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ABSTRACT

] on gas
The mutual polarization of a magnetic electron §

i ] theoreti
and a van Vleck ion, interacting via exchange, are 1

cally investigated using the double~-time Green function me-

thod. A pair of equations describing the dynamics of the

electron gas and the ion are conveniently decoupled and an

. . i ch
analytic expression for the electron gas polarization, whic

depends on the square of the exchange parameter, 1is obtained.

Besides a RKKY-like term, a new term associated to the process

of formation of the magnetic moment of the ion appears.

Les polarisations mutuelles d'un gaz electronique magnétisé
et d'un ion van Vleck, interagissant par échange, sont etu-
di€es theoriquement en utilisant la methode de la fonction
de Green d double temps. Les paires d'equations décrivant

la dynamique du gaz electronique et de 1'ion sont découplées.
On obtient une expression analytique de la polarisation du

gaz electronique, dependant du carré du paramétre d'echange.

Outre un terme du type RKKY, il apparait un nouveau terme

associe au processus de formation du moment magnetique de

1'ion.



1. INTRODUCTION

The phenomenon of spin polarization of an electron gas
due to exchange interaction with an ion which has a local spin,
the so called RKKY (Ruderman-Kittel-Kasuya-Yosida) effect, is a
classical subject in solid state physics [1]. Through this po-
larizationy which is of long range character and oscillatory, lo
calized magnetic moments of rare-earth ions in metals and alloys
can be indirectly coupled giving rise to complex magnetic struc-
tures [2,3].

The idea of spin polarization and indirect coupling ha-
ve been generalized by several authors. Bloembergen and Rowland
have applied the concept of indirect coupling between localized
spins to insulators; here the interaction is realized by virtual
excitations through the energy gap of the valence band [4].
Blandin and Campbell have extended the RKKY effect to an elec-
tron gas strongly perturbed by an electric charge in connection
with the problem of the magnetism of Heusler's alloys [5]. Also
the polarization effect due to a local spin on an already magne-
tized band was studied by Chatel and Szabo [6].

In this paper we consider the problem of how a van Vleck
ion can polarize an electron gas and if there is any signifi-
cant difference to the usual RKKY polarization. We begin by
assuming a magnetic conduction band which interacts by exchange
with a van Vleck ion subjected to a crystalline field. Actually
we have a problem of mutual magnetization; the magnetic band

induces a magnetization on the ion which responds polarizing



the electron gas in a self-consistent way. A spin polarization
induced by a van Vleck ion was proposed by Bloch et al. [7] in
connection with EPR measurements of Gd diluted in intermetallic
compounds MBe13 (where M is Pr, Eu, Tm and U). These systems,
according to Bucher et al. [8], exhibit van Vleck paramagnetism.
In [7] in order to explain g-shifts of Gd diluted in MBelB’ in
addition to the local exchange interaction with the conduction
electrons, it was also necessary to assume an indirect exchange
coupling, RKKY-like, between the Gd ion and the surrounding van
Vieck ions.

The plan of the paper is as follows. In the next section
we introduce the model Hamiltonian and specify the quantities to
be computed. In the section 3 we define the appropriate Greenfs
functions (GF), introduce the necessary approximations and
obtain the GF associated to the electron gas polarization, In
section 4 we evaluate the statistical averages of the pseudo-
spins relative to the van Vleck ion. Finally, in section 5, we
obtain an expression for the electronic polarization as a func-
tion of the distance from the ion and discuss the physical mea-

ning of the several contributions.

Z. FORMULATION OF THE PROBLEM

Let us consider a rare-earth ion embebbed in a metallic
matrix having a magnetic band. A crystalline field splits the
ion energy level in only two levels which are supposed to be not
degenerated. The energy difference between these two singlet 1le

vels is A. Taking into account the exchange interaction of this



van Vleck ion with the conduction electrons the system can be

described by the following model Hamiltonian

= * - X _ Z oz
H = k% €kg kg Ckg T 4 S Js™ s (1)

J is an effective exchange integral, namely
J =4 J"(g-1)M (2)

where M is the matrix element of the angular moment between the

two levels of the ion, g the Lande's factor and J' is the exchan
. . - z

ge integral of the localized and itinerant electrons. s* and S

represent pseudo-spin operators associated to the ion and

s? = 7%— N {C;'¢Ck¢— c;,+ck;) (3)
kk' ‘

is the spin polarization of the conduction electrons, where
cio(ckc) is the creation (annihilation) operator associated to
an electron of wave number i and spin o(oc =+1, corresponding
to up and down) .

