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Introduction

One of the most important macroscopic law's of electromagnetism is the well known

Ohm's Law relating the current 
ow density to the applied steady electric �eld by a

linear relationship where the proportionality constant is connected to the resistive medium

characteristics.

It is very important to remark that up to the author's knowledgement there is not

yet a clear deduction of this macroscopic charge 
ow law from a microscopic theory.

For example in classical charges conduction, one always present the Ohm's law from

the phenomenological point of view by introducing by hand a damping force, acting

against the charge 
ow velocity, proportional to velocity and taking into account the

collisions with the \resistive" medium by means of a pure damping term. According

to the above pointed out phenomenological analysis, one obtains the Ohm's law as the

steady limit of the charge-current 
ow velocity. I clarify and generalize that classical-

phenomenological framework in section 1 by modelling the resistive medium as a classical

\(statistically chaotic) bath of one-dimensional harmonic (vibrations) medium �eld", as

�rstly proposed by myself in my previous work ([1]) and related to D-dimensional isotropic

resistive mediums.

The situation on the quantum regime is, at least, heavily phenomenological from �rst

principles. Let me point out that in the usual text books treatment ([8]), one considers

the acceleration of an electron in a periodic (perfect) lattice by means of the time variation

of the electron band vector wave. One, thus, taken into account the interaction of the

electron Block states with impurities and lattice vibrations by a pure phenomenological

procedure which, by its turn, consists by de�ning a characteristic time between the elec-

tron collisitions. Equivalently: a phenomenological damping term is considered in the

classical band electron acceleration equation in order to simulate the medium resistance.

Note that in the presence of a steady external applied electric �eld, the cristal electron

Schr�odinger equation does not satis�es the Block theorem and, thus, one only has the

Band-structure energy level concepts in a perturbative or phenomenological approach and

thus, implying by its turn a very weak external applied electric �eld situation. I present in
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section 2 a general Ohm's law deduction in the quantum regime by introducing explicitly

the interaction of the quantum electron with a reservoir in a Langevin-Hydrodynamic

framework similar to that exposed in section 1 and ref. [2]. Note that my proposed pro-

cedure has a general validity including the case of quantum electron motion in metallic

cristals, in polar cristals, quantum ions motions in 
uids, etc... Finally, I close section

2 by presenting a deduction of Ohm's law directly from the one-body Caldirola-Kanai

quantum theory and the magneto-resistance case.

Section 1 { The Classical Ohm's Law in the Path-

Integral Framework { the one dimensional case

Let us, thus, start our study by modelling the resistive medium by a one-dimensional

scalar medium �eld (phonons, etc...) with the following dynamic wave equation in the

range t 2 [0;1) and x 2 (�1;1) (see [1])

@2�(x; t)

@x2
=

1

c2
@2�

@t2
(1)

Let us impose the medium statistics chaos by means of the following random initial

conditions

�(x; 0) = 0 (2)

@�

@t
(x; 0) = f(x) (3)

where f(x) represents the statistical chaotic initial velocities satisfying the Gaussian statis-

tics and leading, thus, to the stochastic behaviour for the resistive medium as in the usual

baths in Brownian physics ([4])

hF (x)F (x0)i = 
�(x� x0) (4)

Here the e�ective medium velocity is given by �=m = 1
c2

where m denotes the medium

\atoms" harmonic oscillators mass, � is the lattice strength of the medium oscillators and


 the medium randomness intensity.
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Let me introduce the usual plane wave expansion for this resistive medium �eld gen-

erated by the medium harmonic oscillator \atoms"

�(x; t) =

Z
1=�<jkj<�

dk �k(t)e
ikx (5)

with

��k(t) = ��k(t) (6)

Here � is an intrinsic wave vector cut-o� setting a scale for the particle damping constant

as it will be shown later on (the Debye frequency).

