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1 Introduction

It has been said that the most crucial of the unsolved problems in the Einstein Cosmo-
logical Program can be stated as follows:

� Is the Universe eternal or did it have a beginning?

In other words, has space-time always been there or was there a time in which physi-
cal reality was not reducible to a succession of events represented in a four-dimensional
continuum?

The need for physicists to go into such unusual question appeared more drastically in
the last decade as a byproduct of the quantum analysis of the cosmological gravitational
�eld. During the seventies the idea that the inevitability of the presence of a singular origin
of the universe was a net consequence of the laws of Physics spread through the scienti�c
community. The basis that supported such a view was provided by a series of theorems1.
Although these theorems do not show that the gravitational �eld, say the curvature
of spacetime, attained an in�nite value (which one should naturally expect in order to
characterize a given geometry as singular) they led to the belief that General Relativity
plus some further conditions induce the presence of particular domains in spacetime in
which properties related to the continuity of the geometry would no more be reliable. This
program did not succeed. It was realized later that the possibility of a rational description
of the universe should not be based on inaccesible initial conditions. However, it seems
worth, just for the sake of completeness, to consider a typical example of the theorems
that contributed a lot for the sustain of such an ideology.

2 The Singularity Theorems: Mathematical Basis

for a Singular Nature of the Universe

There are many di�erent approaches to the mathematical analysis of the singularity. A
typical example was provided by S. Hawking who proved the theorem that follows:

The following requirements on a space-timeM are mutually inconsistent:

� There exists a compact spacelike hypersurface (without boundary) H;
� The divergence � of the unit normals to H is positive at every point of H;
� R�� v

� v� < 0 or = 0 for each timelike vector v�;

� M is geodesically complete in past timelike directions.

Let us analyse brie
y some of these requirements. Condition (i) is an hypothesis on
the global behavior of the universe. It assumes that there is no closed timelike curves,
for instance. Condition (ii) rests on the observational fact that our Universe is indeed
expanding. This is the Hubble e�ect. Condition (iii) seems the weakest point. The
possibility of its validity in our world rests on its identi�cation to the positivity of the

1See for instance Penrose in ([1].
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energy. It was formulated as an extension of the application of Einstein equation of GR
under the presence of a perfect 
uid. We shall see that di�erent sources of gravity can
violate such condition.

3 Historical Note

There is no doubt that the above mathematical scheme, if the conditions of their appli-
cability were ful�lled in the real world, would imply the existence of peculiar regions of
spacetime. One could even believe that some sort of drastic event could exist near these
domains, like for instance the appearance of an enormous curvature. If this should be
true then one could accept that these singularity theorems should indeed be an important
achievement of classical General Relativity. Although its unquestionable beauty, simplic-
ity and mathematical insight on the metrical properties of certain classes of Riemannian
geometries, I think that summing up all analysis made during the last years, it is fair to
state that these theorems are of very little help in a complete description of the actual
Universe.

The main reason for this is due to the fact that it is far from being a de�nitive true
that all conditions required from the theorems are ful�lled in the actual universe. It
could appear strange, to the historian of this period of the scienti�c activity that it took
almost twenty years for the relativist community to emphasize such doubt. The situation
can be synthesized in the following way. The singularity theorems were so simple, their
demonstration so well and elegantly presented by the authors, that soon they become
identi�ed with the truth concerning the actual properties of the universe. Even today
there are not few theoreticians that still believe that a cosmological singular origin of
our Universe is an inevitable consequence of the theory of gravity. Neverthless, for many
di�erent reasons2 the general feeling today does not agree any longer with such an idea.

4 Non Singular Universe

We limit all our considerations here regarding the problem of the singularity in the realm
of the above theorems. This means that we would concentrate our analysis to the exam
of the following question:

� Are the conditions of applicability of the singularity theorems ful�lled in our Uni-
verse?

We will exhibit some examples that have been proposed and that answers negatively to
this question. We describe only simple examples of a few proposals that are present in the
literature concerning nonsingular cosmologies. In this choice we are guided by simplicity
and restrained by the lack of space here. We will present a more thorough investigation of
others distinct proposals elsewhere. The basis of such behavior can be associated among
others, to one of the following schemes:

2A more complete history of such situation will be presented in a forthcoming book.
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� Non-minimal coupling of gravity to other �elds;

� Modi�cation of the Riemannian structure of space-time, e.g., the Wist (Weyl Inte-
grable SpaceTime);

� Modi�cation of Einstein equation of gravity;

� Violation of the condition R�� v
� v� < 0:

� Quantum creation of the Universe.

Let us describe some examples of these alternatives models that seems worth to be
analysed and that were presented at the Marcell Grossmann Meeting in Jerusalem, 1997.

5 Non Minimal Coupling

It has been argued that the Equivalence Principle should play the role of the true guide
in the search of the manner in which matter �elds couple to gravity. Such description
dominated the scenario of the scienti�c community along decades. However, in the last
years there has been a severe criticism on this and a lot of new arguments have been
presented that goes beyond this approachs. For instance, it has been claimed that a
scalar �eld should couple conformally to gravity, that is, its interaction Lagrangian should
contain a non-minimal term involving the scalar of curvature R.

Once we accept that the Equivalence Principle should not be extrapolated to become
a generator of physical laws, the actual coupling between matter �elds and gravity should
be founded elsewhere. The question we face is this:

� How do matter �elds couple to gravity?

There is no unique answer to this question. We concentrate here on the examination of
some possibilities that have been employed in cosmology. We shall see that this choice
will have a crucial e�ect in the question of the cosmological singularity.

5.1 The Scalar Field

There are two principal models of coupling a scalar �eld to gravity that have been used.
They are:

� Minimal Coupling.

� Conformal Coupling.

Since the minimal interaction does not produce a non singular cosmology, let us con-
centrate our analysis here on the conformal coupling. In order to apply the singularity
theorems one has to analyse the sign of the quantity R�� v

� v�. The total Lagrangian
(that is, gravity plus the scalar �eld) is given by

L =
1

k
R + @� '@� 'g

�� � 1

6
R'2 + V (') (1)
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The net e�ect of this coupling is to make two crucial modi�cations. The �rst one con-
cerns the change of the gravitational coupling k which becomes the spacetime dependent
e�ective coupling:

1

kREN
=

1

k
� 1

'2
:

Besides this, the righ-hand side is no more the energy-momentum tensor t�� but the
extended conformal energy-momentum tensor T�� :

T�� = t�� +
1

6
2'2 � 1

6
@� @� '

2

in which t�� is given by

t�� = @� '@� '� 1

2
g�� (@� '@

�'+ V ('))

6 Eternal Universes Generated by Scalar Fields

A typical solution of the cosmological geometry free of singularity was proposed inde-
pendently by many authors. Just to provide one single example of these models let us
consider the following case described by Melnikov and Orlov in 1979.

Guided by the features of the mechanism of spontaneous symmetry breaking they
tried to �nd a geometry such that the in the semi-classical regime3 the scalar �eld lies on
its fundamental state given by

< 0' 0 >= �
f(�)

A(�)
(2)

in which � is the conformal time of an open Friedmann universe.

ds2 = A2
�
d�2 � d�2 � sinh2�(d�2 + sin2� d�2

	
(3)

The radius of the universe takes the simple non singular form in terms of the global time:

A(t) =
p
t2 +Q2

in which Q is a constant.

7 Eternal Universes Generated by Electromagnetic

Field

There are seven possible cases of non-minimal coupling of a vector �eld with gravity. They
can be divided into two classes:

3The scalar �eld was treated as a quantum �eld although the geometry was taken as a classical object.
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� Class One

L1 = RW�W
�

L2 = R��W
�W �

� Class Two

L3 = RF�� F
��

L4 = RF �
�� F

��

L5 = R�� F
�
� F

��

L6 = W���� F
�� F ��

L6 = W �
���� F

�� F ��

The �rst class breaks the gauge invariance but has the right dimension. The second class
needs the introduction of a constant of dimension of lenght. The consequences of these
possible candidates have been examined in the literature4. For our purposes here, it is
enough to limit ourselves to just one case.

