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I. INTRODUCTION

The algebraic framework of Supersymmetry in Quantum Mechanics (SUSY QM), as
formulated by Witten [1] and Sukumar [2], may be elaborated from a 2-dimensional
model with minimal N = 1 Supersymmetry. The SUSY QM generalization [3,4] of the
harmonic oscillator raising and lowering operators for shape-invariant potentials [5], and
connections established with supercoherent states for the super-Wigner oscillator systems
[6] associated to the isotonic oscillator, have been considered [7]. The super-realization of
the Wigner oscillator has also been applied to pure parabosonic systems in the interesting
paper of Ref. [8].

The SUSY algebra has also been applied to build up a variety of new one-parameter
families of isospectral supersymmetric partner potentials in quantum field theory [9–14].
Recently, one has investigated [15,16] the 2x2-matrix superpotential associated with the
linear classical stability from the static solutions for a system of two coupled real scalar
fields in (1+1) dimensions that present powers up to sixth-order. In this case, the static
field configurations were determined via Rajaraman’s method [17]. Also, results on sn-
type elliptic functions given in Ref. [18], for which boundary conditions on bound energy
levels of a classical system defined by one single scalar field are imposed, have deserved
an extension to a relativistic system of two coupled real scalar fields in a finite domain in
(1+1) dimensions [19].

A 2x2-matrix superpotential for a neutron in interaction with a static magnetic field
generated by a current-carrying straight wire, which is also described by two-component
wave functions, has also been worked out [20]. Indeed, Witten’s formalism for Super-
symmetry was applied to this planar physical system in both the momentum [21] and
coordinate [20,22] representations. According to our development, we can readily realize
the SUSY QM algebra, in coordinate representation, for a 2-dimensional potential model
with minimal N = 1-SUSY containing up to fourth-order powers in the fields.

In this work, we show that the two-component eigenmodes of the fluctuation operator
may be of two types; of course, for a zero mode we have a corresponding Ψ0(z) =

(
η0
ξ0

)
.

Nevertheless, this is not necessarily true for an arbitrary non-trivial real eigenvalue ω2
n.

Here, we shall determine the eigenmodes and indicate the number of bound states. We
also build the matrix superpotential for SUSY QM in the case of the stability equation
associated to 2-dimensional potential model considered by Shifman et al. [23–25]. First, we
consider the classical configurations with domain wall solutions, which are bidimensional
structures in 3+1 dimensions. They are static, non-singular, classically stable Bogomol’nyi
[53] and Prasad-Sommerfield [27] (BPS) soliton (defect) solutions to field equations with
finite localized energy associated with two coupled real scalar fields and non-BPS states.
Recently, marginal stability and the metamorphosis of BPS states have been investigated
[28], via SUSY QM, and one presents a detailed analysis for a 2-dimensional N = 2−Wess-
Zumino model with two chiral superfields, and composite dyons in N = 2-supersymmetric
gauge theories.

Domain walls have been recently exploited in a context that stresses their connection
with BPS-bound states [29]. Let us point out that some investigations are interesting in
connection with Condensed Matter [30], Cosmology [31], coupled field theories with soliton
solutions [32–40] and one-loop quantum corrections to soliton energies and central charges
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in the supersymmetric φ4 and sine-Gordon models in (1+1)-dimensions [41,42]. Recently,
the reconstruction of 2-dimensional scalar field potential models has been considered, and
quantum corrections to the solitonic sectors of both potentials has been investigated [43].

The work of Ref. [41] reproduces the results for the quantum mass of the SUSY solitons
previously obtained in Ref. [42]. The quantization of two-dimensional supersymmetric
solitons is in fact a surprisingly intricate issue in many aspects [44–49]. Indeed, using
dimensional regularization and reduction from 2+1 dimensions, which preserve SUSY,
Rebhan-Nieuwenhuizen-Wimmer have shown that the existence of an anomalous contri-
bution for a BPS satured domain wall at the quantum level [50], which is in agreement
with Shifman et al. [25].

