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I. INTRODUCTION

Causality implementation in �eld theory is naturally connected to the very concept

of �eld propagation. Old and well known problems appear with a �eld in a close neigh-

bourhood to its sources. Then a careful analysis is required as the kinematical constraint

of a causal propagation is mixed with the dynamics of the �eld-source interaction. In

particular, for a point-like source, there are problems with in�nities and other signs of

inconsistency. Thus there is a generalized belief that these in�nities are consequences

of the source point-size dimension and, consequently, that a point-particle cannot be re-

garded as a viable model for a charged elementary physical object. This, as shown in

[1], does not correspond to reality. The in�nities associated to a point-charge self-�eld

are consequences of the way causality has being implemented with the use of lightcones,

whose vertex is a singular point; the �eld in�nity just reects this singularity. This work

returns to the ideas raised in [1] further discussing its physical and geometrical meanings.

Although it is being based on the case of a point electric charge, its conclusions are of a

wider generality, being valid not only for classical �eld theory but for any theory of �elds

de�ned with support on a conic hypersurface (Quantum Field Theory, Quantum Mechan-

ics, General Relativity, Statistical Mechanics, etc), i.e. any theoretic frame work with

causality implementation. It shows that the plain Maxwell's theory, in a short-distance

limit, reveals unequivocal and previously unsuspected signs of a quantum nature (the

existence of photons) through the indication of a discreteness on the electromagnetic in-

teraction, hidden behind the classical continuous formalism. It hints a proposal of a new

approach (fully developed elsewhere [2] where �elds and sources are symmetrically treated

as discrete objects from which the standard continuous �elds are retreated as spacetime

e�ective averages.

This paper is organized in the following way. The geometric vision of causality is

discussed in Section II with the introduction of the new concept of extended causality in
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contraposition to the usual local causality and of their connection to wave-particle duality.

Their relevance to point-charge electrodynamics and their inherent conicts are discussed

in Section III. The implications of extended causality on �eld-source dynamics is exposed

in Sections IV and V. The paper ends with some �nal comments and the conclusions in

Section VI.

II. CAUSALITY AND SPACETIME GEOMETRY

The notation used is of omitting the spacetime indices when this causes no ambiguity.

For example, @ for @�, and A(x; � ) for a vector �eld A�(x; � ); x stands for both, the event

parameterized by x� = (t; ~x) and for the coordinate x� itself.

The propagation of a massless �eld on a at spacetime of metric ��� = diag(�1; 1; 1; 1);

is restricted by

�x2 = 0; (1)

which de�nes a local double (past and future) lightcone: �t = �j�~xj: This is also a

mathematical expression of local causality in the sense that it is a restriction for the

massless �eld to remain on this lightcone. It is a particular case of the more generic

expression

�� 2 = ��x2; (2)

which is, besides, the de�nition of the proper time � associated to the propagation of

a free physical object across �x. As � is a real valued parameter, the eq. (2) just

expresses that �x cannot be space like. Geometrically it is also the de�nition of a three-

dimensional double hypercone, of which the lightcone and the time axis are just the

two extreme limiting cases. �x is the four-vector separation between a generic event

x and the hypercone vertex. This conic hypersurface is the support for the de�nition
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of a propagating �eld. The hypercone aperture-angle �; 0 � � � �=4; is given by

tan � = j�~xj
j�tj

; c = 1; or �� 2 = (�t)2(1 � tan2 �): A change of the supporting hypercone

corresponds to a change of speed of propagation and is an indication of interaction.

On requirements of continuity one must consider the constraint (2) on a neighbourhood

of x: (�� + d� )2 = �(�x+ dx)2 or, after using eq. (2), ��d� + �x:dx = 0, which may

be written as

d� + f:dx = 0; (3)

where f is a four-vector tangent to the hypercone (2). For �� 6= 0 it is just

f� :=
�x�

��

���
��2+�x2=0

(4)

For �� = 0 the hypercone (2) reduces to the lightcone (1) and f to its tangent four-vector;

f and �x are both lightlike. It is important to observe that f is well de�ned for any �� ,

including �� = 0, as long as �x 6= 0: A tangent is not de�ned at the hypercone vertex.