From the fact that it is not possible to compatibilize the spatial homogeneity and
isotropy of the standard FRW model with the presence of a vector �eld involving a
privileged direction, we must set that the Electric and the Magnetic parts of the �eld
must vanishes. This imposes that the coupling of the �eld with gravity must be of the
�rst class5. We set the Lagrangian to be

L =
1

�
R � 1

4
F�� F

�� + � RW�W
� (4)

with F�� = @�W� � @�W�:
The equations of motion that follow are given by:

(
1

�
+ �W 2)G�� = �2W 2g�� � � 5� 5�W

2 � � RW�W� � E�� (5)

and

5� F
�� = �� RW � (6)

4See ([?]) for more informations and references.
5This is due to the fact that the potential vector W� must then be an observable quantity: the

electromagnetic vector �eld at these cosmical conditions must violate gauge invariance.



{ 6 { CBPF-NF-029/98

in which E�� is nothing but Maxwell stress tensor

E�� = F �
� F�� +

1

4
g��F�� F

��:

In a FRW geometry
ds2 = dt2 �A2(t) d�2

we set the ansatz
W� = W (t) �0�:

Then, it follows that F�� vanishes. A solution was found such that the coupled set of
gravity plus electrodynamics non-minimally coupled is given by

W 2(t) =
1

�
(1 � t

A
)

and for the radius of the universe:

A(t) =
p
t2 +Q2:

in which Q is a constant that measures the minimum radius of the universe. For Q = 0
the system reduces to the empty Minkowski spacetime in Milne coordinates.

7.1 Weyl restricted geometry

In this section I present an example of a cosmological modi�cation of the Riemannian
nature of spacetime. it can be alternatively interpreted as the geometrization of a scalar
�eld, the dilaton.

The surmise of a Weyl geometrical background con�guration leads to a non-standard
cosmological scenario which, in the case of a homogeneous and isotropic line element, ad-
mits a non-singular, eternal Friedman-like solution exhibiting the following main features:

1. the evolution of the Universe begins at the in�nitely remote past due to the unsta-
bility of a spatially in�nite, empty Minkowski space-time;

2. this matter-free open Universe, driven by the energy associated to a geometrized
homogeneous Weyl �eld ! (t), collapses adiabatically until a minimum radius a0 is
approached;

3. in the course of this everlasting collapse, the Universe is always accelerated (or
\in
ationary") and any occasional matter 
uctuation is exponentially suppressed;

4. near to the phase of maximum contraction, the cosmic evolution enters in a non-
adiabatical regime in which the collapse is reverted to an expansion;

5. this bouncing may be associated to the propagation of a Weyl instanton (\Wiston")
in an Euclideanized, classically-forbidden region;

6. as the expanding phase initiates, matter (e.g., photons) and entropy 
uctuations are
exponentially ampli�ed at the expenses of the energy of the Weyl �eld;
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7. an eventual baryon excess taking place at the start of the expanding era may be
ampli�ed as well;

8. this mechanism of matter-entropy production saturates soon, and the cosmic evolu-
tion attains a standard, radiation-dominated Friedman con�guration.

Given the properties outlined above, this Friedman-like cosmological model describes
an eternal, bouncing Universe, created from a Minkowskian \Nothing", in which the singu-
larity, horizon and 
atness problems of standard Cosmology do not occur; the model also
provides a geometry-driven mechanism able to control the production of large amounts
of matter and

entropy, due to the ampli�cation of vacuum 
uctuations. Once the environment tem-
perature is always bounded, this creation process stands for a \Big|but �nite|Bang"
event. The observed presence of a baryon excess also �ts naturally within the proposed
scheme.

To achieve the demonstration of the above statements, the contents of the present
paper are arranged as follows. In Section II we discuss the physical and cosmological
motivations and present the basic assumptions of the proposed scenario. Section III
provides a brief survey on the necessary mathematical machinery of Weyl space theory.
In Section IV we derive a Friedman-like non-singular solution and comment upon its
properties. In Section V , the construction of a mechanism of matter-entropy production
is detailed and other issues concerning thermodynamical processes are discussed. Section
VI, �nally, contains a short account of the results obtained previously and some concluding
remarks.

8 Motivations

8.1 Primordial Cosmology

In standard HBB models, with conventional matter as source, the Universe has a singular
origin. This means that the scale factor a (t) of a spatially homogeneous and isotropic
FRW line element

ds2 = dt2 � a2(t)d�2 (7)

vanishes at a �nite time t0 in the past[10]. Due to this distinctive feature, in addition to
its well-known observational successes|the incorporation, in a natural way, of the evi-
dence concerning the Hubble expansion, the presence of a cosmic microwave background
radiation and the primordial relative abundances of the chemical elements|the HBB pro-
gram also leads to a bunch of di�cult questions. In the literature, the lists of \standard
troubles" usually comprise the following items:[10;11]

- the occurrence of causal limitations to the cosmic homogeneity (\horizon" problem);

- the apparently Euclidean nature of space ( \
atness" problem);

- the explanation of the prevalence of matter against anti-matter and of the observed
ratio of entropy per baryon (\baryon asymmetry" problem);
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- the elaboration of an accurate perturbative scheme to allow for galaxy formation.

These issues are seen to be related to the fact that very speci�c initial conditions are
required in order to guarantee a proper cosmic evolution to the later stage we observe
today; and, particularly remarkable,

the \singularity" problem, which concerns the absolutely unscrutable provenance of
the physical world from the HBB initial singularity: no causal description of the
behavior of the Universe could be expected to include the singular origin in view
of the divergent (in�nite) values assumed by physical quantities at the creation
instant t0. The application of the notion of thermodynamical equilibrium to the
cosmic \
uid" under such extreme conditions also seems doubtful.[12].

In recent years the horizon and \
atness" problems have been attacked by means of
various sorts of conjectures based on a rapidly expanding primordial phase (\in
ation")
of the cosmic evolution, associated to a De Sitter solution[7]. Most in
ationary scenarios
have in common the fact that the De Sitter phase starts from a non-vanishing value of
the cosmic radius. The introduction of such �nite radius, however, does not necessarily
contradict the occurrence of an initial singularity; in many approaches the in
ationary
phase is spread between two standard radiation-dominated eras, eventually preceded by
a standard singularity. Nevertheless, di�erent authors were motivated to consider non-
singular, in
ationary models in order to explore the appealing possibility of generating a
classical structure|such as the De Sitter space-time|from a typically quantum process
such as quantum vacuum tunneling[4;5]. Let us sketch brie
y their argumentation.

The De Sitter solution is provided by Einstein's equations for the \vacuum", generi-
cally represented by a (positive) cosmological constant � = 3�2. Accordingly, the scale
factor a(t) satis�es the Friedman equation

a� 2 � �2a2 = �" (8)

where " = �1. Some authors privilege closed worlds (" = 1) since basic material properties
such as total mass and charge can be made null[3;18]. In the closed case, a typical De Sitter
solution is obtained as

a(t) = 1=� cosh(�t) (9)

Now this solution exhibits an apparent de�ciency: the occurrence of a primeval collaps-
ing phase of in�nite duration, thus implying an everlasting cosmic history. This is an
already traditional di�culty of bouncing eternal universe models in general, irrespective
of whether one or many bounces are allowed[19]. The problem is to conceive the behavior
of matter in the course of, say, a collapse-expansion sequence of unlimited duration. If
gravity can somehow produce particles, for instance, an in�nite amount of matter|and
entropy|must have been produced during the past collapsing phase. Thus such eternal
longevity, whereas it could be helpful in resolving some \standard troubles" (the horizon
problem, for example)[11;20], is hardly conciliated with �nite values of entropy and matter
production, unless some type of saturation mechanism has been in action throughout the
in�nite past evolution.

