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Abstract

The Mellin representation of Feynman integrals is revisited. From this representation,

an asymptotic expansion for generic Feynman amplitudes, for any set of invariants going

to zero or to 1, may be obtained. In the case of all masses going to zero in Euclidean

metric, we show that the truncated expansion has a rest compatible with convergence of

the series.
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1 Introduction

Infrared divergences may be seen as a special case of a general class of asymptotic be-

haviours of Feynman amplitudes in a �eld theory, as some of the involved masses tend

to zero. Actually these divergences appear at di�erent levels. For Green functions in

Minkowskian metric it has been shown a long time ago that for some theories (e.g. QED)

Green's functions exist at the zero-mass limit for some particles, as distributions on the

4-momenta, i.e., Green's functions are well de�ned quantities in the infrared limit. [1, 2].

For particles on mass shell Green's functions generally does not have a limit for those the-

ories, even if they are well de�ned o� mass shell Green's functions. The oldest and best

known example is infrared divergences in scattering amplitudes in QED. This problem

has been investigated exhaustivelly (classical papers on the subject are in refs.([3, 4])),

since the celebrated work of Bloch and Nordsieck [5]. These investigations have been done

using essentially power counting in momentum space. In this way it has been possible to

show that suitable quantities, probabilities densities or probabilities amplitudes in which

the e�ect of radiated soft photons are taken into account, are �nite at the zero photon

mass limit, due to compensations between infrared divergences from soft photons and

from radiactive corrections. This result holds order by order in perturbation theory.

Another class of problems arise at the Green's functions level in Euclidean metric,

when besides the zero-mass limit we take also vanishingly small values for the external

momenta. In this case, we speak of the infrared behaviour of correlation functions. These

divergences, which are seen as a "pathological" behaviour in the context of the aplications

of �eld theories to particle physics, are associated with the large distance correlations

in statistical systems and play a crucial role in the study of critical phenomena and

phase transitions (a complete presentation of the use of �eld theory in describing critical

phenomena is done in [6]).

In this note, we study the asymptotic behaviour of Feynman amplitudes in Euclidean

metric. We make use of Mellin transform techniques to represent Feynman integrals, along

similar lines as it has been done to study renormalization and asymptotic behaviours of

scattering amplitudes in refs. [7, 8, 9] , and to study the heat kernel expansion as in ref.
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[10] To �x our framework we consider a theory involving scalar �elds 'i(x) having masses

mi, de�ned on a Euclidean space. For simplicity we may think of a single scalar �eld

'(x) having a mass m. A generic Feynman graph G is a set of I internal lines, L loops,

q connected components (a graph is disconnected if q > 1) and n vertices linked by some

(polynomial) potential. To each vertex are attibuted external momenta fpig and internal

ones fkag. A subgraph S � G is a graph such that all the lines vertices and loops belong

to G and a quotient graph G
S
is a graph obtained from G reducing S to a point.

2 The Mellin Representation of Feynman Integrals

and Asymptotic Expansions

The Feynman amplitudeG(fakg) corresponding toG is is a function of the set of invariants

fakg built from external momenta
P

p2 and squared masses m2
i ; it is de�ned in the

Schwinger-Bogoliubov representation by, (see for instance refs. [1, 2])

G(ak) =

Z 1

0

IY
i=1

d�iU
�D

2 (�)e�
V (�)
U(�) ; (1)

where D is the space dimension with positive metric.

In the above formula, the Symanzik polynomials U(�) and W (�) are constructed from

the graph G by the prescription,

U(�) =
X
1:T

Y
i621:T

�i (2)

and

V (�) =
X
2:T

(
X

pj)
2
Y
i622:T

+(
X
j2G

m2
j�j)U(�) (3)

where the simbols
P

1:T and
P

2:T means respectively summation over the trees and

two-trees (disconnected trees having two connected components) of G passing by all the

vertices. The sum
P

pj is the total external momentum entering one of the two-tree

connected components. Notice that U(�) and W (�) are homogeneous polynomials in the

�-variables, of degrees L and L+ 1 respectively.



{ 3 { CBPF-NF-029/99

In the following we have in mind as a physical situation, the infared behaviour, , but

we would like to emphasize that our study is quite general, in the sense that it applies

to any asymptotic limit in Euclidean metric (any choice of the subset al below), for

arbitrarily given external momenta, generic or exceptional, and for arbitrary vanishing

or �nite masses. If we perform a scale transformation on the subset falg of invariants,

al ! �al, the polynomial V is split into two parts,

V (�am) = �W (al; �) +R(aq; �) (4)

where the polynomials W (al; �) and R(aq; �) are also homogeneous of degree L+1 in the

�-variables.