This is a crux point, neglected in the existing literature [3{8] which leads to the old and

well known vexing problems of consistency in classical elctrodynamics [1]. Geometrically

eq. (3) de�nes a hyperplane tangent to the hypercone (2). The simultaneous imposition of

eqs. (2) and (3) on the propagation of a free point object produces a much more stringent

constraint than local causality as the object is restricted to remain on the intersection of

the hypercone (2) with its tangent hyperplane (3), that is, on the hypercone generator

tangent to f , or the f -generator, for short. This corresponds to an extended concept of

causality which will be referred as extended causality.

Local and extended causality correspond to two distinct and complementary (like

geometric and wave optics) description of a same physical system. They correspond to

di�erent perceptions of the spacetime available to the free evolution of a physical system

from a given initial condition, respectively as foliations of hypercones and as congruences

of straight lines, the hypercone generators. So, whereas the �rst one is appropriated for
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a description in terms of continuous and extended objects like a uid, a �eld, a wave, the

second one implies on a perception of them as sets of points, describing individually each

point. Failure on recognizing this leads to problems of consistency in �eld theory at short

distance.

III. POINT-CHARGE ELECTRODYNAMICS

Consider, for example, z(� ), the worldline of a classical point electron parameterized

by its proper time � ; each event on this worldline belongs to the (instantaneous) hypercone

�� 2 +�z2 = 0

and the four-vector u = dz
d�

is tangent to the worldline (and to the hypercone). It satis�es

d� + u:dz = 0;

which corresponds to eq. (3). A free electron remains on the u-generator of its hypercone;

an accelerated electron is on a u-generator of its instantaneous hypercone. So, in a way,

classical electrodynamics already uses extended causality for specifying the state of the

classical electron, and this is consistent with an electron modeled as a point particle. This

work discusses how extended causality is also used in the de�nition of its electromagnetic

�eld and the conicting problems brought with this, pointing the way to a new consistent

formalism for �eld theory.

Consider now the electromagnetic �eld at x, emitted by this electron. �x = x � z(� )

de�nes a family of four-vectors connecting the event x to events on the electron worldline

z(� ): Then, accounting for the masslessness of the electromagnetic �eld, �x2 = 0, the

double lightcone with vertex at x; intercepts z(� ) at two points: z(�ret) and z(�adv): See

the Figure 1.
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FIG. 1. The advanced and the retarded Li�enard-Wiechert �elds at an event x. �adv and �ret

are the two intersections of the double hypercone �x2 = 0, for �x = x� z(�), with the electron

worldline z(�).

The retarded �eld emitted by the electron at z(�ret) must remain in the z(�ret)-future-

lightcone, which contains x; and according to the standard interpretation [3{5], the ad-

vanced �eld produced by the electron at z(�adv) must remain in the z(�adv)-past-lightcone,

which also contains x. So, the electromagnetic �eld is de�ned just with local causality.

There is then supposedly a clear dichotomy with respect to causality implementation in

the treatment done to the electron and to its self-�eld [13], caused by the perception of

the electron as a point particle, a discrete object, and of its �eld as a continuous and

distributed one. Extended causality requires and implies discrete objects.

