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1 Introduction.

Here I de�ne as \classically anomalous" any classical dynamical system, described both
in the lagrangian and in the hamiltonian formalism, whose symmetries of the action
produce conserved N�other charges which, under the Poisson-bracket algebra, satisfy a
centrally extended version of the original symmetry algebra.

In many and perhaps even most of the texts discussing quantum mechanics and quan-
tum �eld theories it is commonly stated that anomalies are a purely quantum-mechanical
e�ect. This statement reects a widespread (but erroneous) belief in the scienti�c com-
munity, mostly shared by researchers who do not have a direct working experience with
anomalies. While the specialists in the �eld are aware that some speci�c features, which
can be reasonably named \anomalies", can be present even in purely classical dynamical
systems, it seems, however, that this correct interpretation passes largely unnoticed. One
of the reasons is due to the fact that most of the results concerning anomalous e�ects
in classical dynamical systems are scattered in the literature. Moreover, they appear in
rather technical contexts and it seems that very little e�ort (if any) has been made in
order to place them in a more general framework.

The aim of this paper is to furnish some clari�cation, emphasizing one single aspect
of the appearance of \classical anomalies". In the interpretation here proposed \classical
anomalies", as previously de�ned, lay and can be detected in the interplay between the
lagrangian-versus-hamiltonian description of a dynamical system presenting a symmetry
of the action. Very basic examples are explicitly constructed and analyzed. No new result
will be here discussed, rather a re-interpretation of known results and techniques will be
given. Due to the mainly pedagogical character of the present note, a minimum level of
mathematical sophistication has been purposely kept throughout the following discussion.

The present work is so organized. In the next section a drastically sketchy and far
from complete resume of the history and importance of anomalies in quantum �eld theory
will be made. The result obtained by Gervais and Neveu [1] in analyzing the Liouville
theory will be mentioned. To my knowledge, they have been the �rst authors who have
noticed an anomalous e�ect in a classical system. To the phenomenon they observed it is
applicable the de�nition of \classical anomaly" as previously stated.

In the following section a general argument is given, suggesting the mechanism which
gives rise to what has been here named of classical anomalies. The remaining sections
are devoted to work out some speci�c examples with concrete models, by analyzing in
each speci�c case whether the symmetries of the actions are preserved or not by the Pois-
son brackets structure. All the given examples are worked out for two-dimensional �eld
theories. There is nothing special, however, about 2D. The models below have been
chosen both for their relevance to applications and for their relative simplicity, useful for
illustrative purposes. In order of presentation, the following systems will be analyzed:
i) the free chiral fermion,
ii) the massless free boson,
iii) the Floreanini-Jackiw [2] chiral boson (FJ) model (introduced to complete the discus-
sion of free and chiral models),
iv) �nally, the Liouville theory will be revisited in the light of the present interpretation.

In the conclusions some further remarks and comments will be made and possible
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future lines of development will be suggested.

2 A bit of history

In the last thirty years the investigation of anomalies in quantum �eld theories has
been one of the major areas of research attracting the attention of theoretical physicists.
The reason is clear. An objective relevance for physical applications, coupled with a
beautiful mathematical structure.

Indeed, the �rst discovered anomaly (by Adler and Bardeen-Jackiw [3, 4], named ABJ
after them) has been the U(1) chiral anomaly of gauge theories which puts a consistency
constraint on the existence of a quantized gauge theory. Just to mention an application,
the gauge group and the representation multiplets of the standard model for the elec-
troweak interactions are carefully selected in order to guarantee an anomaly-free theory.
Much in the same way, the critical dimensionality of a quantized string theory can be
determined by requiring the cancellation of an anomaly [5] which can be associated to the
Weyl invariance [6].

On the other hand, anomalies in physics are not always unwanted features to be
wiped out. E.g. the trace anomalies associated to dilatation invariance enter the Callan-
Symanzik equations [7]. For a reference work concerning anomalies in the context of
quantum current algebras and their related physical applications one can consult [8].

Since their original discovery, anomalies have been regarded as a feature of quantiza-
tion. Some folklore was put on this aspect. In the light of the Feynman path-integral
approach, Fujikawa [9] developed a celebrated method which relies upon the fact that the
functional measure is not always invariant under a symmetry of the classical action.