This di�culty can be easily surmounted through the assumption that the in�nitely old
collapsing era simply did not exist, due to quantum e�ects dominating the cosmic behavior
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near the region of maximum contraction. The overall picture is that the Universe began
its spatio-temporal evolution directly in a classical metric con�guration of the De Sitter
type, endowed with a minimum radius a0. Once this typical dimension a0 is taken to
be of the order of the Planck length LP , quantum processes shall be invoked to lay the
physical foundations for the emergence of the classical De Sitter stage. An ingenious way
to supply a framework in which the quantum generation of a classical structure can be
depicted is to resort to a quantum version of the theory embodied in Eq. (2). A semi-
classical approximation of this theory[21] is provided by an Euclideanization procedure in
which Eq. (2) is interpreted as a dynamical process consisting of a particle with position
q = a, submitted to a potential V (q) = ��2q2. One then obtains that the minimum value
q0 classically allowed is given by a0 = 1=�, and the corresponding classically forbidden
region is described by the Euclideanized equation

a� 2 = 1� �2a2: (10)

In this way, a quantum tunneling process|represented by an instanton solution of Eq.
(4) | may provide a connection between the quantum and the classical regimes: a
De Sitter space-time appears as the \terminal point" of a De Sitter instanton prop-
agating in the classically forbidden region[4]. The interpretation of the physical sta-
tus of the Euclideanized region is controversial: some authors argue in favor of its
physical reality|therefore admitting, implicitly, a non-Lorentzian phase of the cosmic
evolution[22]|whereas others support the opinion that such region is purely virtual once
it does not de�ne an actual space-time structure, at least in a classical sense.[23] According
to this view, the virtual Euclidean stage is to be associated to a structureless quantum
vacuum state denominated \Nothing"[3;4]. Thus, in this view, the Universe was created,
through a quantum tunneling process, from a \Nothing" state identi�ed to a instanton
solution of the Euclideanized equation Eq. (4).

8.2 Unstabilities of Minkowski space-time

In the quantum creation models outlined above the Universe seemingly manifests a very
speci�c preference to tunnelate into a De Sitter con�guration|and not, for instance, into
Minkowski space-time, which in the general-relativistic context is understood as an empty
(i.e., completely matter-free) Universe, and so, in this sense, a truly \fundamental" state
of Einstein's dynamics[24]. Both con�gurations, moreover, display the maximum number
of symmetries admitted by Einstein's theory. A possible explanation is that the De Sitter
solution (due to the presence of a cosmological constant term) allows for the occurrence
of vacuum 
uctuations|which is a indispensable condition for the ulterior appearance
of matter|while Minkowski space is classically as well as quantum-mechanically stable
against statistical perturbations.[25]

However, the statements about the stability of theMinkowski vacuum quoted above are
ultimately model-dependent, since they rely on perturbative schemes related, in di�erent
ways, to speci�c descriptions of matter properties. On the other hand, it could be argued
that unstable Minkowski spaces constitute very appealing candidates to perform the role
of a cosmic proto-structure: since Minkowski spaces bear no distinctive trace, they possess
no causal \memory"|whatever the conjectural process leading to a Minkowski vacuum,
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its e�ects would be utterly erased of any causal chain established subsequently. Therefore,
an unstable Minkowski con�guration is indeed \original"; the choice of the precise type
of perturbations yielding such unstability requires, of course, further discussion.

The problemmay be posed as follows: if the assumption that the actual, observed Uni-
verse developed from 
uctuations of an unstable empty space-time is accepted, could we
devise a su�ciently generic (i.e., independent of matter properties) perturbative scheme
so as to provide for a smooth evolution to the present Friedmanian era? This question
probably does not have an unique, de�nitive answer; nonetheless, we may attempt to shed
some light upon it through the examination of a particular model.

According to the Special Theory of Relativity, Minkowski space-time constitutes the
fundamental descriptive arena in which inertial observers shall compare their measure-
ments of distances and durations in order to supply an absolute meaning to the laws of
Physics[26]. Once Minkowski spaces are devoid of any matter-energy content, their char-
acterization depends exclusively on the spatiotemporal determination of physical events
by a class of ideal observers through the gedanken exchange of light signals. Given the
assumption that, in the sake of generality, 
uctuations of the matter-energy content shall
be discarded, the only remaining physical system available to be perturbed consists of the
basic framework of the measurement procedure itself, that is, the idealized apparatuses of
clocks and rods employed to quantify separations and intervals. Our working hypothesis
therefore addresses the induction of unstabilities of Minkowski space through perturbations
of the system of measure units. More speci�cally, we will consider \structural" 
uctua-
tions of Minkowski geometry in the general form

� (g��;�) = (�!�) g�� (11)

in which !� = @�!; ! (x) being a scalar �eld de�ned on the background manifold, and the
semi-colon stands for covariant di�erentiation. In Section III we will show how 
uctuations
of this type may be ascribed to variations of measuring scales.

8.3 The \Structural Problem"

In the context of the standard formulation of space-time dynamics put forth by Einstein's
General Theory of Relativity the hypothesis underlying Eq. (5) is rendered inconsistent
from the outset, once no room is left for variations of measuring apparatuses of the kind
outlined above. This may be seen as a consequence of the stringent requirements imposed
upon the characteristics of space-time by the rules of General Relativity, according to
which the behavior of clocks and measuring rods must be determined exclusively by the
metric properties (i.e., the metric tensor) of the underlying manifold. This implies, in
turn, that the structure of physical space-time must correspond unequivocally to that of
a Riemannian manifold, in which covariant derivatives of the metric tensor vanish (i.e.,
g��;� = 0). Indeed, if this condition is ful�lled, the manifold a�ne connections ���� become

identical to the Christo�el symbols
�
�
��

	
of Riemann geometry[26]. The same result may

be obtained a posteriori by means of the Palatini variational method (see Section III).
Therefore, the adoption of perturbations of Minkowski space-time in the form of Eq.

(5) requires (or, conversely, induces) modi�cations of the a�ne nature of space-time|
which, according to the rules of General Relativity, should be ( either on a priori or
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a posteriori grounds) strictly Riemannian. In the course of the last decades, however,
these requirements have been questioned both from the axiomatical and the observational
standpoints. Indeed, both types of approaches lead to the conclusion that space-time
structure is not completely described by a simple Riemannian manifold. Following the
attempts of Ehlers, Pirani and Schild[27] to supply, through the consideration of ideal
operations of elementary clocks and rods, an axiomatical foundation for the geometri-
cal nature of space-time, one is led to the assertion that the \: : :Weylian structure of
space-time is axiomatically well-founded, whereas its Lorentzian structure is not"[28]. On
the other hand, the observational determination of the behavior of measuring instru-
ments, besides the metric tensor g��(x), must also involve a scalar function !(x) in order
to guarantee the conformal invariance of null light cones (not to be confused with the
principle of conformal invariance of all physical laws|see Section III)|which constitute
the most important observational aspects of the background geometry; in consequence, a
conformally-Riemannian structure is involved, rather than a Riemannian one[29].

These considerations compel us to conclude that a new, much deeper problem is em-
bodied in an eventual change of the a�ne nature of space-time, as suggested in Eq.
(5): accepting that currently the structure of space-time is indeed Riemannian, are there
sound reasons to believe that it has always been so? Or, in a more rigorous, formal sense:
given the fact that space-time structure is such that on a certain hypersurface �0 the
covariant derivative of the metric tensor vanishes, g��;�(�0) = 0|which corresponds to
a Riemannian con�guration|what can be said about the value of g��;� (�1) on another
hypersurface �1? Thus, in addition to the \standard troubles" quoted before, a new
component must be brought to our cosmological investigations: the determination of the
evolutionary pattern of the geometrical background a�ne character. This is a restricted
form of what we may call a \structural problem", which in its broadest scope concerns
any kind of possible variations of the basic nature of the structure of space-time.

