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ABSTRACT

We show that the non-resonant contribution to non-leptonic charm meson decays cannot
be considered constant in the phase space of the reaction as it usually is. We argue that
this is relevant for any weak reaction. We discuss in detail the decay D¥ — K-r*xt.
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Non-leptonic charm meson decays have been extensively studied both from the theo-
retical and the experimental side. They are essentially dominated by two body decays. In
the majority of them, at least one of the decaying particle is a resonance, i.e., one detects
three or more particles. As a consequence, when analysing a given three body final state,
for example, one has to consider all the possible two body intermediate states yielding
such a final state, together with the corresponding direct non-resonant contribution. The
comprehension of the whole non-leptonic decay pattern of charm mesons and the knowl-
edge of the precise decay partial widths is essential to the understanding of many open
problems, as for example the old D mesons lifetime puzzle.

Dalitz plot analysis[1] is a widely used technique particularly well suited for the ex-
perimental study of these kind of decays. Dalitz plot brings information on both the
kinematics and the dynamics of a given many body reaction. As it is weighted by the
squared amplitude of the reaction, a flat Dalitz plot corresponds to a decay with a constant
dynamics in the whole phase space[l]. Within this technique, intermediate resonances
appear in a simple way, and possible interferences between them are taken into account.
Amplitude and phase of each intermediate resonance, and then its corresponding partial
width decays, can thus be found. This technique has indeed been used by experimental
collaborations that have measured many body decays of charm mesons within the last
fifteen years.

The aim of this letter is to discuss some of the hypothesis assumed in these analysis.
We claim that the usual assumption of a flat non-resonant contribution to the decay is not
adequate and we show the importance of a correct parametrization of this contribution.

In the past, Dalitz plots have proven to be very useful to describe reaction dominated
by the strong interaction. This analysis technique is particularly suited for reactions where
the dynamics is dictated by a dominant behavior like the spin of a decaying particle or the
emergence of resonances — both in scattering and in decay channels. These reactions have
clear signatures in the plot. This is why the interest has never been put on the remaining
overall contribution to the dynamics which has always been simply parametrized as a
uniform, flat amplitude. Indeed, experimental results had supported this assumption. In
other words, both in many body decays and hadron-hadron interactions the dynamics are
almost constant in the phase space, except for the contribution dictated by the spin of
the decaying particle or the existence of resonances.

Analogously, when experimental data on non-leptonic decays of charm mesons be-
came available, the natural approach to Dalitz plot analysis for the study of resonant
substructures was to assume that the non-resonant contribution to the dynamics has no
variations in the phase space. Thus, during the last fifteen years, experimental data on
non-leptonic decays have been fitted using Breit-Wigner functions[3] for each possible
resonance whereas the non-resonant part has been fitted as a constant.

This parametrization has been used by many experimental teams[4, 5, 6, 7, 8]. How-
ever, it has proven to be not totally adequate to describe non-leptonic charm meson
decays. Indeed, a very poor overall fit quality is reported. These poor results do not im-
prove when having a high statistics or when considering a larger amount of resonances|8].
Moreover, this problem appears in all the D — K77 decay channels already measured
(D° — K°rtx=, Dt — K% *t7° D* — K~ntnt and D° — K~7*x°) [9] and the worst
fit is obtained for D¥ — K~ ntx*, where the non-resonant contribution dominates|8].
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(In this case, with 29 degrees of freedom, the x? per degree of freedom is as bad as 3.01.)

When the non-resonant contribution to the decay amplitude is not negligible, its cor-
rect parametrization becomes crucial. An incorrect parametrization will certainly influ-
ence the fit of the resonances and consequently the values of their amplitudes and phases.
Thus, the comprehension of the whole decay pattern strongly depends on an acceptable
form of the non-resonant part. As an example, MarkIII reported[5] on an incompatibility
on the measurement of the branching ratio (BR) of D* — K*r*: The experimental value
for this BR when detected from the final state K77+ is 5.3+ 0.4 + 1.0 whereas its value
is 1.8 £ 0.2 £ 1.0 when the final state is K~#*#*. Note that while the non-resonant
contribution to the first final state is of the order of 15% of the total partial decay width,
in the second it is as large as 80%.

These experimental results suggest that in non-leptonic charm meson decays one has
to study the non-resonant contribution more carefully and eventually it has to be fitted
using another parametrization.

Our claim is that the physics of non-leptonic charm meson decays is essentially different
from that of the reactions dominated by the strong interaction. In weak interactions
between quarks and leptons helicity plays an important role. Consequently, one expects a
significant dependence of the weak amplitudes on the momenta of the interacting particles.
Thus, the dynamics of these reactions should vary from one point of the phase space to
another, the amount of this variation being dependent on the specific physical reaction.

This should be particularly important in weak decays of charm mesons. Indeed, on the
one side, the large value of the charm quark mass allows for a quasi perturbative treatment
of QCD. On the other side, charm quark decays into light quarks and this enhances the
importance of helicity. One could make a first approach to the weak partonic mechanism
responsible for the Cabibbo favored D meson decays, i.e. ¢ — sud, by analysing the
decay of T leptons, 7 — puw,v,, which are essentially similar. Moreover, it is the simplest
weak decay one can describe, i.e. a pure leptonic one, and will shed some light on the
dependence of a weak reaction on its phase space.