The (retarded and advanced) Li�enard-Wiechert solutions of classical electrodynamics

[3{8] are

A�(x) =
eu�(� )

�

����
�=�s

; for � 6= 0; (5)

where �s stands for either �ret or �adv, which are, respectively, the retarded and the ad-

vanced solution to the constraint
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(x� z(� ))2 = 0; (6)

imposed to A(x); and

� := �u:�x;

with �x == x�z(� ), represents j�~xj of the charge rest-frame. Although A(x) is restricted

just by eq. (1), having thereby support on the lightcone, for the calculation of its Maxwell

�eld,

F�� := @�A� � @�A�; (7)

on a point x it is necessary to consider A(x) on a neighbourhood of x, and so a constraint

equivalent to the eq. (3) must be also considered to assure the consistency of eq. (1) in

this neighbourhood. From eq. (6) one has

�x:d(x� z) = �x:(dx� ud� ) = 0;

that allows to write

d� +K:dx = 0; (8)

where K de�ned by

K� =
�x�

�u:�x

���
�s
=

�x�

�

���
�s
; (9)

is a null (K2 = 0) four-vector, tangent to the lightcone �x2 = 0. K� shows the local

direction of propagation of the electromagnetic �eld emitted by the electron at �s: In this

context, eq. (8) is a consistency relation of eq. (2) assuring its validity for all successive

pair of events (x; z(� )): It implies on

K� = �
@�s
@x�

; (10)

where �s, a solution of Eq. (6), is seen as a function of x. Then,
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where a := du
d�
;

@��

����
�s

=
�
K�

�
1 + �a:K

�
� u�

�����
�s

(12)

and the ancillary four-vector function W ,

W � = f�a� + u�
�
1 + �a:K

�
g

����
�s

; (13)

has been introduced just for notation simplicity. So,

F �� =
1

�2

�
K�W � �K�W �

�����
�s

(14)

Geometrically the eq. (8), like the eq. (3), de�nes a family of hyperplanes that, for

d� = 0, are tangent to the lightcone (6), and parameterized by K� = ���K
� : The use of

both constraints (6) and (8) implies the extended causality in the F de�nition, exhibited

on its explicit dependence on K�, a four-vector tangent to a light-cone generator. But

rigourously this is an inconsistent procedure as an undue mixing of local and extended

causality on a same physical object. The inconsistency is on F being de�ned as the curl of

A(x) which is a continuous �eld with support on the lightcone. If its support is reduced

to the K-generator of its lightcone, F would have to be regarded as a discrete object,

similar, in this aspect, to its very source, the point electron. The problem, of course, is

not with the de�nition (7) of F but with A(x) being a propagating �eld and, therefore,

restricted by a causality constraint that necessarily requires the constraint (8) on any

�eld derivative. In other words, there would be no problem with the de�nition (7) if A(x)

where not constrained by (6) as the constraint1 (8) would not be called up then.

1A completely consistent formulation would require A(x) being de�ned with extended causality

too. This would imply the consideration of �elds de�ned with support on (1+1) sub manifolds
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In the standard literature, without knowledge of extended causality, F is seen as a �eld

with support on the lightcone, i.e. a continuosly extended object with old and well-known

problems with in�nities and other inconsistencies. These problems just vanish after due

consideration of extended causality [1].

The origin of this imbroglio is that the equation (8), as it can be formally obtained

from a derivation of eq. (2), has been historically considered [2-7] as if all its e�ects

were already described by eq. (2), included in it and not, as it is the case, a new and

independent restriction to be considered at a same footing and in addition to it. An

evidence of this is that eqs. (2) and (8) carry distinct physical informations that will be

discussed now.

IV. DYNAMICS AND CAUSALITY

Eq. (8) connects the restriction on the propagation of the charge to the restriction on

the propagation of its emitted or absorbed �elds. Like its parent equation (2) it is just

a kinematical restriction. But in the short-distance limit, when x tends to z(� ), eq. (8),

in contradistinction to eq. (2), is directly related to the changes in the charge state of

movement due to the emission or to the absorption of electromagnetic �eld, that is, to

the charge-�eld interaction process. Therefore, in this short distance limit eq. (8) also

carries dynamical information, not only kinematical, as is the case of eqs. (1) and (2).