This model Hamiltonian was introduced by Fulde and
Peschel [9] and Schotte [10] who have studied the dynamic sus-
ceptibility of a van Vleck ion interacting with an electron gas.
In order to emphasize the different origins of the pseudo-spins
sX, s* and the electron spin s?, in appendix A, (1) is derived
from a more naive version.

In this work we want to determine the spin polarization

of an electron gas induced by a van Vleck ion put at the origin

in function of the distance. The quantity of interest is
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In evaluating <C£'0Cko> we adopt a pérturbative scheme

in the parameter J. As we will see, in the next section, the po-

larization sZ(r) envolyes the quantities <$*> and <S%> ; these

are also computed in the first order in J (section 4).

In what

allows to compute

<BA> = 1

<A|B> obeys

w<A|B>
w

Green Function of the electronic spin

polarization in a perturbative scheme

follows we use the Zubarev’s algorithm which

the average <BA> from the double time GF <A|B>

<A|B> .. - <A|B> .
lim j du “’gis LIt (5)
e+0 ettt 1
1
7 <[A}B]t> + <|:A,HJ_[B>w (6)

The statistical averages which appear in (5) and (6)

are defined in a canonical ensemble. If a grand canonical is

preferred one should replace in (6) H for H' = H - yN where y

is the chemical potential and N the number operator [12].

In order to compute (4) we introduce the GF <ck0{c£,c>.

We will need the following results
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Since we intend to compute <c, | ¢, > until second
(i) ko k'o

* , i =1,2, as the perturbed

order in J we define <ck0| Crrg 2

GF of order i in the parameter J. We also define the zeroth or-

der GF
(©) 8y 1
+ _ k,k 1
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Using (7) we obtain, according to (6)
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At this point we make the following approximation
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Since <S> = (<S > -<S > ) = 0, see section 4, only
s” - trib
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Solving for (8),(9) and (10) we finally obtain

(1)
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(13) envolves the quantities <S%> and <S*>in first order in J.

These are computed in the next section.

4. Evaluation of <S%> and <S*>

In order to obtain <S%> and <S*> we use the following

relations

s% = % - 87s (14-2)

stg? =-.—-.% st (14-b)

Similarly to what was done in section 3. We apply (5)
to evaluate <S* S%> and <S”S'>. We introduce the following
GF <S+IS_> and <SZ[S+>.

The application of GF technique to the computation of
statistical averages envolving pseudo-spins was done by Ramakri-
sshanan et al. [13] in the case of ferroelectric Hamiltonian of
the kind order~desorder. As in [13] we work with the anticomuta-
tor.

The following results will be used

+
[s¥, H] =:2Ts%S = aS” (15-a)

i



[S*,H] =~ 5 (57-87) (15-b)

Similarly to (11) we also put

<SZ Si|Si> = <s”» <SifSi> (16)
We then obtain
w <ST|ST> = 7%— +ZJ<SZ>(5TJS->I‘A<‘S}Y\ SV (17-a)
w <SS = - 92- (<s|s*> - <s7|s>) (17-b)
w <8*|sH> =20ss% <sT|s™> -a<s?|shs (17-c)
w $S7[S7> = ~2J<s% <ST|ST> +a<S%|ST> (17-d)
W <S")S+> = %;——2J<SZ> <S+|S+> + A <SZIS+> (17-e)
After a tedious but simple algebra we obtain
_ 1 2%+ 43¢5 w- a2 (15-8)

o Zw[wzﬂ(A2+4J2<sZ>Z)]
.1 (w +2J <% ) (18-b)

Zn 2 w(m2—4J2<sZ>2 - AZ)

_ 1 4w -27<s%
=5—3 (18-c)

w(w2-2J<SZ> w =~ AY)

From (14) and (17) we obtain,

* Z
for T = 0,<8 > and <S°>



(see appendix B). In first order in J

<s% = gg & (19)

<sts - <87 = 4%% PPN (20)