There is, in principle, an unlimited number of physical scenarios in which some kind of
structural change might take place|so, put in a completely unrestricted form, \structural
problems" seem hopelessly vague. In order to address them in a proper way, a de�nite
conceptual context|i. e., a cosmological model|for the description of such structural
transitions must be provided. In the literature, di�erent sorts of modi�cations have been
proposed, within either classical or quantum approaches, thereby resulting e�ects such
as, for instance, variations of topological properties[30] or changes in the signature of
the metric[31]. In the present paper, likewise, the hypothesis conveyed in Eq. (5) with
respect to scale 
uctuations of the Minkowski vacuum corresponds to a speci�c assumption
about the evolution of the value of g��;�(�) and, accordingly, of the non-Riemannian
character of the geometrical background. In view of the axiomatical and observational
arguments mentioned previously, and in accordance with Eq. (5), we will assume thereof
that the basic structure of space-time is of a conformally-Riemannian type. Conformally-
Riemannian geometries are more commonly acknowledged as Weyl-integrable space-times
(WISTs). In Section III we will supply a brief account of the essentials of the theory of
Weyl spaces[32].

In summary, we will deal here with a speci�c structural problem in which the evolution
of the Universe is provoked by unstabilities of an \original" empty Minkowski space, due
to measuring scales perturbations associated to a WIST background manifold. On the
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grounds of the good experimental status currently enjoyed by Einstein's General Theory
of Relativity, objections could be raised against the surmise of the abandonment of the
Riemannian con�guration|particularly if modi�cations of the well-tested local charac-
teristics of the gravitational �eld are implied. However, the enlargement of the structure
of space-time to a WIST con�guration proposed here does not lead to a new theory of
gravitational phenomena, once global e�ects only (in the sake, say, of the inclusion of a
cosmological constant term into Einstein's equations) are induced|as we will see in what
follows.

9 A Brief Review of the Theory of Weyl Spaces

9.1 Introduction to Weyl spaces

In view of the reasons put forth in the previous section, we are interested in exploring
the suggestion that space-time structure exhibits a Weylian character. A Weyl geome-
try is an a�ne manifold speci�ed by a metric tensor g��(x) and a \gauge" vector !� (x)
which participate in the de�nition of the manifold a�ne connection ���� (x). Besides
the MMG group of Riemannian structures, Weyl geometries admit internal (\gauge")
transformations which are intimately connected to point-dependent variations of measur-
ing scales. Due to this property, such geometries have been considered, for example, in
abelian gauge theories|as in Weyl's original attempt to unify, on a geometrical basis,
electromagnetism and gravitation[32]; and in theories addressing the conformal invariance
of physical processes|such as in the scale-invariant theories of Dirac[33] and Canuto[34].
It is important to remark that both attempts have failed, mainly due to the fact that
physical laws are not conformally invariant.[35] Moreover, the most generic cases of Weyl
geometries provoke the so-called \second clock e�ect", leading to observational inconsis-
tencies. Before demonstrating how such di�culties can be circumvented, let us provide
the reader with some necessary de�nitions and notations.

In Weyl geometries the rule of parallel transport of a given vector requires a non-
vanishing covariant derivative of the metric tensor g�� :

g��;� = g��!� (1)

in which !� (x) is the gauge vector and the semi-colon denotes covariant di�erentiation
in a general a�ne sense. This implies that vector lengths may vary along transport or,
equivalently, that the units of measure may change locally. Remark, in contrast, that one
of the attractive results of Einstein's theory of gravitation is that it contains a posteriori
the Riemannian characterization of space-time structure. The argument is simple and is
commonly related to the Palatini variational procedure[36] as follows:

Consider the theory given by Einstein's Lagrangian

LE =
p�gR (2)

varying in the Palatini fashion, that is, taking both the metric tensor g�� and the (as yet
unspeci�ed) a�ne connection ���� as independent geometric variables, one obtains

[�g�� ] : R�� = 0
(3)
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�
�����

�
: g��k� = 0

(4)
where R�� is the Ricci tensor and the double bar denotes covariant di�erentiation in a
Riemannian sense, i.e., making use of the Christo�el symbols�

�
��

	 � 1=2g�� [g��;� +g��;��g�� ;� ] (5)

of Riemann geometry (commas indicate simple di�erentiation). Therefore, a Riemann
con�guration|characterized by Eq. (4), which implies that vector lengths do not change
under parallel transport|is obtained as a direct consequence of the variational procedure.

9.2 WIST

However, this is a model-dependent result. Other Lagrangians will yield di�erent geo-
metrical con�gurations. Consider, for instance, the theory of a scalar �eld �(x) in the
form

L =
p�gf (�)R + L (�) (6)

Variation a la Palatini (with �, g�� and ���� as independent variables) now gives Eq. (1)
in place of Eq. (4), with

!� = � [ln f (�)] ;� (7)

Thus the variational principle leads to a special kind of Weyl geometry and not to a
Riemann space[36]. This particular type of Weyl geometries|in which the gauge vector is
the gradient of a scalar function|is called a conformally-Riemannian or Weyl-integrable
space-time (WIST), and in fact constitutes the basis of the cosmic scenario examined
here. Its fundamental importance for the present developments stems from the following
reason: according to the de�nition of a Weyl space, variations of the units of measure are
controlled by the gauge vector !� (x). Weyl suggested that in the course of an in�nitesimal
parallel transport dx� the length L = g��`

�`� of a given vector `� (x) is changed according
to the �rst-order expression

dL = L!�dx
� (8)

This result implies, in general, observational di�culties. Suppose, for instance, that at a
given space-time point A two identical clocks are synchronized. According to General Rel-
ativity, if these two clocks travel to another point B through distinct paths, gravitational
e�ects may cause them to lose their synchronization. This is the \�rst clock e�ect". In
Weyl spaces, due to the distinct variation of the units of measure along the two di�erent
paths, the discrepancy between time measurement units at B might add a supplementary
contribution to the loss of synchronization|called the \second clock e�ect". This e�ect
was the root of Einstein's criticism against Weyl's original proposal of uni�cation, once in
the case of closed circuits such additional synchronization loss would disagree with well-
known observations.[28] To overcome this objection, one has to impose the coincidence
of the units of measure of both observers at A, regardless of the particular closed path
chosen; this implies that I

dL = 0: (9)
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But according to Stoke's theorem this condition leads precisely to the result that !�,� �
!� ,� = 0, that is,

!� = !;� : (10)

Thus the corresponding Weyl structure is characterized by a gauge vector which is the
gradient of a scalar function|a Weyl geometry in which length variations are integrable
along closed paths or, in short, a WIST. It is interesting to remark that the variational
procedure sketched above (Eq. (6)) does not lead to a general Weyl space, but speci�cally
to a WIST con�guration, in which the \second clock e�ect" results eliminated.

9.3 Conformal invariance

From Eq. (1) it is simple to derive the expression of the Weyl a�ne connection ���� :

���� (x) =
�
�
��

	� 1=2
�
!��

�
� + !��

�
� � g��!�

�
(11)

Consider now a conformal mapping of the metric tensor g�� such as

eg�� = 
2 (x) g�� (12)

in a given Riemann geometry. It then follows that the corresponding transformed con-
nection is given by

e���� = �
�
��

	
+ (1=
)

�

;� �

�
� + 
;� �

�
� � g��g

�"
;"
�

(13)

Setting ! (x) = � ln
2 (x), one obtains that connections Eqs. (11, 13) are equivalent when
Eq. (10) holds. Thus Weyl-integrable space-times are also called conformally-Riemannian,
since a conformal transformation maps a Riemann geometry into a WIST one. If the laws
of physics were invariant with respect to conformal transformations, the WIST scalar
function ! (x) would be unobservable and both structures could not be distinguished by
any physical e�ect. The hypothesis of the conformal invariance of all physical processes,
in fact, provided the basis for the approaches of Dirac (\Large Number Hypothesis") and
Canuto and co-workers (\Scale-invariant theory"), who advocated the introduction of a
new general symmetry (besides MMG) in Physics: the gauge invariance of measuring
units[34]. Despite the elegancy of these proposals, eventually astrophysical observations
brought in decisive evidence against the assumption of a general conformal symmetry of
physical laws[35]. Therefore the WIST �eld ! (x) cannot, in principle, be discarded by a
convenient gauge choice; it su�ces to dynamically break the global conformal invariance
of a given WIST theory in order to distinguish it, under conformal transformations, from
its Riemannian counterpart. In consequence, ! (x) constitutes a true (i.e., observable)
�eld and Riemann and WIST con�gurations are physically distinguishable.