The theoretical Dalitz plot corresponding to the decay 7 — u,v, can be obtained by
taking the well known decay amplitude of pure leptonic decays[10]. This decay amplitude
can be written as a function of two invariant variables defining a Dalitz plot, e.g., m2; =

(Pu+ pp,)? and m2, = (pu + p.,)? to give
lM‘r—»,uD,‘u,-|2 X m (m2 - mp.u-,) (1)

where m., is the 7 mass.

The dynamics of the reaction has thus a quadratic dependence on the variable m2,
As the Dalitz plot is weighted by |M,_,5,.,|?, equation (1) shows that a Dalitz plot of a
pure weak decay has indeed significant variations along the phase space.

Obviously, due to the hadronization procedure of partons after their weak interaction,
the result of the previous example cannot be simply translated to hadronic decays. In
the latter case, one has to deal with non-perturbative QCD effects, related to the final
hadronic state formation after the pure partonic interaction. However, one can consider
an approximate method which has been successfully used to describe D meson decays.
The method is based on both the factorization technique [11] and an effective Hamiltonian
(12, 13] for the partonic interaction.
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As we are interested in the non-resonant contributions, let us analyse the channel
Dt — K-rntrt, which seems to have a very large non-resonant part, as was quoted
above. The effective Hamiltonian includes one gluon exchange corrections to the tree
level weak vertex ¢ — sud [12, 13]

Hesr = (—C\;_—I;)cos2 0.[a1 : (3c)(ud) : +az : (5d)(uc) : (2)

where (gq') is a short-hand notation for §y*(1 — 7s)¢’. The coefficients a; and ay char-
acterize the contribution of the effective charged and neutral currents respectively, which
include short-distance QCD effects. Their values have been fitted in the case of charm
meson two body decays (see for example reference {12]). The diagrams contributing to

the decay D* — K~7w*r* are shown in Figure (). Using factorization one obtains the
following decomposition for the hadronic amplitude

Mpt_g-rtrt = (\g/%) cos? 0,[ay (K~ 7] |5c| D) (x7 |ud|0)
+ay (K~ |5d|0)(n3 |ac|D*) + (7 & 7)) 3)

Let us first discuss the term driven by ay, i.e, the one of Figure (.a). The most
general form to decompose the first matrix element can be written in terms of four form
factors[14]. Using the parametrization of reference [15] we can write:

(K~nt|5c|D¥) = APFy + ALF, +iVEFs + AYF, (4)
where
(px +
At = i+ — @t )
T \Mm +
Ay =rr +pp— @& en 1) (pQ2 o)

‘/3;‘ = euaﬁ‘yp.(;\'pglp})
Af = Q¥ =pk +rh —Pp=—ph, -

The terms proportional to Fy, F; and Fy originate from the axial vector part of the matrix
element whereas the one proportional to Fj originates from the vector part; the terms
proportional to Fy, F, and Fj correspond to spin 1 and Fj to spin 0. The four form factors
depend on three variables m? = (pg + pr, )%, m3 = (P + pr,)? and @* which is a constant
(m2) in this case.

The second matrix element in equation (3) has the well known form

(v3 |ad|0) = i frpf, - (5)

The only contributing term in equation (4) after multiplying it by equation (5), is the
axial spin 0 term, i.e.,

(I{—WT|§C|D+><7T;|'I_“ZIO> = (Pry u Fy) (Pﬂ'zu fx) = fﬂ'mfrF‘l . (6)
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Concerning the contribution of Figure (.b), one can use the well known expressions[16]

2 _ 2

_ m z -
(wflaclD*) = [(pD +po )= 2 - pw] Fya()

m% 2

—_— m1r
T — Pra )" Fp(¢°)

and

(K~ (pr)mi15d|0) = (nf|5d|K¥(—pK)) =

m2 — m?2
(—pK + pry )" — KT(—PK —pr)*| f4(d%)
m2r— —_ m?r
+AT(_pK —pr ) folq®) -

In both equations above, q2 = (pD - pﬂ_z)z = (—pK —Pm )2 while the functions ng (qz)
— corresponding to a current of spin parity J¥ — and fy(¢?) and fo(¢?) are form factors.
We will be back to them bellow.

One then finds for the second contribution in equation (3),
(r*|uc| D* (K~ 7% |5d|0) = Fp,(m3)f4(m]) (mp + mi + 2m7 — 2m; — my)
- m2 — m?2 2
4 (Fomd) fa(md) — F8-(m?) fo(m)] 22 = )
1

r)(m%\ — m‘rr)
+ (mi & m3) (7)

where we have explicitly introduced the Dalitz plot variables m? and m3 defined above.

