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‘AbBtTact

We develop a method which allows us to deal with a constrained
many particle system. We use the projector technique together with
the path integral formulation to obtain the quantum dynamics of
holonomic and non-holonomic systems,

In the non-holonomic case the Feynman’s integrals are defined
only locally and the wave function acquires a path dependent phase
factor.
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1.- Introduction

We propose a method of quantization of constrained systems,
based on the use of a projector technique together with the path
integral approach.

The projector technique was developed by Amral(‘) and
Pit,anga(z”) in order to deal with classical Lagrangian and
Hamiltonian systems. In this technique neither Lagrange multipliers
nor the elimination of coordinates is required to obtain the clas—
sical equation of a motion. As is well known, the Lagrange muiti-—
pliers are disadvantageous for quantization, since the canonical
conjugated momenta are zero. If we work with all coordinates,
without. elimination, we may choose a cartesian system of coor—
dinates in the configuration space. In this system the Feynman
int.egrals are very easy to handle,

All we need in the projector technique is to have a local vector
space generated by the constraints, Following th.aker(‘) Lhe
constraints must be imposed on the virtual displacement, and not on
the trajectories. This remark enables us to consider a generalized
variationa! principle extended to non-holonomic systems. We can use
the Path integrals formulation(®'®) to construct the Hamiltonian
quantum operator ﬁ, for classical Lagrangian submitted to a linear
suplementary conditions. In this case we can write a constrained
holonomic or non holonomic geodesic.Observing that the main contri-
buitions to Feynman integral are just theses geodesics, we arrive
to a quantum Hamiltonlan by considering paths around the cons-
trained geodesics. For a many particle system the quantum
Hamiltonlan is equivalent to that established by Amiot et al(’),
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Takahashi(®) and Eden(®), with the aditional curvature term dued
the constraints.

For a general non-holonomic systems quantization may be
tntroduced by means of a geometric procedure or the path-space
formalism, developed by Zaccaria et. al(m) and Balachandran('').

In sec.2 we obtain the geodesics using the projector method.

In sec.3 we apply the path integral approach in order to deter-
mine the quantum Hamiltonlan. Section 4 we dedicate *to final

remarks.

2.- Constrained System in Configuration Space

Lett us consider a system described by a Lagrangian L =
L(rp,i-y,t) together with a set of K independent constraints;

1) ¢°(r-u,|‘-u)-0 , omw1 .., K and uwig ., N

The Lagrangian of the system to be considered in this paper is

of the form,

1 2
(2) Lr “,f'p.t) - om b V(r’)

Here we have adopted the summation convention over repealed

indices,
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The classical action is,

itz

(3 S = t’11.(:- p,i-u,t)dt.

The constraints define a hypersurface in the configuration-

velocities space. The K normal vectors(") to the hypersurface are

described by a vectorial basis { |ev> i

(4) |e®> = 2,4% |e > » e=1,., K

1
The vectors |e°) span a local geometry whose metric is non

Here and in what follows &, = (O/ﬁv,GIWD,O/Otv).
singular;
) (ealeb> - g“b ,

The displacements dr* which are compat.ible with the constraints

must be orthogonal t.o this vector,
6 <dr”|e® = 2,¢%r] = 0

A generalized variational principle may be extended to a non-
holonomic case by imposing constraints on the virtual displacement.

The infinitesimal displacement. must be projected on the hyper~
surface orthogonal to the vectors { |e°> }. We can do this by means

of a projector;
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N A== g le®>e?] ,

whose components are;

® o lhley = A, =5, €2 0" = 6, - Q,

The components of the virtual displacements on the hypersurface

are;

»
4 45r“ = A pvérv .

We see from (6) that (9) is automatically satisfied, because
A|eb> m 0. We assume that the infinitesimal virtual displacement is

identical t.o the infinitesimal possible displacement,then we write,

-

(10) ér: = A Ir (trerr (0] = A,n, )

Making a variation of the action along ér; ( we may chose a
local system of coordinates in which &6d-dé =0) the generalized

variational principle yelds:

(1 A wsé - AW[ gtcobl.) - oL ] -0 .