Also, recently, the generalized zeta function regularization method has been applied
to compute the one-loop quantum corrections of the kink in the sine-Gordon and other
scalar potentials [51].

Domain walls have also been recently exploited in the context of dynamical domain
ribbons [33], deffects that live inside topological deffects. [34], triple junctions via N = 1
supersymmetry theories [35] and non-supersymmetric tiling domains and networks of do-
main wall [36,37], more complicated field configurations with axial geometry, and domain
wall junctions in a class of generalized Wess-Zumino models with Z symmetry [38]. The
set of potential BPS junctions that have been identified in [38] contain the junctions
that appear in [36,37]. Recently, the BPS saturated objects with axial geometry (wall
junctions, vortices), in generalized Wess-Zumino models, have also been investigated [39].

In the present work, a connection between SUSY QM developments and the description
of such a physical system with stability equation is expressed in terms of two-component
wave functions. This leads to 4x4 supercharges and supersymmetric Hamiltonians whose
bosonic sectors possesses a fluctuation operator (OF ) associated with two-component
eigenstates in terms of BPS and non-BPS states.

This work is organized as follows: In Section II, we investigate domain walls con-
figurations for two coupled scalar fields; an extension to supersymmetric non-relativistic
quantum mechanics with two-component wave functions is also implemented. In Section
III, we investigate the stability of BPS and non-BPS states in the context of SUSY QM.
Our Conclusions are presented in Section IV.

II. DOMAIN WALLS FROM TWO COUPLED SCALAR FIELDS

In this section, we investigate a potential model in terms of two coupled real scalar
fields in (1+1) dimensions that present classical soliton solutions known as domain walls.

The Lagrangian density for such a non-linear system, in natural units (c = h̄ = 1), is
written as

L (φ, χ, ∂µφ, ∂µχ) =
1

2
(∂µφ)

2 +
1

2
(∂µχ)

2 − V (φ, χ), (1)

where ηµν = dig(+,−) is the metric tensor. Here, the potential V = V (φ, χ) is any
positive semidefinite function of φ and χ, which must have at least two different zeroes in
order to present domain walls as possible solutions. The general classical configurations
obey the equations:
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��φ+
∂

∂φ
V = 0, ��χ+

∂

∂χ
V = 0, (2)

where �� = ∂µ∂µ. For static soliton solutions, the equations of motion become the following
system of non-linear differential equations:

φ′′ =
∂

∂φ
V, χ′′ =

∂

∂χ
V, (3)

where primes stand for differentiations with respect to the space variable. There appears
in the literature a trial orbit method for the attainment of static solutions for certain
positive potentials. This method yields, at best, some solutions to Eq. (3) and by no
means to all classes of potentials [17]. Recently, the trial orbit method has been applied
to systems of two coupled scalar fields containing up to sixth-order powers in the fields
[40].

Let us consider a positive potential, V (φ, χ), with the following explicit form:

V (φ, χ) =
1

2
λ2

(
φ2 − m2

λ2

)2

+
1

2
α2χ2(χ2 + 4φ2) + αλχ2(φ2 − m2

λ2
), (4)

where α, λ > 0. This potencial is of interest for it has solutions like BPS and non-BPS;
moreover, it presents four supersymmetric minima. Note that this potential has the
discrete symmetry: φ → −φ and χ → −χ, so that we have a necessary (but non-sufficient)
condition that it must have at least two zeroes in order that domain walls can exist.

