 0, 0.5, 1 and 1.5 (4 <A ). The bulk magnetiza-
tidanB is also shown as a reference.

Surface magnetization M, asa.function of the temperature’

for A = dc. The bulk magnet.’i_zation-MB is also shown.
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Fig. 5 - Surface magnetization M_, as a function of the temper-

s
. B
ature for & > ﬁc; JS/JB = 2,2.5 and 3. At Tc, . there

is a discontinuity in the first temperature derivative

of M,. The bulk magnetization M, curve is also shown.

Table 1 - Establishment of Eg. 17 for the bulk RG transforma-

-

' tiqn; (a} Possible configurations ifor. the graph

Ky K§ -Kp
Gl :<m>, = eB 20"/ (e’ + e "B) (b) 3 of the 2'°
1
possible confiqurations for the graph G1; <m>., =

(54278 + 50238 4£32e°%B 1, /(P KB 4?3 KB 1B Ly,
Table 2 -~ Establishment.of Eq. (18) for the surface RG ' trans
formation (a) Possible @onfigurations for the gwzaph

Gé; <m>85
possible configurations for the graph st <m>G =
2

(&™*B*9KS (18 118K /) + e BYKS (18 + AR /RY) 4+
& FBKS(248r /K )+, . g (&FKBHIKS 4 oI BYIKRE B RSy ).

¥ .. ! "
= %8 2"/ (eF5 4+ XSy, (b) 3 of the 2!°

Table 3 ~ Present RG values for the critical temperatures, B
exponents 'and the corresponding amplitudes A for each
“transition’ Other estimates are also shown whenever

available.
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FIG.2
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(a)
G, configuration weight m
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weight
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9K & 5K
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TABLE 2
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BULK MAGNETIZATION

g>? '

kpTE8/Tg

Azp

~ 0.46 (present RG)
0231271

2.82 (present RG)
2.30637 (Series?®)

1.24 (present RG) .

SURFACE MAGNETIZATION

ORDINARY TRANSITION

ord
B “:!S/JB A‘:u‘:.d
0.55 (present RG) 0.5 1.1
| 0.78 (Monte Carlo®) 1.0 1.2
0.82 (e expansion’?) 1.5 o 1.8
' SPECTAL TRANSION
sp )
8 Js/Tg. | Asp
'0.21 (present RG) 1.%4 tpresent RG)
0:175 (Monte Carlo™®) | 1.6 (Series!®) 50.6
0.25 (e expansion’?) 1.5 (Monte Carlo'*j |
SURFACE TRANSITION
2D ; S '
0.17 (present RG) 2 {3.0% 0.8
20 , : o :
0.125 (exact®”) 2.5 3,61 0, 92
3. | 4.2¢ 0.96
EXTRACRDINARY TRANSITION -
ex T g
B .‘J§’/JB A"." A_‘"‘
1.0 (present RG) 2 3.0 0.8
1’ (Mean field®) 2.5 1.1 0.3
3.0 0.6 0.17

TABLE 3
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