This system of equations together with the constraints given by

eq.(1) determines the equations of motion of the syst.em(").
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The line element. of the path along the hypersurface allowed by

the constraints is,

2 _
12) ds” = (E V)Apvdrpdrv
A constrained geodesic is a curve whose lenght is stationary
and satisfy the equation of constraint. From the generalized

Jacobi’s principle we have;

(13)

v _ e v ot
6‘]-'/iwdhr“dhr ar = J'[dhciu AP - o R, a4 rfar ] A0 =0

where A“ P-(E-V)A o'

Making use of the constraints a‘\“vf-v = i*p we have:
(14) R g SR

h +3dA - )
where I"gv- apﬁw Ao apxpv

These are the same equalions obtained by Synce(“) valid to holonomic

or non-holonomic geometry and are the curves of motion of a

conservatlive constraind system
3.- Path Integral

FProm the path integral formulation we have Lhat the wave func-
tiomv(t)amdv(tﬂs)attheinstam.standtﬁsmbehelat-edby
using the exponential of the classical action; thus, we have,
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a5 Hr(tre) the) = J exPEESIHr(1).4ID[ 1)) ,

the symbol D[ r{t)] means inlegrations over all trajeclories.
In our case we take the time evolution of ithe system in the limit
€ — 0. We have then that the classical action can be approximated

by.

+e
(16) S = lim I: Lr o Lt)at

€+ 0

L [ ﬂ"’fmq, r(t-lz)—r(t)]

In order to take into account the constraints the above equation

must. be written as @

Q17) s" ~elL [ "‘(""f)‘*"'(l) £ l"(t'!'i)—-r(t))]

- 4 BV ap MY 0T a0
~ o2 syv[n“n Tho? M0 + T %" +

4

+ % [a r“ + ir rP ]nvnrnan“’ +...]- e[ v, - n“vy-u-
+ L, - S M - T e ]

where we have used the equation (14) since r";v- dpﬁ v describes the

conections of the allowed submanifold in the cartesian frame and:

(18) 7H = rHere)-rH(L) .
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The method to obtain the Schrddinger equation from the path

integrals consists of the three following steps(*®:1%;

a) first, apply a full expansion in power series to both sides
of equation (15) using (16). We expand the left hand side is
expanded with respect to time and the right hand side with

respect. Lo coordinates;

(20) Wr(tre),t) + €0 wr) + —f-;af wr) + .. =

- [t g+ i <t o

x [Wr(t+e);t) - nzav\v ,,n nvd v --]}D(n'(t))

where n; = Awnv is the projection of the infinetesimal dis-

placement..
b) second, use the properties of the gaussian integrals;
c) and finally, compare the coefficients of the e monomials in

both sides of equation (20) after the expansion and inte-

egration. Hence we obtain the following Schradinger equation,

2 2
c21) tho v = A5 A o +vr) + DA - (H + ‘ﬁ R)y

2 qou v a;.tvvy
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where R is the scalar curvature. When the constraints are
linear in the spatial coordenates R = 0 and the equation

above is the same obtained by Takahashi(?).

We can see that this formulation enables us to obtaln directly
the symmetrized operat.or H.

In the non-holonomic case the wave function acquires a non-
integrable phase factor, dued the non-integrabllity of the
constraints. From (8) and (15) we have :

(22) v = [ oxpgs) [oxpt-—4 e, 08058, dr v PLrce)
- J exp(iS) wDI r(t)) .

It is easy to show that the non integrabllity of the constraints

leads , by using Stokes’ theorem, to the expression

b, ,a u 1 Y o_pV TR -
(23) Im § gabapqa oi;p i‘-vdr -II 3 f-v(l"py T‘prdr ~rdr
where
v o_p v a _
(24) Mo Toe ™ 02, due? .

For holonomic system the sabove |is equal to zero, by Frobenius

theorem. We must have for non-holonomic systems :
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(25) I = 4; gobdp¢bab¢°‘fvdrp - 2nf3

In order to avoid ambiguities in the wave function or iIin the

propagator we musti have :

(26) 1 = exp(l)

that is f32n = 2nnh, where 8 is a constant.
4.~ Final Remarks

We have shown in this paper that is possible to develop a quan-
tum theory for a constrained classical system, without destroying
symmetries or making use of Lacrange"s multipliers.

The projector methods enable us to extend the variational prin-
ciple to a non-holonomic system. In this formulation we do not need
Lagrange multipliers However, the quantum dynamics of non-holonomic
systems belong to a class having a local Lagranglan and a global
Hamiltonian description. The action of a non holonomic system is
path dependent.We can see thixz from equation (17).The wave function
¥’ being path dependent must be valid in patchs of a non irivial
U({1) fribre bundle. The same {is true for the Feynman’s propagator.
In order to avoid the ambiguity on the wave function the pre-
condition of quantization leads to # = nh where 3 is a const.ant

dependent. on the topology induced by the constraint.
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Finally we remark that the linear non-holonomic constraints de—
fine a Finsler geometry called S-Riemannian(”) because we do not
have torsion and the connection are antisymmetric. In this parti-
cular case A“p is only function of the position. The general case,
where A v = Aﬁ-ﬂ-’(x'*)’ the Feynman Integral must be adapted to a

7,
t.angent. fibre bundle. We will do this in futures works.
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