9.4 Some useful quantities

Given the Weyl connection Eq. (11), it is straightforward to write Weylian expressions for
geometrical objects with the use of the corresponding Riemannian formulae; the covariant
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di�erentiation of a vector �eld V � reads, for instance,

V �
;� = V �;� +

�
�
��

	
V � � 1=2

�
!��

�
� + !��

�
� � g��!�

�
V � =

= V �
k� � 1=2

�
!�V

� + !�V
���� � g��V

�!�
�

(14)

In particular, the contracted (Ricci) curvature tensor R�� � R�
��� can be written in terms

of its Riemannian counterpart bR�� and the gauge vector !� as follows:

R�� = bR�� � 3

2
!�k� +

1

2
!�k� � 1

2
!�!� � 1

2
g��

�
!�k� � !�!

�
�

(15)

which, in the case of a WIST, reduces to

R�� = bR�� � !�k� � 1

2
!�!� � 1

2
g��

�c2 ! � !�!
�
�

(16)

where !� = @�!; p is the D Alembertian operator and the symbol ^ denotes objects
constructed in the associated Riemannian structure (i.e., making use of Christo�el symbols
only). Contracting Eq. (16) one obtains the WIST scalar curvature R :

R = bR � 3!�k� +
3

2
!�!

� = bR � 3c2 ! +
3

2
!�!

� (17)

10 A Friedman-like Cosmological Model

10.1 Dynamical equations

Let us then proceed to the implementation of the investigative program discussed in
Section II. We consider the veritable primordial phase of the evolution of the Universe to
correspond to a \Nothing" state described by an empty Minkowski space-time. In order
to provoke the unstability of this basic con�guration we resort to perturbations of the
system of measuring units as in the form given in Eq. (2.5),

� (g��;�) = (�!�) g�� (1)

Since this is a particular case of Eq. (3.1), we are explicitly assuming that the background
geometry is endowed with a Weylian structure.

The subsequent evolution of the Cosmos depends, of course, on the behavior of the
perturbations �!�. Thus a dynamical framework is required in which the pair (g�� ; !�)
constitutes the set of fundamental geometrical variables. A simple action involving this
pair is given by

Sc =

Z p�g �R+ �!�;�
�

(2)

in which � is a dimensionless parameter. Two points deserve comment here: �rstly, in view
of the arguments put forth in Section III about the \second clock" e�ect, we will restrict
our considerations to a WIST con�guration, i. e., we assume that !� (x) = @�! (x) in Eq:
(2). Then the set of independent variables is actually reduced to (g�� ; !). Secondly, the
attentive reader will be aware of the presence of a total divergence term in the action Sc; in
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the usual Riemannian context of General Relativity, the contribution of total divergence
terms to the dynamical equations vanishes. Remark, however, that according to Eq.
(3.14) one has for the divergence of the gauge vector !� (x) the expression

!�;� = !�� � 1=2!�!� = 1=
p�g �p�g!�� ;��1=2!�!� (3)

in the WIST case, and so a non-vanishing contribution to the dynamics is obtained.
Decomposition Eq. (3) also shows that if a term proportional to !�!� is included in the
Lagrangian in Eq. (2) the net result is just a renormalization of parameter �.

Variation of action Sc with respect to the pair (g�� ; !) of independent WIST variables
yields the equations of motion

R�� � 1=4Rg�� + !;�k� = 0 (4)

and, consequently, c2 ! = 0; (5)

in which the double bar denotes Riemannian covariant di�erentiation and bp is the D0

Alembertian operator written in the associate Riemann space-time, i. e., Eq. (5) reads

c2 ! = 1=
p�g �p�g!;� g��� ;� = 0 (6)

Let us at this point remind the reader that we do not aim to associate action Sc to
a new theory of gravity. We treat Sc, instead, as an e�ective canonical action which
results of a combination of geometrical components (metric g�� and gauge vector !�) of
distinct nature. Nevertheless, in order to simplify our understanding of the cosmological
consequences of the present model it is useful to recast the set Eqs. (4,5) of WIST
dynamical equations in terms of a Riemannian con�guration plus an external source
term represented by the scalar �eld !(x). This re-interpretation is legitimate due to the
decomposition Eq. (3.16) of the WIST contracted curvature tensor R�� in terms of the

associated Ricci tensor bR�� and functions of the scalar �eld !(x). In this vein, Eqs. (4,
5) can be rewritten as follows:

bR�� � 1=2 bRg�� � �2!�!� + �2=2!�!
�g�� = 0 (7)

c2 ! = 0 (8)

in which �2 =
�
4��3
2

�
.[37] Eq. (7) is thus equivalent to an Einstein equation in which the

WIST �eld ! provides the source of the Riemannian curvature.
Once in the present paper we will be concerned exclusively with spatially homogeneous

FRW cosmologies, described by the line element Eq. (2.1), it is natural to make the WIST
�eld ! a function of the cosmic time t only: ! = !(t). The gauge vector !� then becomes

!� = @�! (t) = !� �0� (9)

where the dot denotes simple di�erentiation with respect to the time variable. In this
case, the !-dependent \source" term in the Einstein equation Eq. (7) may be seen to
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represent a \sti� matter" state of a perfect 
uid, endowed with a negative energy, once if
Eq. (7) is rewritten in the form

bR�� � 1=2 bRg�� = �T�� (!) = � [(�! + p!)V�V� � p!g�� ] (10)

in which fV�g is a set of unit time-like vectors, one obtains for the energy density �! and
the isotropic pressure p! the values

�! = p! = ��2=2!� 2 (11)

and so the equation of state of the \!-
uid" indeed corresponds to a \sti� matter" state[38].
Use of Eq. (9) into the �eld equation Eq. (8) yields a �rst integral for the function

! (t):
!� = 
a�3 (12)

where 
 = constant. In turn, Einstein's equations Eq. (7) for the Friedman scale factor
a (t) consists of the system

a� 2 + "+ �2=6 (!� a)2 = 0 (13)

2a�a+ a� 2 + "� �2=2 (!� a)2 = 0; (14)

where " = (0, +1, �1) is the 3-curvature parameter of the FRW geometry. From Eqs.
(13, 14) we see that if (3� 4�) = ��2 < 0 an open Universe is obtained (i.e., " = �1).

A combination of Eqs. (12) and (13) supplies the fundamental dynamical equation

a� 2 = 1 � [a0=a]
4 (15)

with a0 = constant = [
2�2=6]
1=4

. It is straightforward to show that Eq: (14) results of
Eqs. (11, 12, 13).

Prior to the elaboration of the solution of the system of structural and dynamical
equations Eqs. (12, 15) let us comment on the consequent cosmological model and list
some interesting results.

10.2 Aspects of the model

The age of the Universe: it is an immediate consequence of Eq. (15) that the scale factor
a(t) cannot attain values lesser than the minimum limit a0. The singularity problem,
one of the most fundamental di�culties of standard cosmologies, is solved in the present
theory.