5. Electron gas polarization at T=0

The aim of this section 1s to compute sz(r) defined

in (4). We begin evaluating

%; o <c;+qock0> (21)
From (13) and using (5) one obtains
@
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Fz(q) and Fs(q) come from the second term of (13); Fl(q) comes



from the first one.,

Puting

- - (o-1)
ekc €k s A

. (24)
where6€ =+ 1 and A is the ‘shift of the up and down bands.
@’ g
At T=0 and for x T oy ) ;>/\ (23) become
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where
. /7ﬁiEP—Ai
e T —F—
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EF Ep
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where
gle) = + I Zm 12 61/2
: Z 2ﬂ2 2
n is the number of electrons per atom and
1 . 1 4k%-q2 2K+
glk,q) = > + ¥ T kg 0 ’TE:% (27)
Fy(a) = 0 (28)

and

2.
F.(q) = L h(k;,q)+h(k. , 29
3(q Z;jr;;rji ( g9} +h( Fy Q)l (29)
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where
2k+
= 3
h(k,q) = n ’kag» (30)
In appendix C more details about (25),(28) and (29) are
given. |
Expression (4) can be written in the form
sP(r) = s7(x) + s;(x) | (31)
where
2 1 e
si(r) = - 252> s d4-Tg (g (32-a)
1 ‘N 1
q
Sies® W (1)) .
yA < > -< > 1q4.T
s;(r) = - N ‘e 4 F;(q)
(32-b)

Integrating in q and taking into account (21) and (22)

we finally obtain

J BE(2kr)  if By <A (33)
HOR
) - kg )2 |
EE(ZkFr) + X F(karﬂ | . ifEp> A
where
_ Seén X - XCOSX
F(X) - 4
X
and
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C ¢(2kFr) if E.< A

E
Z
so(r) =
2 Y.
c{?(ZkFr) + E_i Q(sz+rﬂ if B> ‘A
. ,
where
p(x) = 322X
X
and
”sz <sz>k§
€= T 27
.4 ﬂN’ﬁEF

the polarization expression (31) contains two contributions

sZ(r). RKKY-1like, and sz(r). Going back to (13) we see that
1+ : 2
(1) RRES e

si(r) and sg(r) are associated with <S%» and (<S >~ <S > )
respectively. So si(r) can be interpreted in t?e following way:
the magnetic band induces a polarization <SZ>( )on the ion which
reacts polarizing the electron gas in the usual RKKY way. sg(r),
as suggested by the coefficient (<S+>(lz<S">(l)), is associated
to the process of formation of the magnetic moment of the ion.
Since one has a mutual polarization process the final electromnic
polarization depends on JZ.‘Worthnoting is the A depence of

s (r) but not of s5 ().

APPENDIX A

A two energy singlet ion interacting via local exchan-
ge with an electron gas can be described by the following model

Hamiltonian

ey ion Hez—ion (A-1)
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where

+
Heg % €ko ko ko (A-2)
0 0
Hion - (A-3)
0 &, A
<0|S8%]0> <0|S%|e>
Hez—ion J_(g 1) s

<e]SZ|O) <e|Sz|e>

where J' is the exchange integral and g the Lande’'s factor.
For a van Vleck ion <0|S*|0> = <e|S%|e> = 0;

<0]s%je> = <e|s?]0> = M # 0.

So
0 1
- _ z (A-4)
Hez—ion JfM(g 1)s 0
Transforming from |0>,|e> to |U>,]|&> by
e 1 1 10>\
1
=77 (A-5)
|e> 1 -1 le>
one obtains
H=H,, -58% - J s? 5% (A-6)

where J = 4J'M(g-1) and s*, s% are pseudo-spin operators, namely

0 1 0

1 f!’
x _ 1 ez 1 (
S* = > ;S >
1 0 0 -1
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APPENDIX B

Using (18), (14) and applying (5) one obtains for

2 1/2
<% _ Jss” >%§2<S >+ 8%)

Z(A +4J2<s > 2)

(B-1)

v 2 1/2

S s = 4J<S >+ JZ<§ > +A ) : (B-2)

2(4J s>+ A)

2J<s%>

<SS >==A
b{f<sz>2+4A +J<s >(4J <s%> +4A )1/2

4

(B-3)

2<sZ>2+4A /Q<s >9€ <s%> +4A )

L4

Expanding in first order in J one obtains (19) and

(4B )1/2
. 172

(20).

APPENDIX C

Summing for ¢ in (23-a), using (24) and following |1]
we obtain (25).

At T=0 (23-b) can be written

+1 +1
2 d d
Fpla) =] k'dk ——”—-—~f e ] (C-1)
. s U_l @2k ), (a-2kw)

> >
where y = cose,6 is the angle between k and q. The term in brackets
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is obviously zero.

.
Integrating (23~c) in spherical coordenates in the k

space and summing in ¢ we obtain

(C-2)

2
From C-2, for € = i%%l~ we obtain (29).
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