On the mathematical side, anomalies have been shown to satisfy consistency condi-
tions induced by the (anomalous) Ward identities satis�ed by the corresponding quantum
�eld theories [10]. The (covariant) anomalies computed with the Fujikawa method do
not,however, satisfy such conditions; nevertheless the relation between the two anomalies
(consistent versus covariant) was made explicit in [11]. The reason for this discrepancy is
that in the Fujikawa approach one regularizes the jacobian arising from a �eld transfor-
mation instead of the full partition function. A slightly modi�ed version of the Fujikawa
technique can be introduced, allowing the regularization of the full partition function. It
turns out to be equivalent to the heat kernel technique.

The [10] consistency conditions for the anomalies allowed determining their expressions
via purely algebraic methods which make use of the so-called \transgression formula" [12].
An elegant reformulation of such consistency conditions is given in terms of the BRST-
cohomology [13]. To summarize, the form of the possible anomalies is determined by
the possible existence of non-trivial cocycles for a BRST-cohomology associated to the
symmetry under consideration. On the other hand, the coe�cients of such anomalies can
be related to the index theorems for elliptic operators via heat kernel computations [14]
(it is required for the purpose a one-loop Euclidean version of the quantum �eld theory
under investigation, regularized through zeta-functions [15]). A detailed account of the
latter construction is given in [16].

Anomalous symmetries of quantized theories received, therefore, a nice mathematical
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interpretation. As is already recalled, they have been regarded as genuine new features
of quantization, not present in the underlining classical theories. This point of view is,
by the way, still nowadays commonly shared by most of the researchers in the area and
popularized in standard textbooks.

As far as I know, Gervais and Neveu were the �rst authors (in [1], pages 131/2) who
observed in a purely classical theory a new phenomenon that, with some good reasons,
deserves to be named \classical anomalies" and for which the de�nition here introduced
is applicable. The authors of [1] analyzed the Liouville theory appearing in the partition
function of non-critical strings according to [6]. They showed that, even for the classical
Liouville theory, the generators of (one chiral sector of) the conformal transformations
satisfy, under classical Poisson brackets, the Virasoro algebra, i.e., the central extension
of the Witt algebra. This remark contained in [1] was not later developed (e.g, the N�other
charges were not explicitly mentioned), since the main focus of their authors was on the
quantum version of the Liouville theory (see also their related works [17]). Needless to
say, most of the papers written by theoretical physicists on the Liouville �eld theory deal
with the quantum version of the model, as a simple key-word inspection of the electronic
bulletin boards can show.

Subsequent works such as [18] and [19] on classical Liouville and Toda-�eld systems,
were mostly concerned with the integrability properties of such models, like the presence of
classical Sklyanin r-matrices in their Drinfeld-Sokolov exchange-algebras. No connection
of such classical Poisson-brackets structures with the symmetries of the action, even if
implicit, was explicitly stated.

3 General considerations on classical anomalies

The class of systems under consideration here consists of the classical dynamical sys-
tems which admit both a lagrangian and a hamiltonian description. It will be further
assumed that the action S admits an invariance under a group of symmetries which can
be continuous (Lie), in�nite-dimensional and/or super. According to the N�other theo-
rem, in the lagrangian framework, the conserved charges are associated to each generator
of the corresponding Lie algebra symmetry. As far as the lagrangian description alone
is concerned, no further property can be stated concerning the conserved charges. This
situation drastically changes when the hamiltonian formalism is taken into account. The
phase space of the theory possesses an algebraic structure given by the Poisson brack-
ets. The existence of such a structure makes, therefore, possible to compute the Poisson
bracket between any two given conserved charges. In the standard situation, the Poisson
brackets among conserved charges realize a closed algebraic structure which is isomorphic
to the original Lie algebra of the symmetries of the action. It turns out, however, as it
will be illustrated in the examples which follow, that this is not always the case. Indeed
it is logically possible (and concretely realized in some speci�c cases) that the Poisson
brackets among the N�other charges would correspond to a centrally extended version of
the original symmetry algebra. In this particular case we can describe such a situation
by stating that the classical system possesses an anomalously realized symmetry or, in
short, a \classical anomaly".

The possibility for this phenomenon to occur is based on very simple and nice mathe-
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matical consistency conditions, implemented by the Jacobi-identity property of the given
symmetry algebra. Let us illustrate this point by considering some generic (but not the
most general) scheme. Let us suppose that the (bosonic) generators �a's of a symme-
try invariance of the action satisfy a linear algebra whose structure constants satisfy the
Jacobi identity, i.e.