It is instructive to have a close look on the physical meaning of eqs. (6) and (8) for

the case of an emitted �eld. Eq. (6) is a restriction on the propagation of a single object,

imbedded in the (3+1) spacetime, \discrete �elds", with a complete symmetry between �elds

and sources, both being discrete objects. This is done in [2,14]. The goal of the present paper is

of pointing the existence of two modes for causality implementation (local and extended) in �eld

theory and their implications to the meaning and nature of the �elds and their interactions.
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the �eld emitted by the charge at z(� ), whereas the equation (8) connects restrictions on

the propagation of two distinct physical objects, the electron and its �eld: d� describes a

displacement of the electron on its worldline while dx is the four-vector separation between

two other points where the electron self-�eld is being considered. If d� = 0 then dx is

lightlike and collinear to K, as K:dx = 0: Thus, dx is related to a same electromagnetic

signal at two distinct times. The electromagnetic �eld at x + dx can be seen as the

same �eld at x that has propagated to there with the speed of light. On the other hand,

if d� 6= 0 then dx is not collinear to K and it is related to two distinct electromagnetic

signals, emitted at distinct times. See the Figure 2. In this case, the �eld at x+dx cannot

be seen as the same �eld at x that has propagated to there. It is another �eld emitted by

the charge at another time. This apparently obvious interpretation of the constraint (8)

reveals, however, deep physical implications as it perceives as being distinct objects the

�elds F in two events that are not along a same K. This comes from extended causality

requiring a F de�ned with support on a K-light-cone generator and conicting with local

causality in the de�nition of A(x).
z (   )τ

τ
ret

τ
ret + d τ

x

S

d x S

Q

d x Q

.

.

.

.

K

K

FIG. 2. The �eld at the point Q may be considered as the same �eld at x that has propagated

to Q, because dxQ is collinear to K. The �elds at events x and S are two distinct signals emitted

by the charge at two distinct times �ret and �ret + d� as dxS is not collinear to K.

But a F de�ned with support on a lightcone generator produces strong and exper-
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imentally observable consequences. During the free propagation of an electromagnetic

radiation, the four-vector K of its light-cone-generator support must be constant. So, the

eq. (8) implies on

1 +K:u = 0 (15)

and then

K:a = 0: (16)

The �rst one may be seen as a covariant normalization of K, that in the charge instanta-

neous rest frame must satisfy

K0
���
~u=0

= j ~Kj
���
~u=0

= 1:

The second one is a dynamical constraint between the direction K along which the signal

is emitted (absorbed) and the instantaneous change in the charge state of motion at the

retarded (advanced) time. It implies on

a0 =
~a: ~K

K0
; (17)

whereas a:u � 0 leads to

a0 =
~a:~u
u0
;

and so, in the charge instantaneous rest frame at the limiting emission (absorption)

time ~a and ~K are orthogonal vectors,

~a: ~K
���
~u=0

= 0: (18)

This is an observable consequence of extended causality. For the electromagnetic �eld

this is an old well known and experimentally con�rmed fact [9,11,12]. Its experimental

con�rmation is a direct validation of extended causality and of its implications, as dis-

cussed in the Section X of [14]. The constraint (16) that takes, in the standard formalism
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of continuous �elds, the whole apparatus of Maxwell's theory to be demonstrated [11] can

been obtained on very generic grounds of causality [2] without reference to any speci�c

interaction. This makes of it a universal relation, supposedly valid for all kinds of �elds

and sources. This same behaviour, expressed in eq. (18), is then expected to hold for all

fundamental (strong, weak, electromagnetic and gravitational) interactions.

The relevance of eq. (16) is on its focus on the charge-�eld interaction process. It

is strongly dependent on K being taken as a constant during the �eld propagation. A

non-constant K would imply on a continuing interaction and this would change the above

results.

@�K� =
1

�
(��� +K�u� +K�u� �K�K� )�K�K�a:K = @�K� := K�� ; (19)

from eqs. (9) and (12). Then the hypothesis of a non-constant K would not a�ect eq.