Let us consider a time reversal operation and run backwards into the past of the cosmic
evolution. As the cosmic radius a(t) decreases, the temperature of the material medium
grows. In HBB models such increment is unlimited; in the present theory, on the other
hand, there is an epoch of greatest condensation in the vicinity of the minimum radius
a0. Close to this period, there occurs a continuous \phase transition" in the geometrical
background: a Weylian structure is activated, according to Eq. (12), and in consequence
an unbounded growth of the temperature is inhibited. The Universe attains the minimum
radius a0 at (t = 0), beckoning to a previous collapsing era. Once the Universe had this
in�nite collapsing era to become homogeneous, in the present scenario the \horizon"
problem of Standard Cosmology does not happen also.
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The Riemannian structure of space time: for very large times the scale factor behaves
as a � t. Thus, asymptotically, the geometrical con�guration assumes a Riemannian
character (once !� ! 0) in the form of a 
at Minkowski space (in Milne's coordinate
system). In consequence, in the present model the evolution of the Cosmos may be as-
signed to a primordial unstability of Minkowski space, at the remote past, against Weylian
perturbations of the Riemann structure in the guise of Eq. (2.5). In order to prescribe
the behavior of these perturbations, knowledge is required on the time dependence of the
gauge vector !�. As we will see, once the WIST function !� has a maximum at (t = 0),
the largest deviation of the Riemannian con�guration corresponds to the epoch of great-
est contraction near to the value a0; we shall postpone this development, though, to a
subsequent part of this section.

-The 
atness concern: in the standard theory one faces the following problem. De�n-
ing the critical density �c of the Friedman model as �c = 3H2 = 3 [a�=a]2, current observa-
tions show that the value of the ratio �� �c=�c is rather large|where � is the density of
the matter-energy sources. However, this quantity could assume a very small value at the
beginning of the present expanding era. In fact, it is a consequence of Einstein's equations
for radiation (according to the equation of state p = 1=3�) that � � �c=�c � 1=a�2 � 0
when (t! 0); this in turn implies a \
at" or Euclidean (" = 0) con�guration. How could
such an enormous di�erence have occurred? In other words, why should the Universe
display such a �ne-tuning (i.e., � � �c) of its initial conditions?

In the present scenario this becomes a false problem. Indeed, from Eqs. (11, 13) it
follows that close to the era of maximum condensation the matter-energy distribution is
dominated by the energy of the WIST �eld ! (t)|which, according to Eqs. (11, 12), is
described by a \sti� matter" state such that �! = p! � a�6. In this case, near to the
minimum value a0 one has, in view of Eq. (15),

�� �c=�c � 1=a�2 � �
1 � [a0=a]

4��1
(16)

which is a rather large quantity. To guarantee the compatibility of Einstein's equations,
it su�ces that " = �1 (open solution). Hence, no resource to a speci�c set of initial
conditions is required.

The accelerated Universe: in the present model the Universe starts to evolve due to
Weylian perturbations of an emptyMinkowski space-time; thus, the most remote image of
the cosmic history is that of a collapsing primordial Universe of in�nite radius. Through-
out this collapsing era the cosmic evolution is driven by the energy of the WIST �eld
!(t); in consequence, in the course of the entire collapse the Universe is accelerated|or
\in
ationary"|once a�� = 2=a [a0=a]

4 > 0. In fact, were the Universe always dominated
by the ! -energy only, it would accelerate forever. However, as we will see in the next
section, in the neighborhood of the maximally condensed epoch a signi�cant amount of
matter may come to appear, therefore implying important modi�cations of space-time
curvature in the ensuing expanding era. Nevertheless, it is remarkable that during the
whole collapsing era the Universe manifested such in
ationary behavior.

A quest for stability: among the di�cult questions concerning \eternal", bouncing
Universes one may count the problem of their survival with respect to eventual metric
perturbations. With the use of Eqs. (12, 15), it is straightforward to show that way
of the stage of greatest condensation the Universe is stable [39]. As we will show in the
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next section, this result is consistent with the behavior of matter 
uctuations prior to the
phase of greatest contraction.

11 Matter and Entropy Production

11.1 Matter and entropy production in the standard context

Until now we have been studying structural and gravitational aspects implied by the basic
assumption of the present model: that space-time geometry is dynamically determined
by the interaction of a pair of fundamental geometrical components, namely, the metric
g�� (x) and the WIST �eld ! (x)|which we assimilated to the geometrical background
in the sense that its behavior e�ectively controls the a�ne character of space-time. Ac-
cording to the previous developments, the Universe evolved from scale 
uctuations of a
primordial Minkowski vacuum; by the same token, its matter content should also originate
from dynamical processes involving the fundamental pair (g�� ; !). Let us then turn our
attention to the material substance of the Universe.

Let us �rst remind the reader that matter (and entropy) creation in the standard
context relies ultimately on the occurrence of an initial singularity. Consider, for instance,
the standard HBBmodel in which the Friedman scale factor is given by a (t) � tn with n <
1. Thus the Hubble expansion is represented by a monotonic function of a very regular
behavior, corresponding to a completely adiabatic con�guration. The initial singular
state, then, is the only occasion in which there exists a non-monotonic behavior able to
engender matter and entropy. Strictly speaking, when the cosmic temperature is within a
few orders of magnitude of the Planck temperature TP � 1032K the Friedman expansion is
fast enough in order to allow for the creation of particle|anti-particle pairs[42]. However,
such mechanism cannot explain the observed asymmetry between matter and anti-matter
(one of the aspects of the \baryon asymmetry problem" of standard cosmology[10]) without
making appeal to unaccessible initial conditions issued at the singularity.

In in
ationary scenarios, the energy density associated with the \in
aton" scalar �eld
dominates the evolution of the Universe at primordial epochs of great condensation. In
homogeneous models, the behavior of the in
aton �eld � (t) is described by the evolution
equation

��� + 3H (�� + p�) = 0; (1)

in which (��; p�) are the energy density and the isotropic pressure associated to the
in
aton and H = [a�=a] is the Hubble parameter. In this case, couplings of the in
aton
�eld � (t) to other �elds may give rise, via vacuum excitations, to particle generation,
once as the in
aton oscillates its energy can be converted to produce other particles.
This e�ect can be taken into account through the addition of a term such as (�����2)
to the energy conservation equation, where �� is the total decay width of the in
aton
�eld[43]; in the case of, for example, the production of relativistic particles (e.g., photons),
the evolution equations for the energy densities �� of the in
aton and �
 of the photons
become, respectively,

��� = � (3H + ��)���; (2)

��
 = �4H�
 + �����; (3)
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where use was made of the equations of state p� = (� � 1) �� and p
 = 1=3�
 . Integrating
these equations one obtains that if the value of the decay width �� is su�ciently large
then the in
aton energy will be rapidly converted into photon energy, and its contribution
to the total energy which drives the metric evolution will become negligible exponentially.

11.2 Thermodynamical comments

In the present scenario, on the other hand, one should expect the creation of matter and
entropy to occur in the course of the non-adiabatical regime correlate to the reversion of
the collapsing to the expanding phase (Section IV). Indeed, according to Quantum Field
Theory in curved space-times the number of particles of a given species is an adiabatical
invariant. This means that if the e�ects of the background geometry can be characterized
as an in�nitesimally slow thermodynamical process, then no particles are created by the
gravitational �eld. This result was shown[42] in the case of �eld theories minimally coupled
to gravity within the standard Riemannian context, and it may be generalized immediately
to arbitrary a�ne con�gurations as far as the main properties of the equations of motion of
test-�elds are retained. Nevertheless, in the present approach these standard adiabaticity
arguments must be reconsidered in view of the non-adiabatical phase taking place when
the Universe bounces at the minimum radius a0, once in this case the energy of the WIST
�eld ! (t) could be converted into matter.