[�a; �b] = fab
c�c; (1)

while

[�a; [�b; �c]] + [�b; [�c; �a]] + [�c; [�a; �b]] = 0 : (2)

The associated N�other charges Qa's are further assumed to be the generators of the
algebra, i.e., applied on a given �eld � they produce

�a� = fQa; �g; (3)

where the brackets obviously denote the Poisson-brackets.
The condition

[�a; �b]� = fab
c�c�; (4)

puts restriction on the possible Poisson brackets algebra satis�ed by the N�other charges.
It is certainly true that

fQa; Qbg = fab
cQc; (5)

(which corresponds to the standard case) is consistent with both (3) and (4). However,
in a generic case, it is not at all a necessary condition since more general solutions can be
found. Indeed, the presence of a central extension, expressed through the relation

fQa; Qbg = fab
cQc + k ��ab; (6)

(where k is a central charge and the function �ab is antisymmetric in the exchange of a
and b), is allowed.

Indeed, since the relation

fQa; fQb; �gg � fQb; fQa; �gg = ffQa; Qbg; �g (7)

holds due to the Jacobi property of the Poisson bracket structure (which is assumed to
be satis�ed), no contradiction can be found with (4); the right hand side of (7) in fact is
given by

ffab
cQc + k ��ab; �g = ffab

cQc; �g = fab
c�c� ; (8)

due to the fact that k is a central term and has vanishing Poisson brackets with any �eld.
This observation on one hand puts restrictions on the possible symmetries for which

a classical anomaly can be detected; the symmetries in question, on a purely algebraic
ground, must admit a central extension. This is not the case, e.g., for the Lie groups
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of symmetry based on �nite simple Lie algebras. On the other hand, it is a warning
that, whenever a symmetry does admit an algebraically consistent central extension, it
should be carefully checked, for any speci�c dynamical model which concretely realizes it,
whether it is satis�ed exactly or anomalously. This remark already holds at the classical
level, not just for purely quantum theories.

Some further points deserve to be mentioned. The �rst one concerns the fact that
the quantization procedure (which, for the cases we are here considering, can be under-
stood as an explicit realization of an abstract Poisson brackets algebra as an algebra of
commutators between operators acting on a given Hilbert space) can induce anomalous
terms for theories which, in their classical version, are not anomalous in the sense pre-
viously speci�ed. It therefore turns out that the occurrence of classical anomalies is a
phenomenon which is \more di�cult to observe" than the corresponding appearance of
quantum anomalies since it occurs more seldom.

A second point concerns the fact that the Poisson brackets algebra, as an abstract
algebra, is assumed to satisfy the Leibniz property. This is no longer the case for its con-
crete realization given by the algebra of commutators. The N�other charges are in general
non-linearly constructed with the original �elds �i (which collectively denote the basic
�elds and their conjugate momenta) of a given theory. For such a reason it is only true
in the classical case that, whenever an anomalous central charge in an in�nitesimal linear
algebra of symmetries is detected, it can be normalized at will by a simultaneous rescal-
ing of all the �elds �i involved (�i 7! � � �i) and of the Poisson brackets normalization
(f:; :g 7! 1

�
f:; :g), for an arbitrary real constant �. In the classical case any central charge

di�erent from zero can therefore be consistently set equal to 1. On the contrary, in the
quantum case a speci�c value of the central charge is �xed by the type of representation
of the symmetry algebra associated with the given model and is a genuine physical pa-
rameter (the role of the Virasoro central charge in labeling the conformal minimal models
is an example). The above argument is not, however, (at least directly) applicable to
non-linear symmetries, such as those leading to the classical counterparts of the Fateev-
Zamolodchikov W -algebras. Classical non-linear symmetries are out of the scope of the
present paper and deserve to be analyzed separately.

It is worth mentioning that in a di�erent context, the appearance of centrally extended
algebras has been studied in [20] (and references therein). This analysis is referred to
purely lagrangian systems; the object of the investigation is whether the symmetries of a
given action are realized exactly on the lagrangian or only up to boundary terms. It is
therefore quite a di�erent approach and kind of investigation from the one proposed here.