In this case, the Bogomol’nyi form of the energy, consisting of a sum of squares and
surface terms, becomes

E ≥
∣∣∣∣∣
∫

dz
∂

∂z
W [φ(z), χ(z)]

∣∣∣∣∣ , (5)

where the superpotential W [φ(z), χ(z)] shall be discussed below. It is required that φ and
χ satisfy the BPS state conditions [53]:

φ′= −λφ2 − αχ2 +
m2

λ
,

χ′= −2αφχ, (6)

with

∂W

∂φ
= φ′,

∂W

∂χ
= χ′, (7)

The superfield superpotential W (Φ,χ), as proposed in Ref. [24], yields the component-
field potential V (φ, χ) of Eq. (4):

W (Φ,χ) =
m2

λ
Φ− λ

3
Φ3 − αΦχ2, (8)



CBPF-NF-029/02 4

where Φ and χ are chiral superfields which, in terms of bosonic (φ, χ), fermionic (ψ, ξ)
and auxiliary fields (F,G), are θ−expanded as shown below:

Φ= φ+ θ̄ψ +
θθ̄

2
F,

χ= χ + θξ +
θθ̄

2
G, (9)

where θ and θ̄ = θ∗ are Grassmann variables. The superpotential above, with two interact-
ing chiral superfields, allows for solutions describing string like ”domain ribbon” defects
embedded within the domain wall. It is energetically favorable for the fermions within
the wall to populate the domain ribbons [33]. The supersymmetric vacua are determined
by the extrema of the superpotential, so that

∂W

∂φ
= 0 (10)

and

∂W

∂χ
= 0 (11)

provide four vacuum states (φ, χ) whose values are listed below:

M1=
(
−m

λ
, 0
)

M2=
(
m

λ
, 0
)

M3=

(
0,− m√

λα

)

M4=

(
0,

m√
λα

)
. (12)

When the wall M13 is stable, the two vacuum states, M1 and M3, may be adjacent, energy-
degenerated with the energies of the three walls M23, M14, M24. Of course, from (12), we
see that we have two more possible domain walls, viz., M12, and M34, with nondegeneracy
in energy. Indeed, in this work, the potential presents a Z2xZ2-symmetry, so that one can
build some intersections between the walls.

This generalized system can be solved by the trial orbit development considered in
[17]. However, a possible soliton solution occurs ever when we choose χ = 0, so that it
implies a domain wall, M12, which is associated to the soliton of the φ4 model:

φ(z) =
m

λ
tanh(mz). (13)

The superpotential, in terms of its components, leads to the correct value for a Bogo-
mol’nyi minimum energy, corresponding to the BPS-satured state. Then, we see that, at
classical level, according to Eq. (5), one may put [25]

Emin
B =| W [φ(z), χ(z)]z=+∞ −W [φ(z), χ(z)]z=−∞ |= 4m3

3λ2
. (14)

Thus, the tension of the wall M12 is T12 =
4m2

3λ2 .
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III. SUSY QM AND LINEAR STABILITY

Now, let us analyze the classical stability of the domain walls in this non-linear system
[12–14,32], which is ensured by considering small perturbations around φ(z) and χ(z):

φ(z, t) = φ(z) + η(z, t) (15)

and

χ(z, t) = χ(z) + ξ(z, t). (16)

Next, let us expand the fluctuations η(z, t) and ξ(z, t) in terms of normal modes:

η(z, t) =
∑
n

εnηn(z)e
iωnt (17)

and

ξ(z, t) =
∑
n

cnξn(z)e
iω̃nt, (18)

where εn and cn are chosen so that ηn(z) and χn(z) are real. If ω̃n = ωn, then the
field equations yield a Schrödinger-like equation for two-component wave functions, Ψn.
However, in general, we obtain

OFΨn = Ψ̃n, n = 0, 1, 2, · · · , (19)

where

OF =


 − d2

dz2
+ ∂2

∂φ2V
∂2

∂χ∂φ
V

∂2

∂φ∂χ
V − d2

dz2
+ ∂2

∂χ2V




|φ=φ(z),χ=χ(z)

(20)

and the eigenmodes are cast under the form:

Ψ̃n =

(
ω2
nηn(z)

ω̃2
nξn(z)

)
. (21)

Note that, for the potential model considered in this work, according to Eq. (4), we
can readily arrive at:

∂2

∂χ∂φ
V=

∂2

∂φ∂χ
V = 4α(2α+ λ)φχ,

∂2

∂φ2
V= 6λ2φ2 − 2m2 + 2α(2α+ λ)χ2,

∂2

∂χ2
V= 6α2χ2 + 2α(2α+ λ)φ2 − 2αm2

λ
. (22)

We can get the masses of the bosonic particles, using the results above, from the second
derivatives of the potential:
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m2
φ ≡ ∂2V

∂φ2
|z→±∞

m2
χ ≡ ∂2V

∂χ2
|z→±∞ . (23)

For the sector χ = 0, and z → ±∞, m2
φ = 4m2. In this sector of BPS states, the

fluctuation potential term becomes

VBPS(z) = m2

(
6tanh2(mz)− 2 0

0 2α
λ2 (2α+ λ) tanh2(mz)− 2α

λ

)
. (24)

We can see that VBPS is a diagonal Hermitian matrix, then OF is also Hermitian. Hence,
the eigenvalues ω2

n of OF11 and ω̃2
n of OF22 are all real. We shall now show that ωn

2 are
non-negative, the proof of which takes us to a solution of the Pöschl-Teller potential [54].

The mode equations are decoupled and may be of two kinds, given by

OF11ηn ≡ − d2

dz2
ηn − m2(6sech2(mz)− 4)ηn = ω2

nηn (25)

and

OF22ξn ≡ − d2

dz2
ξn − 2m2α

λ2
(2α+ λ)sech2(mz)ξn +m2(

2α

λ2
(2α+ λ)− 2α

λ
)ξn = ω̃2

nξn. (26)

Note that, according to Eqs. (4) and (22), if α = 0, the potencial becomes V (φ) =
λ2

2
(φ2 − m2

λ2 )
2, so that the stability equation is given by Eq. (25) and, therefore, there

exists only the wall M12.
We can now see that both types of solutions exist only for certain discrete values of ω2

n.
Let us perform the transformation, mz = y, so that, upon comparison with the equation
(12.3.22) in [54], we obtain the following eigenvalues:

ω2
n = m2

{
4−

[
5

2
− (n+

1

2
)
]2}

. (27)

In this case, we find only two bound states associated with the eigenvalues ω2
0 = 0 and

ω2
1 = 3m2. Thus, the BPS states are stable.
Similarly, for the second type of solutions, we find, from Eqs. (26) and (12.3.22) of

Ref. [54], the following eigenvalues:

ω̃2
n = m2



2α

λ2
(2α + λ)− 2α

λ
−


√
2α

λ2
(2α + λ) +

1

4
− (n+

1

2
)




2

 . (28)

In this case, we find the number of bound states as given by

n = 0, 1, · · · <
√
2α

λ2
(2α + λ) +

1

4
− 1

2
,

so that, as an example, if we take α = 2λ, we get
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ω̃2
n = m2

{
16− (4− n)2

}
, n = 0, 1, 2, 3. (29)

We see that, in this particular case, we have four bound state associated with the eigen-
value ω̃2

0 = 0, ω̃2
1 = 7m2, ω̃2

2 = 12m2 and ω̃2
3 = 15m2. Therefore, the BPS state is

stable.
Extending to the case of only one single real scalar field [10,12–14], we can realize, a

priori, the 2x2-matrix superpotential that satisfies the following Riccati equation associ-
ated to the flutuaction potential VBPS(z):

W2 +W′ = VBPS(z), (30)

whose solution, in the general case, becomes

W = −2

(
λφ αχ
αχ αφ

)
|φ=φ(x),χ=χ(x)

. (31)

Restricted to the sector χ = 0, W becomes diagonal:

W = −2

(
m tanh(mz) 0

0 mα
λ
tanh(mz)

)
|φ=φ(z),χ=0

. (32)

Therefore, it is easy to show that the linear stability is satisfied, i.e., ω2
n = 〈OF 〉 =