What could we say, on an intuitive basis, about particle production in the eternal
Universe dominated by the WIST function ! (t)? The theory of chemical reactions, for
instance, o�ers a model of a mechanism in which the variation of the number N of par-
ticles of a given chemical species is controlled by the environment temperature T and by
the number N0 of such particles already existing, i.e., �N � N0T . From the standpoint
of macroscopic Thermodynamics, in turn, taking into account the \sti� matter" behavior
associate to the WIST �eld ! (t) a very na�ive application of Gibb's law yields a tempera-
ture proportional to the inverse of the volume V = a3, that is, T � 1=a3. Combining these
ideas, a rough estimate of the rate of particle creation in the course of the \structural
transition" which characterizes the present scenario is given by

dN=dt = const:N=a3: (4)

Supposing that this is indeed the case, a straightforward use of solution Eq. (4.23) would
give the total amount of particles produced in the present model. On the other hand,
these considerations suggest the association of the WIST \energy" �eld !� (t) to a thermal
bath of temperature T � a�3 � !� (note that once !� (t) has a maximum at (t = 0),
temperature T is never divergent). As in conventional scalar �eld theory, this assumption
leads to the induction of a Landau-type phase transition[44].

11.3 Particle creation in a WIST background

In order to provide more reliable arguments to support formula Eq. (3), however, we
must consider once more the observed status of the known laws of physics with respect
to point-dependent scale (conformal) transformations. According to the reasonings of
Section III, in fact, convincing observational evidence indicates that physical quantities
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describing relevant properties of matter are not preserved under conformal mappings.
This result is truly of importance once it guides us in the establishment of a gauge-
independent methodology to generalize the Riemannian expressions of the laws of physics
to the present WIST context. Indeed, following the standard prescription based on the
Minimum Coupling Principle|which rules the extension of special-relativistic formulae,
written in 
at Minkowski space, to general-relativistic covariant expressions in curved
space-time[20]|we will assume that in a WIST scenario the energy-momentum tensor
T �� , the entropy 
ux S� and the particle number current N� describing a given 
uid
satisfy the evolution relations 8<

:
T ��;� = 0
S�;�= 0
N�;�= 0

(5)

where, as stipulated in Section III, the semi-colon denotes covariant di�erentiation in a
Weyl manifold. In the particular case of a Riemann con�guration, i. e., when the WIST
�eld ! (t) vanishes, these expressions reduce to the usual conservation laws of General
Relativity; for example, the particle current N� obeys in this case N�

k� = 0, and thus the

conservation of the particle number density n = N=V , in a Friedman background, follows
as usual:

n� + 3nH = 0 (6)

In the WIST case, on the other hand, Eq. (4) yields precisely the intuitive formula Eq.
(3) for particle production, due to the dissipative e�ects induced by the presence of the
WIST �eld ! (t). Indeed, according to to the formula Eq. (3.14) of WIST covariant
di�erentiation, in the case of a relativistic 
uid (photons) in a Friedman background the
evolution relations Eq. (4) may be written as8<

:
�� + 4H�� 3!�� = 0
n� + 3Hn� 2!n� = 0
s� + 3Hs � 2!s� = 0

(7)

in which s = S=V is the entropy density. We see that the WIST \energy" function !� (t)
plays the role of a (time-dependent) total decay width �! of the bosonic �eld ! (t) into
photons, in the likeness of the in
ationary case described by Eq. (2). Integrating Eq. (6)
one obtains 8<

:
� = �0 a

�4 exp [3!]
n = n0 a

�3 exp [2!]
s = s0 a

�3 exp [2!]
(8)

where the symbol (0) denotes the values of small 
uctuations of these magnitudes that
supposedly occurred at some occasion in the past. It is interesting to observe that in spite
of the fact that the present theory has two free parameters, namely, the dimensionless
parameter � in the Lagrangian Eq. (4.2) and the minimum radius a0 of Eq. (4.15),
according to the Wiston solution Eq. (4.26) the e�ciency of the mechanism of matter-
entropy production represented in Eq. (7) is sensitive only to the value of �|besides, of
course, the seminal input supplied by the original 
uctuations.
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11.4 The baryon asymmetry problem

A remarkable consequence of the introduction of dissipative e�ects induced by the WIST
character of the space-time background is the exponential dependence of matter proper-
ties on the behavior of WIST �eld ! (t). Indeed, according to the solution Eq. (4.24)
it follows that any 
uctuation (� )0 experienced by a given matter �eld  at the re-
mote past is strongly damped in the course of the collapsing phase (t < 0); then there
occurs a sudden transition from suppression to stimulation around (t = 0), and a equally
strong ampli�cation begins as the expanding phase takes place (t > 0). This production
mechanism, however, saturates very rapidly, and for later times (t >> 0) it becomes
insigni�cant (note that these conclusions concern a Universe driven by a Wiston; in the
case of an anti-Wiston, of course, this account shall be inverted). Thus, in distinction
of other eternal, bouncing cosmologies, the in�nite span of the contracting phase in the
present model does not imply a boundless matter-energy production.

Due to the exponential damping of any primeval irregularity, only 
uctuations taking
place near (t = 0) do care for the subsequent evolution; but these 
uctuations are expo-
nentially ampli�ed for a short period, so as to allow for arbitrarily large amounts of matter
| e.g., particles|and entropy to be created. This period of intense creation is tanta-
mount to a non-equilibrium process; notwithstanding this fact, after the ampli�cation
mechanism has been shut down one might expect the WIST �eld declining contribution
to the source of Einstein's equations to be rapidly outmatched by the newly produced
matter content. In this way, the primordial \sti� matter" state associated to the the
\Big|but not in�nite|Bang" described here could be straightforwardly continued to a
standard sequence of radiation-dominated and matter-dominated phases; the addition of
a standard in
ationary phase, if required, is also not excluded.

The operation of this ampli�cation mechanism also provides a fresh perspective with
which the standard baryon asymmetry problem may be envisaged. It is well known that
the prevalence of matter (e.g., baryons) against anti-matter in the observed Universe|as
well as the observed ratio of entropy per baryon|is not explained in standard cosmology
except with the use of �ne-tuned initial conditions[45]. In the present scenario, on the other
hand, an eventual baryon excess 
uctuation �N0 =

�
NB �N

B

�
taking place shortly

after the stage of maximum contraction at (t = 0) may be exponentially increased up to
a convenient amount, since in this case we have

�NB = �N0 exp [2!] : (9)

While the production rate depends on the free parameter � only, the initial spectrum
of 
uctuations which become the subject of the ampli�cation mechanism must bear a
relationship to the relative size of the Universe|and thus to the minimum radius a0.
Elementary particle theory, for instance, requires the set of speci�c baryonic species con-
tained in �N0 to be regulated by the environment temperature TE|which in the present
non-singular scenario is always bounded (that is, TE � TM � a�3

0 ). According to the
value chosen for the minimum radius a0, di�erent species may be selected for ampli�ca-
tion; conversely, a particle physics analysis could in principle yield an evaluation of this
parameter. We shall leave these matters, though, to a subsequent investigation.
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12 Conclusion and Further Discussions

12.1 The cosmic evolution

On the basis of the above results, the complete history of the cosmic evolution in the case
of an homogeneous and isotropic metric con�guration may be outlined as follows: due to
Weylian scale 
uctuations ruled by Eq. (2.5), a primordial empty Minkowski space-time
begins to collapse at a remote past. This collapsing phase of inde�nite duration is driven
by the WIST �eld ! (t), whose e�ects are thermodynamically equivalent to a \sti� matter"
state of a perfect 
uid with energy density given by �! � a�6 (Eq. (4.11)). Throughout the
collapse, the Universe is accelerated|or \in
ationary". In agreement with the stability
arguments discussed in Section IV, any eventualmatter-energy 
uctuation is exponentially
suppressed in the course of the entire collapsing phase. This resembles the \memory loss"
of in
ationary scenarios, in which the problem of the singular origin may be circumvented
due to the presence of an e�ective horizon limiting the present observational scope.[7] The
collapse proceeds adiabatically in a very slow pace until a stage of greatest condensation|
corresponding to the minimum a0 of the cosmic radius|is approached. In fact, in the
neighborhood of this maximally condensed stage the contraction is accelerated to an acme
and then decreases suddenly, reverting to an expansion when the minimum radius a0 is
attained.