Furthermore, let me remark that the presence of a centrally extended algebra of clas-
sical symmetries is not always a sign of the presence of an anomaly (at least not in
the sense here speci�ed). In [21] it was shown that a classical two-dimensional complex
bosonic �eld, coupled to an external constant electromagnetic �eld, admits a symmetry
corresponding to the central extension of the two-dimensional Poincar�e algebra. This
model is not anomalous, within the de�nition here proposed, because, due to the pres-
ence of the constant external �eld, the symmetry algebra of the classical action itself is
centrally extended and not given by the ordinary 2D Poincar�e algebra.

Finally, in the present work no e�ort is made to derive the hamiltonian dynamics
associated to a given lagrangian. It is simply assumed to exist, based on the results
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furnished in the literature. This is especially true for the chiral boson model in section 6,
whose hamiltonian analysis is somewhat delicate, but has nevertheless been performed in
[22], see also [23].

4 The free chiral fermion

The �rst example that will be discussed here concerns the theory of the free chiral
fermion. It is described by the Grassmann �eld  (x; t), where x is a one-dimensional
space coordinate and t the time. The dynamics is speci�ed by the action

S =
Z
dxdt �  @� ; (9)

where

z� = x� t

and

@� =
1

2
(@x � @t):

For our purposes we will assume the space-coordinate x to be compacti�ed on a circle
S1 of radius R and  to satisfy periodic boundary conditions.

The equation of motion is given by

@� = 0: (10)

The action S, besides being o�-shell invariant, as an easy computation shows, under the
in�nitesimal transformation

��( ) = �(z+)@x +
1

2
(@x�(z+)) ; (11)

admits a global fermionic symmetry given by

��( ) = �; (12)

where � is a global fermionic parameter.
It is convenient to Laurent-expand �(z+) according to

�(z+) = �
X
n

�n(z+)
n+1; (13)

The two above symmetries can be expressed through

��( ) =
X
n

�n � ln ;

��( ) = � � g ; (14)
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where the operators ln and g are respectively given by

ln = �(z+)
n+1@x �

1

2
(n + 1)(z+)

n;

g =
I
dx �

�

� (x)
: (15)

While the commutators among the ln's operators realize the Witt algebra

[ln; lm] = (n�m)ln+m; (16)

the anticommutator of g with itself satis�es

[g; g]+ = 0; (17)

so that g is nilpotent.
The conserved N�other charges associated to the above symmetries are given by

Ln = �
I
dx(z+)

n+1 @x ;

G = 2
I
dx (x; t): (18)

In the hamiltonian description the equation of motion is expressed through

_ = fH; gt; (19)

where H is the hamiltonian

H = �
I
dx � ( @x ); (20)

while the equal-time Poisson brackets f:; :gt are introduced through

f (x);  (y)gt =
1

2
�(x� y): (21)

We are now in the position to compute the Poisson brackets among the N�other conserved
charges, which are the generators of the symmetries, according to

ln = fLn;  gt;

g = fG; gt: (22)

While the N�other generators Ln associated with the Witt generators reproduce, under
the Poisson brackets structure, the Witt algebra, i.e.

fLn; Lmg = (n �m)Ln+m; (23)

it is no longer true that the fermionic conserved charge G satis�es the same nilpotency
condition as g. Indeed we have that the Poisson bracket of G with itself produces a central
element, given by

fG;Gg = 4�R: (24)
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It follows that the generator of the fermionic symmetry is now no longer nilpotent. Even
in this trivial free model the presence of a symmetry which presents a classical anomaly
can be detected.

In the quantum case, due to the double contractions in the Wick expansion, the
quantum analogs of the Ln generators satisfy the centrally extended version of the Witt
algebra, i.e. the Virasoro algebra, with central charge c = 1

2
. This is in accordance with

the statement that the \quantization" is a more e�ective way to produce anomalies than
the plain introduction of a classical Poisson bracket structure. Still, as the fermionic
symmetry shows, in many cases it is su�cient the introduction of a classical Poisson
bracket structure to induce anomalies at the level of the N�other charges.