〈A+A−〉 = (A−Ψn)
†(A−Ψn) =| A−Ψn |2≥ 0, as it has been anticipated. Note that we

have set OF ≡ A+A−, where the intertwining operators of SUSY QM must be given in
terms of the matrix superpotential, W. According to the Witten’ SUSY model [1,5], we
have

A± = ±I
d

dz
+W(z), Ψ

(n)

SUSY(z) =

(
ψ

(n)
+ (z)

ψ
(n)
− (z)

)
, (33)

where I is the 2x2 identity matrix.
Indeed, the bosonic sector Hamiltonian of HSUSY is exactly given by OF , which, as

obtained from the stability Eq. (19), has the following zero-eigenmode:

A−Ψ(0)
+ (z) = 0, Ψ

(0)
+ (z) = Ψ0 =

(
η0(z)
ξ0(z)

)
, (34)

as said before, this is not necessarily true for the excited eigenmodes.
Therefore, the two-component normal modes in (21) satisfy ωn

2 ≥ 0, so that the
stability of the domain wall is ensured.

The non-BPS wall, for φ = 0, is described by the following equation of motion:

d2χ

dz2
= −2αχ

(
m2

λ
− αχ2

)
, (35)

whose solution connecting the vacua M3 and M4 is given by

χ(z) =
m√
λα

tanh(Mz), M =

√
α

λ
m, (36)
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so that, in this case, the fluctuation potential term on the wall M34 is given by

VNBPS(z) = 2m2

(
2α
λ
+ (1 + 2α

λ
)sech2(Mz) 0
0 α

2λ
+ 3α

λ
sech2(Mz)

)
. (37)

As α �= λ, the tension of M34 is different from the wall tension M12.
The graded Lie algebra of the supersymmetry in quantum mechanics for both the BPS

and non-BPS states may be readily realized as

HSUSY = [Q−, Q+]+ =

( A+A− 0
0 A−A+

)
4x4

=

(H+ 0
0 H−

)
, (38)

[HSUSY , Q±]− = 0 = (Q−)2 = (Q+)
2, (39)

where Q± are the 4 by 4 supercharges of Witten SUSY N = 2 model, viz.

Q− = σ− ⊗A−, Q+ = Q†
− =

(
0 A+

0 0

)
= σ+ ⊗A+, (40)

with the intertwining operators, A±, in terms of 2x2-matrix superpotential, are given
by Eq. (33) and σ± = 1

2
(σ1 ± iσ2), where σ1 and σ2 are Pauli matrices. Of course,

the bosonic sector Hamiltonian of HSUSY is exactly the fluctuation operator given by
H+ = OF = − Id2

dz2
+V, where I is the 2x2 identity matrix, V = VBPS, for the BPS states

and V = VNBPS, for non BPS states.
In the case above, where the fluctuating operator is diagonal, we may construct two

representations of SUSY in quantum mechanics. Indeed, from (32), we define,

Wij = δijW(i), (41)

where Wij stand for the components of W(z). We are now using the summation conven-
tion for repeated indices. A parenthesis suppresses this convention.

The components of A± follow from (33),

Aij
± = δij(± d

dz
+W(i)(z)); (42)

also, the components of the fluctuaton operator read:

O+
Fij

= A+
ijA−

jk = δik(
d

dz
+W(k)(z))(− d

dz
+W(k)(z)), (43)

differently from the previous one. Now, all modes at a general nth-order can vibrate with
different frequencies. For this reason, we add another index (k) to account for frequency,
so that it distinguishes a k-mode,

O+
Fik

ψ
(n)
k = A+

ijA−
jkψ

(n)
k = δikω

2
(k)(n)ψ

(n)
k . (44)

This takes us to two representations of SUSY Quantum Mechanics [3], viz.,
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O+
F11

ψ
(n)
1 = A+

11A−
11ψ

(n)
1 = ω2

(1)(n)ψ
(n)
1 ,

O+
F22

ψ
(n)
2 = A+

22A−
22ψ

(n)
2 = ω2

(2)(n)ψ
(n)
2 . (45)