(15) because

K���x� = �K��K
� = K�(1 +K:u) � 0; (20)

but eq. (16) would be replaced by just an identity as

r�(1 +K�u
�) = K��u

� �K�K�a
� = K�(1 +K:u) � 0: (21)

So, it is clear that the validity of eq. (16) rests on a free propagation of the �eld right

after its emission (or, symmetrically, right before its absorption) which indicates no self-

interaction, a de�nitive detachment of the �eld from its source. Self interaction for the

emited �eld would also imply, by symmetry, causality violation for the absorbed �eld as

it would be interacting with the charge even before reaching it.

V. THE DOUBLE LIMIT X ! Z(�)

The above conclusions can be made more evident considering the fate of both eqs. (2)

and (8) in the limit when the event x approaches the event z(�s) and its implications to
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the �eld energy-tensor2. Nothing obviously happens to the �rst one; �x just goes to zero.

To the second one the restriction connecting d� to dx becomes indeterminated because K

is not de�ned in this limit:

lim
x!z(�s)

K = lim
x!z(�s)

�x

�u:�x
=

0

0
? (22)

For a lightlike signal, eqs. (2) and (8) together require that the pair of events x and z(� )

belongs to a same lightcone generator, so that eq. (22) can be written as

lim
x!z(�s)

K

���� �x2=0
d�+K:dx=0

=
0

0
? (23)

This notation intends to denote that x approaches z(�s) through a K-light-cone generator,

i.e. by the straight line intersection of the hypercone (�x2 = 0) and its tangent hyperplane

(d� +K:dx = 0), eliminating any ambiguity in the de�nition of the limit in eq. (22). Now

one can apply the L'Hôpital's rule for evaluating K on the neighbouring events of z(�s)

along the electron worldline, i.e., at either �s+d� or �s�d�: This corresponds to replacing

the above simple limit of x ! z(�s) by a double and simultaneous limit of x ! z(� )

along the K-lightcone generator while z(� ) ! z(�s) along the electron worldline. This

simultaneous double limit is pictorially best described by the sequence of points S, Q,...,P

in the Figure 3; each point in this sequence belongs to a K-generator of a lightcone with

vertex at the electron worldline z(� ):

2This is discussed in [1] but for completeness, considering its relevance here, its main steps and

some further considerations are aligned.
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FIG. 3. The double limit x ! z(�ret) along the SQ...P line consists of x ! z(�) along the

light-cone generator K while � ! �ret on the electron worldline.

Then, from eq. (22),

lim
x!z(�)
�!�s

K
��� �x2=0
d�+K:dx=0

= lim
x!z(�)
�!�s

�_x

�a:�x+ u:�_x)

���� �x2=0
d�+K:dx=0

=

= lim
x!z(�)
�!�s

�u

u:u

���� �x2=0
d�+K:dx=0

= u; (24)

as _�x := d�x
d�

= �u and u2 = �1: So Kjx=z(�s) is inde�nite but Kjx=z(�s�d�) = u:

The lightlike four-vector K is replaced by the timelike four-vector u in the above

de�ned (double) limit of �x ! 0: This result changes the usual vision of �eld theory in

this limit.

The electron self-�eld energy tensor, 4�� = F:F � �

4F
2, after eq. (11) becomes,

� 4��4� = (KW +WK) +KKW 2 +WWK2 +
�

2
(1�K2W 2); (25)

as K:u = �1 from eq. (9) and K:W = �1. The eq. (25), like eqs. (5) and (14), are all

constrained by eq. (2), i.e. by � = �s; and they are valid only for � 6= 0, region where

K2 = 0: So, instead of eq. (25) one may write
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� 4��4�
����
K2=0

= (KW +WK) +KKW 2 +
�

2
; for � > 0; � = �s; (26)

which corresponds to the usual expressions that one �nds, for example in [2-7]. They

are equivalent, as long as � > 0. The four-vector momentum associated to the electron

self-�eld is de�ned by the ux of its � through a hypersurface � of normal n:

P = �
Z
d3�n:�

����
K2=0

; (27)

but � contains a factor 1
(�)4 and this makes P highly singular at � = 0, that is at x = z(�s):

This is the old well-known self-energy problem of classical electrodynamics which heralds

[10] similar problems in its quantum version. This divergence at � = 0 is also the origin

of nagging problems on �nding a classical equation of motion for the electron [2-7]. But

it is clear now, after equation (24), that the standard practice of replacing everywhere �

by �

����
K2=0

is not justi�ed and, more than that, it is the cause of the above divergence

problem and the related misconceptions in classical electrodynamics. One must use eq.