5 The free massless boson in 2D

The next example that we are discussing concerns the 2-dimensional free massless
boson model, described by the following action

S = �2
Z
dxdt � @��@+�: (25)

The �eld �(x; t) satis�es the free equation of motion

2� � 4@�@+� = 0 (26)

This system admits an (anomalous-free) two-dimensional conformal invariance which cor-
responds to the direct sum of two copies of the Witt algebra (Witt �Witt). Actually
the symmetry algebra of the system is richer. Indeed, the following transformations are
symmetries of the action

�+� = �(z+)@+�+ �(z+);

��� = �(z�)@��+ �(z�); (27)

for arbitrary in�nitesimal functions �(z+); �(z�), �(z+); �(z�). Such set of transformations
is anomalous in the sense here discussed. This point can be easily understood when we
specialize �(z+) (�(z�)) to be given by

�(z+) = �+@+�(z+);

�(z�) = ��@��(z�): (28)

for arbitrary �xed values of the parameters ��.
In full analogy with the previous case, after Laurent series expansion for �(z+); �(z�),

�(z+) = �
X
n

�n(z+)
n+1;

�(z�) = �
X
n

�n(z�)
n+1; (29)

we obtain two mutually commuting set of �+ and ��-dependent symmetry generators,
each set generating a copy of the Witt algebra. They are given by

ln(�+) = �(z+)
n+1

@+ � �+(n+ 1)(z+)
n
�
Z

�

��(x; t)
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ln(��) = �(z�)
n+1@� � ��(n+ 1)(z�)

n �
Z

�

��(x; t)

(30)

For any given couple of values ��, we obtain the closure of the Witt�Witt algebra

[ln(�+); lm(�+)] = (n�m)ln+m(�+);

[ln(��); lm(��)] = (n�m)ln+m(��);

[ln(�+); lm(��)] = 0: (31)

The free massless boson model admits a hamiltonian formulation, with the hamiltonian
given by

H =
1

2

Z
dx
�
�2 + (@x�)

2
�
: (32)

The equations of motions, expressed through

d

dt
f = fH; fg +

@

@t
f (33)

imply

_� = �;

_� = (@x)
2�: (34)

The equal-time Poisson brackets are obviously given by

f�(x); �(y)g = �(x� y) (35)

and vanishing otherwise.
As a straightforward computation shows, the N�other conserved charges Ln(�+); Ln(��),

associated to the symmetry generators ln(�+); ln(��) respectively, are recovered from the
Laurent expansions

Ln(�+) =
Z
dx(z+)

n+1 � T;

Ln(��) =
Z
dx(z�)

n+1 � T; (36)

where T; T are given by

T =
1

4
(�2 + (@x�)

2 + 2�@x�� 4�+@x
2�� 4�+@x�);

T = �
1

4
(�2 + (@x�)

2 � 2�@x�� 4��@x
2�+ 4��@x�): (37)

The conservation law for Ln; Ln is a consequence of the (anti-)chiral equations satis�ed
by T (T ) respectively, i.e.

@�T = 0;

@+T = 0: (38)
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Ln; Ln are the generators of the ln; ln transformations since

ln� = fLn; �g;

ln� = fLn; �g: (39)

Ln; Ln generate the direct sum of two copies of the Virasoro algebra, V ir�V ir, as it can
be directly read from the equal-time Poisson brackets between T (x); T (x), namely

fT (x); T (y)g = �2�+
2@y

3�(x� y) + 2T (y)@y�(x� y) + @yT (y) � �(x� y);

fT (x); T(y)g = 0;

fT (x); T (y)g = 2��
2@y

3�(x� y) + 2T (y)@y�(x� y) + @yT (y) � �(x� y): (40)

For given values of �� 6= 0, central terms are produced which are proportional to ��
2.

The corresponding transformations can therefore be regarded as anomalous.
The two-dimensional conformal symmetry itself however is not anomalous in this free

case, since for the choice �� = 0, the symmetry is preserved at the Poisson bracket level.
It should be stressed the fact that the freedom in choosing inhomogeneous transfor-

mations acting on �, for �� 6= 0, can be held as responsible for the preservation (i.e. not
anomalous realization) of the two-dimensional conformal invariance even in the quantum
case. The choice �� 6= 0 corresponds to the introduction of the Feigin-Fuchs term in the
Coulomb gas formalism.