It is now possible to build up the respective supersymmetric partners for each SUSY
representation, similarly to (38). We have that W1 and W2 follow from (31) and (41),

W1 = −2m tanh(mz),

W2 = −2m
α

λ
tanh(mz), (46)

and with the help of [2] (by shape invariance), we have a procedure for constructing
a hierarchy of these fluctuation operators, obtaining therefore the eigenfunctions and
eigenvalues in these two representations. Here, we present only the eingenfunctions (ψ

(0)
i =

c(i)e
∫
dzWi(z)) of the ground state of the operator O+

F11
and O+

F22
, which are respectively

given by:

ψ
(0)
1 = c(1)sech

2(mz),

ψ
(0)
2 = c(2)sech

2α
λ (mz), (47)

where c(i) is the normalization constant of the correponding ground state. The eigenvalue

of the ground state becomes ω2
(i)(0) = 0, due to the annihilation condition, viz. A−

iiψ
(0)
(i) = 0.

The index i identifies which SUSY representation we are referring to. Note that, if α = λ,
we see that the two SUSY representations become equivalent. One should also remark that
α and λ have been chosen both positive, so that 2α

λ
> 0, so that as ψ

(0)
2 (z) is a normalisable

configuration; also there are 2 normalisable independent zero-mode eigenfuctions such
that, η0 = ψ

(0)
1 (z) and ξ0 = ψ

(0)
2 (z).
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IV. CONCLUSIONS

In the present work, we investigate, in terms of fluctuation operators, BPS and non-
BPS states in 2-dimensional model with minimal N = 1 supersymmetry. The correspond-
ing stability equations, for different eingenvalues, have been analyzed without and with
supersymmetry in Quantum Mechanics (SUSY QM), so that frequency eigenvalues are
identical. A connection between BPS and non-BPS states has been implemented via su-
persymmetric Quantum Mechanics with two-component wave functions, and the stability
equations associated with the soliton solutions of the simple model of two coupled real
scalar fields have been investigated, by calculating the tension on two domain walls. In
both cases, the domain walls belonging to the BPS and non-BPS states, the zero-mode
ground states become two-component eigenfunctions, for the particular case in which we
have found the explicit form of different eigenvalues, via two SUSY representations.

A realization of Witten’s N = 2-SUSY model for this system must necessarily be mod-
ified [4]. The essential reason for the necessity of modification is that the Riccati equation
given by (30) is reduced to a set of first-order coupled differential equations. In this case,

the superpotential is not necessarily and directly defined as W (z) = − 1

ψ
(0)
+

d
dz

ψ
(0)
+ (z), ac-

cording to the system described by one-component wave functions with N = 2 SUSY in
the context of non-relativistic quantum mechanics [1,5]. Moreover, as the zero-mode is

associated with a two-component eigenfunction, Ψ
(0)
+ (z), one may write the matrix super-

potential only in the form d
dz
Ψ

(0)
+ (z) = WΨ

(0)
+ (z) [4]. However, we can find the eigenmodes

of the supersymmetric partner H− from those of H+ ≡ OF , and the spectral resolution
of the hierarchy of matrix Hamiltonians may be achieved in an elegant way, according to
the Sukumar’ method for SUSY QM [2]. In this case, the intertwining operators A+(A−)
convert an eigenfunction of H−(H+) in to an eigenfunction of H+(H−) with the same

energy and simultaneously destroys (creates) a node of Ψ
(n+1)
+ (z)

(
Ψn

−(z)
)
.

A detailed analysis of this application may be implemented in terms of an elliptical
path of the BPS domain walls.
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FIGURES

FIG. 1. The two coupled field potential model.

FIG. 2. The polynomial superpotential that generates the BPS domain wall.
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FIG. 3. Static classical configuration which represents the domain wall.
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FIG. 4. The eigenfunction of the zero mode.