The contribution of diagram (.a), given by equation (6) is proportional to f,m2. Thus,
unless the form factor Fy were unacceptably large (Fy ~ 10°), we can safely neglect this
contribution in favor of that of diagram (.b); the latter contains m% — see equation (7)
— and turns out to be much larger than the one of equation (6). In fact, one can hint
that the non-resonant part of the decay D* — K~ ntxt is large precisely because the
contribution of diagram (.b) is not small. This conclusion can be safely extrapolated
to the other D decay channels. The various consequences of this remark are discussed
elsewhere[19].

The non-resonant contribution to the amplitude of the decay Dt — K~ n*n* can
thus be simply written replacing equation (7) in (3), neglecting the contribution of Figure
(-a). The final expression thus depends on the effective coefficient a; and the four form
factors. The two D form factors Fj. (%), have well stablished expressions[13] :

FAG) = <1 Sy ) ®

Dr,JP

where Mp,,- = 2.01 GeV and Mpro+ = 2.2 GeV. They have been successfully used
in the kinematical range we are considering here. The poles lie outside our kinematical
region. Concerning K7 form factors fi(q?) and fo(¢?) they can be extracted from the
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semi-leptonic decays K — wlv, with [ = e, . Nevertheless, it is not clear that the usual
parametrization[10]

2 2
7o) = 560 (1400 5) L ala®) = o) (14302 ) ©)
m”r mﬂ'
could be valid in the whole kinematic region of our reaction. As we are considering a
non-resonant decay, these expressions obviously do not contain the poles. In equation
(9) f+(0) = fo(0) = 1; the other coefficients have been measured to be[17] A, a2 0.03
independently of the measured channel, whereas the extracted value of Ao depends on the
decay: Ao =~ 0 (0.025) when extracted from K~ — 7%u~v (K° — 7tp~v).

In order to check the validity of this calculation scheme, we have evaluated the non-
resonant partial decay width T'(D* — K~n*nt)yg using the expressions above. With
Ao = 0 and the value of a, extracted from two body decay[12], we found a branching ratio
(BR) of 9% which is close to the reported experimental value[17] 7.3 £ 1.4% — despite
this value has been obtained fitting the non-resonant contribution to a constant. We
studied the stability of this result under the change of the parameters Ay and A : If we
take the various values extracted from different channels we found that the BR varies less
than 30%. Allowing a larger variation of these parameters — including Ay = Ao =0, i.e.
constant form factors — the BR remains however of the same order of magnitude.

Figure () shows the Dalitz plot for the non-resonant contribution to the decay D+ —
K-r+rt as a function of the variables m? and m2. It has been generated via Monte Carlo
with a weight proportional to the square of the amplitude in equation (3), using equation
(7). We have considered the same central value of the parameters as above. As one can
see from equation (7) and Figure (), according to this calculation the matrix element
describing the dynamics of the non-resonant contribution to the decay D* — K~-7wtr+
significantly varies along the phase space of the reaction. Its shape remains almost the
same for other values of the parameters of the Kn form factor. This is still valid even if
we take the four form factors as constants. Thus, a fit parametrizing the non-resonant
contribution as a constant cannot be correct in this case.

In summary, we have shown that in non-leptonic charm meson decays the hypothesis
of a uniform non-resonant contribution is far to be acceptable. Experimental teams that
have measured these decays had already called the attention on this fact. In this letter
we show that the variations can be very important. It is not possible to predict a general
form for these contributions as they depend on the particular reaction. Nevertheless, in
the case here studied the amplitude can be fairly approximated by a simplified linear
function of the Dalitz plot variables m? and m?, i.e., giving rise to a quadratic shape
dependence in the Dalitz plot. In other words, we propose to fit data using, at least, a
linear function (a 4+ bm? 4+ cm32) for the non-resonant part of the amplitude, where a, b
and c are real numbers.

An adequate parametrization of this contribution is essential. On the one side, an
incorrect parametrization of the non-resonant part will certainly influence the fit of the
resonances; thus the whole decay pattern extracted from the fit could be wrong[19]. On
the other side, this non-resonant contribution contains many information on the physics
of the decay. Particularly, form factors can be measured along the phase space of the
reaction. The measurement of the precise form of the non-resonant contribution is thus



-6 - CBPF-NF-029/96

of great importance.

Concluding, we have shown that weak interaction leads to a large dependence of the
dynamics on the phase space of the reaction. Particularly, for non-leptonic heavy flavor
decays — where factorization procedure is currently used — even the dynamics of the
non-resonant contribution should have an important variation in the Dalitz plot. Non-
perturbative QCD effects should wash out this structure through the multiple exchange
of soft gluons. Thus, the appearance of these structures in the non-resonant contribu-
tion to the Dalitz plot can be seen as an indication of the validity of the factorization
technique[19], which explicitely neglect soft gluons corrections.

We acknowledge Alberto Reis for a usefull discussion. One of us (RMG) wants to
thank the warm hospitality at LAFEX-CBPF.
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Figure 1: The two diagrams contributing to the decay D* — K~ ntr* according to the
effective Hamiltonian of equation (2).
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Figure 2: The Dalitz plot of the decay D* — K~w*r*, weighted by |IMpt g —rta+ |2
as in equations (3) and (7), generated via Monte Carlo. The Dalitz plot variables are
m} = (pk + pn)* and m] = (px + pr,)".