6 The Floreanini-Jackiw chiral boson model

For completeness, let us discuss the last chiral and free model, namely the Floreanini-
Jackiw chiral boson model [2] introduced through the lagrangian

L = @t�@x�� (@x�)
2; (41)

which leads to the equations of motion

@x@�� = 0: (42)

Despite the fact that it is not manifestly Lorentz-invariant, nevertheless it can be proven
to be Poincar�e invariant in 2 dimensions. This model de�nes the dynamics of a chiral
boson. The treatment is much in the same lines as the free boson model with a notable
exception. Since we are in presence of a chiral dynamics the invariance of the model is
given by a single (chiral) copy of the Witt algebra and its central extension. A class of
�-dependent in�nitesimal symmetries of the above action is given by

��� = �(z+)@x�+ �@x�(z+): (43)

The corresponding N�other conserved charges are given by the following expressions

Ln(�) =
1

2

Z
dx(z+)

n+1
�
(@x�)

2 + �@x
2�
�
: (44)

The hamiltonian of the system is

H =
1

2

Z
dx(@x�)

2; (45)
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while the Poisson-brackets structure system is non-local

f�(x); �(y)g = @y
�1�(x� y): (46)

Despite its non-locality however, since in (44) only the derivatives of the �eld � enter,
the algebra satis�ed by the Ln(�) N�other charges is a local algebra which, as in the
previous example, corresponds to the Virasoro algebra with central extension proportional
to �2. For � 6= 0 we are in presence of an anomaly induced by the Poisson bracket
structure. The N�other charges Ln are, as in the previous example, the generators of the
(43) transformations.

7 The Liouville theory revisited

The last model that we are going to discuss is the Liouville theory, which will be here
revisited in view of the considerations which motivated the present paper.

The action of the Liouville model can be written as

S = �
Z
dxdt � (2@��@+�+ e2�): (47)

The equations of motion are

2@�@+� = e2�: (48)

In the hamiltonian description the hamiltonian is given by

H =
I
dx � (

1

2
�2 +

1

2
(@x�)

2 + e2�); (49)

while the Poisson-bracket structure between �; � is the same as in the free case

f�(x); �(y)g = �(x� y): (50)

We obtain

_� = �;

_� = @x
2�� 2e2�: (51)

The theory is conformally invariant, with transformations given, just like the free-case,
by the in�nitesimal transformations

�+� = �(z+)@x�+ �+(@x�(z+))�;

��� = �(z�)@x�+ ��(@x�(z�))�: (52)

However, due to the presence of the potential term, the action is no longer o�-shell
invariant for arbitrary values of ��. The invariance is indeed satis�ed only for

�+ = �� = 1

2
: (53)

There is no longer a whole class of ��-dependent symmetry transformations, but just a
given, point-like in the �� parametric space, set of symmetry transformations. In this
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particular case, the analysis plainly follows the one conducted for the free massless boson.
The conserved N�other charges Ln; Ln can be introduced through the Laurent-expansion
of Z

dx�(z+)T (x) ;
Z
dx�(z�)T (x): (54)

They are conserved provided that

@�T = @+T = 0 : (55)

T; T can be unambiguously �xed to be given by

T =
1

4
(�2 + (@x�)

2 + 2�@x�+ e2� � 2@x
2�� 2@x�);

T = �
1

4
(�2 + (@x�)

2 � 2�@x�+ e2� � 2@x
2�+ 2@x�): (56)

The two sets of N�other charges, Ln; Ln, generate the symmetry transformation of the �eld
� according to (39).

Their Poisson-bracket algebra however is anomalous and coincides with V ir�V ir, with
�xed values of the two central charges c� given by c� = �6, for the given normalization
of the �eld � and of the action,

fT (x); T (y)g = �
1

2
@y

3�(x� y) + 2T (y)@y�(x� y) + @yT (y) � �(x� y);

fT (x); T(y)g = 0;

fT (x); T(y)g =
1

2
��

2@y
3�(x� y) + 2T (y)@y�(x� y) + @yT (y) � �(x� y): (57)

(I recall that, by de�nition, the central charge is normalized to be the coe�cient in front
of the inhomogeneous term �000 normalized by a factor 12). The conformal invariance of
the 2D Liouville theory is classically anomalous, satisfying the de�nition proposed here.
It is in contrast with the free massless boson model, where the symmetry can be restored
both at the classical and quantum level, as well as the free chiral fermion theory. In that
case the chiral (i.e. Witt) invariance is classically preserved, while it is quantum violated
for a �xed value of the central charge (c = 1=2). The Liouville theory, on the other
hand, admits a non-vanishing classical central charge. Its normalization is meaningless in
the classical case, since it can always be reabsorbed through a simultaneous rescaling of
the �elds and of the Poisson brackets, as already recalled. Nevertheless, in the quantum
theory, the e�ect of such \freedom of rescaling" of the underlining classical theory, can
be seen in the arbitrariness of the Liouville quantum central charge, which is not �xed
by the theory, apart the restriction coming from unitarity requirement. This is in sharp
contrast to the free chiral theory, where such a freedom is not allowed.