To be concrete we consider here, a special situation with the external momenta fpg

�xed and we investigate the limit �! 0 corresponding to vanishing masses. In this case

W is just the second term in Equ. (3). As we have noted above, the method applies along

the same lines to any other class of asymptotic behaviour. Incidentally we note that from

a dimensional argument,

G(
al
�
; aq) = �!G(al; �aq); (5)

the study of a given subset going to zero is equivalent to study the � ! 1 limit on the

complementary subset of invariants.

Under the �-scaling performed in Equ.(4) G becomes a function of �, G(�), and its

Mellin transform, M(x) =
R1
0 d���x�1F (�) may be written in the form,

M(z) = �(�z)

Z 1

0

IY
i=1

d�iU
�D

2 e�
R

U (
W

U
)z: (6)

The scaled amplitute associated to the Feynman graph G, G(�), may be obtained by the

inverse Mellin transform,

G(�) =
1

2i�

Z �+i1

��i1

dx�zM(z) (7)

where � = Re(z) < 0 belongs to the analyticity domain of M(z).

Since the integrand of Equ.(7) vanishes exponentially at �� i1 due to the behaviour

of �(z) at large values of Imz, the integration contour may be displaced to the right by
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Cauchy's theorem, picking up successivelly the poles of the integrand, provided we can

desingularize the integral in Equ.(6). Such a problem has been studied by an appropriate

choice of local coordinates in [11] and also in [7] using Hepp sectors and a Multiple

Mellin representation. In these works it has been possible to show that the meromorphic

structure of M(z) has the form,

M(z) =
X
n;q

Anqq!

(z � n)q+1
: (8)

It results from the displacement of the integration contour in the inverse Mellin transform,

an expansion for small values of �, of the form,

G(�) =
NX

n=n0

�n
qmax(n)X
q=0

Anqln
q(�) +RN (�) (9)

where the coe�cients An(fpg) and the powers of logarithms come from the residues at

the poles z = n.

The rest of the expansion RN (�) is given by

RN(�) =

Z +1

�1

d(Imz)

2i�
�z�(�z)F (z); (10)

with

N < Re(z) < N + 1; Re(z) = N + �; 0 < � < 1 (11)

and where,

F (z) =

Z 1

0

IY
i=1

d�iU
�D

2 e�
R

U (
W

U
)z (12)

Remark: Hepp sectors, UV divergent graphs, renormalization

To perform the �-integrations in the expressions above we can divide the �-domain

of integration into I! Hepp sectors by ordering the �'s in all possible ways. To a given

permutation h = (i1; i2; :::; iI) corresponds a sector,

�i1 � ::: � �iI (13)

with corresponding sector variables,

�iI = �I ; �iI�1 = �I�I�1; :::; �i1 = �I�I�1:::�2�1 (14)
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Since the integrand in M(x) has homogeneity properties, the integration over �I can

be made explicitly and the remaining integration domain is 0 � �i � 1; i = 1; :::I � 1.

Although it is not allways the case in Minkowskian metric as explained in [8], in Euclidean

metric the Symanzik polynomials are factorized in each Hepp sector, which allows the use

of simple Mellin transforms as is done in this paper. In more general situations a splitting

of the polynomial V into factorizable parts ("FINE" parts, in the language of ref. [7]) is

necessary and a multiple Mellin transform must be used. In our case it is not di�cult to

see that in each sector the � ordering induces for a polynomial P (�) ( W (�) and U(�))

a factorization of the form,

P (f�g)! (
Y
i

�ri)Q(f�g) (15)

such that Q(0; :::0) 6= 0. The behaviour of P (f�g) around zero is governed by its vanishing

when subsets of �-variables go to zero linearly. Convergence or divergence of the integralR
0

Q
i �iP (f�ig) can be determined by power counting. For the same reason, eventual

divergences in such an integral can be removed by Taylor subtractions [13, 14]. The case

in which zeros of U(�) induce ultraviolet divergences can be treated as the convergent

case along the following lines: in the �-parametric representation, these divergences are

renormalized by Taylor subtractions. But the remainder of the Taylor expansion may be

written as in [13, 14],

(1 � � k)f(x) =

Z 1

0

d�
(1 � �)k+�

(k + �)!
(
d

d�
)k+�+1[��+kf(�x)]: (16)

By regrouping the nests of subgraphs that belong to the same equivalence class as ex-

plained in refs. [13, 14], we obtain in each sector and for each equivalence class, a �nite

sum of convergent integrals which are exactly of the same type as in the convergent case,

provided the various �-variables are simply renamed as suplementary Hepp �-variables.