In the likeness of quantum creation models, the in�nite collapsing phase of the present
scenario may be associated to the propagation of a Weyl instanton|or \Wiston"|in an
Euclideanized, classically forbidden region (Section IV); according to this interpretation,
the Universe|as a classical entity|emerged from \Nothing", endowed with a minimum
radius a0, in a \sti� matter" state characterized by the absence of a matter content (e.g.
, baryons and leptons), except for small 
uctuations. However, as the Universe begins
to expand, a non-adiabatical ampli�cation mechanism starts to operate, driven by the
energy of the WIST �eld ! (t), in such a way that matter-energy 
uctuations may come
to be converted, in an exponential rate, into large amounts of particles and radiation. An
eventual baryon excess may be ampli�ed in the same fashion. This \Big|but not in�nite
-Bang" stage lasts for a very short period, once the energy of the produced material
soon dominates the energy of the WIST �eld; in this way, the Universe enters in the
Friedmanian radiation-dominated and matter-dominated regimes which characterize the
standard evolution.

From an empirical point of view one could argue that the occurrence of a non-
adiabatical cosmic stage is required by the observed existence of huge quantities of matter.
However, according to each particular cosmological scenario, the details of matter pro-
duction mechanisms can in principle be rather di�erent. In e�ect, in order to excite a
process in which enough entropy could be produced the standard HBB program makes
appeal either to non-controlled initial conditions issued at the explosive beginning or,
alternatively, to an intermediary instance provided by the inclusion of an in
ationary era
into the standard frame of the cosmic evolution.[7;10]

In the scenario proposed here, matter-entropy production appears as a natural conse-
quence of a non-adiabatical regime driven by the brisk change from a collapsing phase to
an expanding one, correlate to the maximal deviation from the Riemannian structure[46].
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As we saw in Section V , a straightforward application of the Minimum Coupling Princi-
ple supplies a simple description of dissipative e�ects, induced by the WIST background,
which appear in the evolution equations of matter �elds. Similarly to in
ationary ap-
proaches, these dissipative e�ects are expressed in terms of a (time-dependent) total decay
width associated to the WIST �eld ! (t). Throughout the creation period, the environ-
ment temperature is never divergent; in this way, elementary particle problems|such as,
for instance, quark con�nement|can be addressed from a new angle.

With respect to the inclusion of a non-standard primordial \rigid matter" phase of
the cosmic evolution, current trends in High Energy Physics suggest that the standard
radiation-dominated era should be preceded by a primeval cosmic domain in which all
fundamental interactions were uni�ed. So far, the exact constituents of this uni�ed state
remain undetermined; nevertheless, given the circumstance that such unique mode of
energy exchange should have a global character, in analogy with well-known issues of Field
Theory[26] one is led to conceive that a \sti�" or \rigid matter" state, described by the
ultra-relativistic equation of state p = �, might provide a suitable representation of this
one-interaction con�guration. In the present article we have shown that the hypothesis
of a WIST background manifold leads to a dynamical scheme in which geometry itself
accounts for the existence of a primordial \sti�" state[47].

In e�ect, in the present approach geometry generates everything. The conceptual
cost to be paid for the election of one such unique physical matrix is, evidently, the
widening of the traditional Riemannian space-time structure of General Relativity, once
the geometrization of the basic in
aton-like �eld ! (t) implies the modi�cation of the a�ne
connections of the underlying manifold due to the contribution of !-dependent terms; in
turn, the behavior of the WIST \structural" function ! (t) is regulated, in a non-linear
fashion, by the metric evolution (Section IV). The explicitly non-linear character of the
system of fundamental dynamical equations describing the cosmic development, on the
other hand, points to the most intriguing aspect put forth by the present WIST scenario:
the equivalence of structural disturbances due to the curved WIST background (namely,
the propagation of Wistons) to a semi-classical description of a quantum process.

Actually, Weyl spaces and quantum processes are not entirely foreign matters ac-
cording to the literature. Since the early days of London[48], a curious connection of
Weyl's length transport theory to certain aspects of quantum mechanics has been indi-
cated, suggesting that quantum rules could be obtained from a classical formalism based
on Weyl spaces. In other words, geometries in which length variation under transport
may occur|such as Weyl's|seemingly constitute a well suited classical foundation upon
which a successful interpretation of typical microscopic processes could be built. It has
been shown, for instance, that the non-relativistic Schr�odinger equation can be derived
from a stochastic formulation in which quantum \forces" are due to curvature e�ects
associated to the gauge vector !� in a Weyl geometry. In this vein, quantum mechani-
cal behavior would arise from a feedback relationship of the geometrical structure with
dynamics.[49]

The analogies drawn in the text between Euclideanized solutions of quantum creation
models and the present WIST theory, however, require further consideration. The dy-
namical activity of the WIST background is particularly pronounced close to the phase of
greatest contraction, when the scale factor a (t) approaches the minimum value a0. The
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enlargement of the geometry to a WIST con�guration could then be ascribed, if this value
is su�ciently small, to a �rst approximation of a quantum description of gravitational pro-
cesses. The excitation of a Weyl structure would therefore represent the initial response of
the background manifold to the structural transition from classical to quantum regimes.

In the manner of Utiyama[50], one could also consider the engaging|but rather
speculative|possibility that WIST e�ects could become relevant on microscopic dimen-
sions. In the likeness of the \vacuum bubbles" examined in some current approaches of
quantum gravity theory[51], such \Weyl bubbles" would constitute microscopic domains
endowed with a non-Riemannian internal structure, which could interact with an em-
bedding Riemann manifold either by analytical continuation or by discontinuous jumps
at the frontier (for instance, while current observations conclude that conformal invari-
ance is broken at large scales, no similar statement has been achieved with respect to the
microworld; thus, localized microscopic domains of Weylian character, embedded in a Rie-
mann background, could in principle exhibit an invariant behavior[52]). In a certain sense,
one such WIST domain (of an in�nite extension, though), enclosed between two asymp-
totic Riemann con�gurations, is described in the present scenario. Albeit unclear the
relation of quantum processes to WIST structures may be as of now, the equivalence|at
least in a particular case|of Wiston propagation to Euclideanized semi-classical solutions
noticed in Section IV certainly deserve further investigation.

In conclusion, the assumption of a WIST manifold leads to a cosmological solution
describing an eternal Friedman-like open Universe which does not exhibit the usual dif-
�culties of standard models, e.g., the singularity, horizon and 
atness problems. In fact,
the presence of the WIST background accounts for both the unstability of a primordial
Minkowskian \Nothing" and the operation of a matter-entropy creation mechanism, so
as to dispense with the cumbersome standard initial singularity and/or �ne-tuned initial
conditions. This geometrization procedure also supplies a dynamical explanation of the
origin of the observed baryon excess over anti-baryons in the Universe today; it may be
conjectured, furthermore, that the occurrence of a WIST-driven non-adiabatical phase
could provide a suitable basis for the derivation of an appropriate primordial spectrum of
density 
uctuations in order to allow for galaxy formation. This subject, as well as other
complementary aspects of the scenario discussed here, shall be addressed in a forthcoming
study.

13 Final Comments

The fact that there exist various alternative classical scenarios that do not contain a global
singularity point out in the direction that the generic behavior of the gravitational �eld
is not limited to the features presented in the classical singularity theorems. This means
that the origin of the actual expansion phase of the universe should not be identi�ed with
a primordial explosion.

However, much of the e�ort of cosmologists during the last decades has been spent to
save the Big Bang model, in the analysis of its di�culties, trying to answer the questions
posed by this model. I think that the time has come to change this situation and to go
deeply into a new road: to start a systematic search of solutions of the corresponding
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di�culties found in the Program of the Eternal Universe.
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