8 Conclusions

In the present work I have stressed the fact that features which correspond to an
anomalous realization of a symmetry can be present even in purely classical dynamical
systems.
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I introduced the de�nition of \classical anomaly" to describe the situation of a classical
system whose conserved N�other charges, which are associated to a symmetry of the action,
admit a Poisson brackets algebra, induced by the hamiltonian dynamics, which is only
isomorphic to a centrally extended version of the original symmetry algebra.

The underlining mathematical reason which makes possible the realization of such
a case has been illustrated in section 3. It has been shown there that eventual cen-
tral extensions of the original symmetry realized by the Poisson brackets algebra of the
N�other charges satisfy the compatibility constraint required by the simultaneous validity
of (3) and (4). Later, a list of simple models which show the concrete application of this
mechanism and the appearance of anomalies have been given.

It is certainly true that the quantization is still a \preferred" mechanism to produce
anomalies, confront the discussion in the text and the speci�c example, e.g., of the chiral
fermion theory of section 4, which is quantum anomalous under 1-dimensional di�eo-
morphisms, but satis�es the ordinary Witt algebra for what concerns classical Poisson
brackets. It turns out, however, that in general and in many cases of interest, it is not
necessary to perform the quantization of a dynamical system in order to induce anomalies.
In some cases the introduction of a classical Poisson brackets structure is su�cient for
the purpose. The anomalous nilpotent fermionic symmetry of the free chiral fermion of
section 4 is perhaps the simplest example, as well as the anomalous conformal symmetry
of the classical Liouville equation analyzed in section 7.

More than that, any symmetrywhich algebraically admits a central extension, is poten-
tially anomalous. The investigation of the Poisson brackets algebra of its N�other charges
realized on speci�c models can lead to non-trivial results even for classical dynamics.

Speci�c di�erences with respect to the \quantum anomalies" have been pointed out
throughout the text. At least for the case of symmetries associated to linear algebras
(in the present analysis no e�ort was put in including in�nitesimal symmetries of non-
linear W -type), the Leibniz rule observed by classical Poisson brackets allow, through the
simultaneous rescaling of the �elds and the Poisson brackets, to freely normalize the value
of the central charge, which can be conveniently chosen.

The examples chosen and the techniques employed in the present work are elementary.
The main motivation of this paper is to illustrate, in the simplest possible contexts, the
mathematical framework, deep and simple at the same time, behind the appearance of
anomalies in classical dynamical systems.

The techniques which are usually encountered in the literature and which appear in
disguised form in the analysis of the examples here illustrated (one for all, the introduction
of the Feigin-Fuchs term in the Coulomb gas approach to \shift" the value of the quantum
central charge), often appear to a layman reader just a set of ad hoc prescriptions to
perform technical computations. While it is certainly true that they are technically very
helpful, the deep symmetry principles which make them possible are somehow hidden.
To place them in the proper context of lagrangian and hamiltonian dynamics is the main
issue of the present paper.

The analysis here conducted suggests many possible lines of development. On a purely
mathematical ground one can ask which kind of centrally extended algebras can �nd a
dynamical interpretation as (anomalous) symmetry for some given dynamical system.

D. Leites [24] has recently proposed several new ways to superize the Liouville equation
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which can be investigated in the light of the present considerations.
On the other hand, the interplay between lagrangian and hamiltonian methods seems

quite fruitful. It seems likely and currently under investigation that, by employing su-
perspace techniques, the embedding of certain classes of hamiltonian solitonic equations
in some superized system, which admits also a (super-)lagrangian description, could be
given. Nice and neat results concerning the symmetry algebra of these systems should be
derivable. Needless to say, the presence of central charges in the Virasoro subalgebra is
mandatory for any integrable system which contains KdV as its consistent reduction.
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