(25), the complete expression of �, in eq. (27) and repeat for it the same double limit

done in eq. (24). The long but complete and explicit calculation is done in [1]; its results

and conclusions are summarised here:

P

����
x=z(�s)

is unde�ned but

P

����
x=z(�s�)

= P

����
x=z(�s+)

= 0: (28)

There is no in�nity at � = 0! This in�nity disappears only when the double limiting

process is taken because the lightcone generator K must then be recognized as the actual

support of the Maxwell �eld F: The message here is that the in�nities and other inconsis-

tencies of classical electrodynamics are not to be blamed on the point electron but on the

lightcone support of the �eld in the eq. (5). Extended causality cannot just be ignored.

VI. CONCLUSIONS

We can summarize it all with the following implications to the charge-�eld dynamics:



CBPF-NF-029/01 15

1. No self interaction; once emitted the �eld no longer interacts with the charge;

2. The emission process is discrete;

3. The emission event is an isolated singularity on the charge worldline; singular in the

sense of discontinuity on its �rst derivative.

Equation (28) con�rms that z(�s) is an isolated singularity. This is in direct contra-

diction to the standard view of a continuous �eld, emitted or absorbed by the charge in a

continuous way. According to eq. (28) there is no charge self �eld at z(�s � d� ), but only

sharply at z(�s). This is puzzling! It is saying that the Gauss' law, in the zero distance

limit, limS!0
R
S d�

~E:~n = 4�e, is meaningful only at z(�s) and not at z(�ret�d� ) because

~E(�s) 6= 0 but ~E(�ret�d� ) = 0:

It implies, in other words, that the electromagnetic interactions are discrete and localized

in time and in space. In terms of a discrete �eld interaction along a lightcone generator,

as the one represented3 in the Figure 4, one can understand the physical meaning of eqs.

(23), (24) and (28). The continuous Maxwell �elds are just e�ective average descrip-

tions of an actually discrete interaction �eld. The �eld discreteness (or the existence of

photons) is masqueraded by this averaged �eld and it takes the zero distance limit to

be revealed from the Maxwell �eld. It may sound unbelievable or even suspicious that

these conclusions have been derived exclusively from the supposedly exhaustively known

classical electrodynamics but nothing has been added to or modi�ed in the old Maxwell's

theory, except a new interpretation of old results. They come from the recognition of the

existence of two mutually excludent causality-implementation modes in the Maxwell's

formalism. This could have been taken, if it were known at the beginning of the last

3For simplicity, the cause(the absorption of a photon, for example) of the sudden change in the

electron state of movement is not shown, only its consequence (the emission of a photon)
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century, as a �rst indication of the quantum, or of the discrete nature of the electromag-

netic interaction. All these are consequences of the dynamical constraints hidden on the

restrictions (2) and (8).

The initial goal of discussing the implicit existence of two distinct modes of implement-

ing causality in �eld theory and of pointing that the old consistency problems are created

by non-recognizing them has been ful�lled. A completely consistent �eld formalism must

be expressed in term of �elds de�ned ab initio with extended causality. How this can be

accomplished, its consequences and how it is related to the standard formalism based on

local causality only is done in [2].

τ

K

V 1

V 2

ret

FIG. 4. A discrete interaction along a lightcone generator K: There is no electron self-�eld

immediately before or after �ret: It is an isolated singularity. �ret is a singular point on the

electron worldline only because its tangent is not de�ned there; there is no in�nity.
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