In the following we keep the notations corresponding to convergent graphs.
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3 The Rest of the Expansion

Introducing the notation z = �+ i� we have a �rst bound to the rest RN in the truncated

expansion above,

jRN (�)j � �N+�QN (17)

with

QN =

Z +1

�1

d�

2�
j�(�� � i�)F (�+ i�)j: (18)

Using recurrence formulas we may relate �(�� � i�) to a gamma function which has

positive real part of the argument. We get, remembering Equ. (11) above,

�(�� � i�) = �(2 � � � i�)

N+1Y
j=0

1

(�N � � + j)� i�
(19)

Now, it may be shown [12] that for c > 0 the gamma function �(c � i�) is bounded in

absolute value,

j�(c� i�)j � e��j�j
Z 1

�1

duecu�e
ucos� (20)

where � < �
2 is a positive constant and c = 2 � � is also a positive constant. Thus the

bound has the form,

j�(c� i�)j < c0e��j�j (21)

From Equs. (18), (19), and (21) we have,

QN < c0
Z 1

�1

d�

2�
jF (N + � + i�))j

N+1Y
j=0

1

[(�N � � + j)2 + �2]
1
2

(22)

Also we have the inequalities,

N+1Y
j=0

1

[(�N � � + j)2 + �2]
1
2

�

N+1Y
j=0

1

j(�N � � + j)j
<

1

N !�j(1� �)j
(23)

The �rst one is obvious, since �2 � 0. To see the second one, let us recall the notation

� = N + �, and write,

N+1Y
j=0

1

j � � + jj
=

N+1Y
j=0

1

j� � jj
=

1

�(� � 1):::(� + 1)�j� � 1j
: (24)
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From � > N , � � 1 > N � 1,..., � + 1 > 1, we �nd,

N+1Y
j=0

1

j � � + jj
<

1

N !�(1� �)
(25)

Combining Equs. (23), (22) and (17) we obtain a bound for the rest of the truncated

expansion for the �-scaled amplitude G(�),

jRN (�)j <
�N :c0

N !�j(� � 1)j

Z +1

�1

d�

2�
e��j�jjF (N + � + i�)j (26)

Displacing inde�nitely the integration path would generate instead of the truncated

expansion, a series, provided the rest RN have an appropiate behaviour as N !1. Let

us particularize to the limit of all masses going to zero. In this case the function F (z) in

Equ. (12) has the form,

F (z) = (�2)z
Z 1

0

IY
i=1

d�iU
�D

2 e�
R

U (
W 0

U
)z (27)

where � is a constant mass parameter and W 0 = (
P

j2G �j)U(�). For the absolute value

of F (z) we obtain a bound,

jF (z)j � (�2)Ng(N; fpg) (28)

with

g(N; fpg) =

Z 1

0

IY
i=1

d�iU
�D

2 e�
R

U (W 0=U)N+� (29)

where fpg stands for the external momenta.

Taking I-dimensional spherical coordinates, the radial integration may be explicitly

performed taking into account the homogeneity properties of the polynomials R, W 0 and

U in the � variables (R(�) and W 0(�) are homogeneous of degree L + 1 and U(�) is

homogeneous of degree L). We obtain an expression in terms of an integral over the

I-dimensional angular variables 
,

g(N; fpg) = �(I +N + � �
DL

2
+ 1)

Z
d
f(
)[g(
)]N+�; (30)

f(
) and g(
) being regular functions, and since the above integral in over angular

variables, it has an upper bound KN (fpg), KN being a positive quantity. From Equs.

(26), (28) and (30) we see that,

jRN(�)j <
�(N + � + I � DL

2 + 1)

�(N + 1)

c0

�(1 � �)
(�2)N+�KN (fpg)�

N+� (31)



{ 8 { CBPF-NF-029/99

For I � DL
2

> 0 (which is just the condition for UV convergence for the graph), the

ratio � = �(N+�+I�(DL=2)+1)
�(N+1)

is clearly a �nite positive quantity. Thus renaming the various

constants appearing in the expressions above, the rest of the asymptotic expansion may

be written in the form,

jRN (�)j < K1KN (fpg)(�
2)N�N (32)

The scaling parameter � is arbitrarily small in the limit of the masses going to zero.

Therefore the factor (��2)N in the bound above makes the sequence of the remainders

RN (�) converge to zero as N !1 which is a condition for convergence of the asymptotic

expansion.

4 Concluding Remarks

The study of the asymptotic behaviour of Feynman amplitudes has a long history. Wein-

berg [15] proved such a theorem on asymptotic behaviours for the speci�c case of scaling

by � all external momenta of an Euclidean convergent amplitude. Later the theorem was

extended to divergent amplitudes [16, 14]. Perhaps it could be objected that the present

study, since it concerns a detailed analysis of the behaviour of a single Feynman ampli-

tude, although generic, should not be a real progress, in view of some limitations to the

use of perturbation methods in �eld theory. Nevertheless, in applications of �eld theory

to critical phenomena, the examples of models of �eld theory that have been found to

give relevant information, are controled by the free �eld �xed point, or by �xed points

that approach the free �eld �xed point in some limit. This means that Feynman diagram

approach to �eld theory plays an important role in understanding physical situations in

critical phenomena. This is one of the reasons why we hope the analysis presented in this

note could be interesting.
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