At this point, I consider the following set of equations for a charged particle of mass

M in the presence of an external one-dimensional applied electric �eld added with the

resistive medium interaction which is taken to be of the simplest linear form with a

medium-particle interaction couplign constant g > 0 ([1])

M
d2Q

dt2
(t) = �eE � gk�k(t) (7)

d2�k
dt2

= �k
2

c2
�k(t)� gkQ(t) (8)

By considering the above di�erentials equations of motion in the frequency domain

by means of a Laplace transform, I get the following algebraic equations in the frequency

domain in place of eqs. (7)-(8)

M~s ~Q(s) = �eE
s
� gk ~�k(s) (9)

s2 ~�k(s)� ~fk(s) = �k
2

c2
~�k(s)� gk ~Q(s) (10)

By making use of the identity ([2])

1

s2 + k2

c2

=

 
1 � s2

s2 + k2

c2

!
1
k2

c2

(11)

I can re-write eq. (9) in the following suitable form where � the cut-o� of the resistive

medium wave vectors harmonic oscillators 1=� < jkj < �

Ms2 ~Q(s) = �eE
s
� g�R �

1=� dk
� Z

1=�<jkj<�

dkK

"
~fk(s)� gk ~Q(s)

s2 + k2

c2

#
(12)
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I note that the ~Q(s) term, coming from the last equation in the right-hand side of eq.

(12) is given by

(c2g2) ~Q(s)� (2�g2c)�R
1=�<jkj<�

dk
�(s ~Q(s)) (13)

The time domain equation associated with eq. (13) is, thus, given by

M �Q(t) = (c2g2)Q(t)� eE � �(�)
dQ

dt
(t) + F (t) (14)

where I have �rstly, a restauring force counter-term piece which I neglect in what follows

since the motion frequency w2
0 =

c2g2

M
<< 1; and besides its presence does not in
uences

my results, secondly a induced (not put by hand!) damping term with a friction coe�cient

�(�) = 2�g2c
�

and �nally, and external random force F (t) coming from the statistical chaotic

resistive medium oscillators initial velocities and satisfying the Gaussian Statistics

hF (t)F (t0)i = g2

�2

c2
Z
1=�<jkj<�

dk sen

�
kt

c

�
sen

�
kt0

c

�

� g2
c2 � c
�2

�(t� t0)
def
= �
�(t� t0) (15)

Note that a new strenght disorder �
 is related to the old strenght disorder 
 harmonic

oscillators medium initial velocities by �

def� c3
g2

�2
.

Let me, thus, deduce the Ohm's law from the Langevin equations ((14)-(15)).

In this classical framework, the current density is I(t) = � dQ
dt
(t) with � is the free

charge density of the charge 
owing in the resistive medium which will be taken to be

unity for simplicity in what follows.

Now, a simple functional integral shift as exposed in my earlier papers ([5]), leads to

the following path-integral representation for the Gaussian stochastic process de�ned by

our Langevin equation ((14) (see ref. [6]).

Z[J(t)] =
1

Z(0)

Z
DF [I(t)]exp

(
� 1

2�


Z 1

0

dt

�
d

dt
I(t)� e

M
E � �(�)

M
I(t)

�2)

exp

�
i

Z 1

0

I(t)J(t)dt

�
(16)

Now it is straightforward calculation to evaluate the averaged current and, thus, obtain

the Ohm's law in this classical situation

�I = hI(t0)i = �Z[J(t)]

�J(t0)

��
J(t)=0 = �


�(�)

M

� e
M

�
E

Z 1

0

ds

"
e�

�(�)

M
(s�t0)�(s� t0)

�(�)=M

#
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= �

M

�(�)
e

M
E =

e�


�(�)
E (17)

By introducing the potential V = E:d, where d is now the resistive medium lenght,

one obtains the following formulae for the medium resistance parameter in terms of our

microscopic constants (see eq. (17) and eq. (15)).

Rmedium =
�(�)d

e�

=

2�g2cd

e��[c3
g2=�2]

=
2��d

ec2

(18)

Let me close this section with the following physical remarks on eq. (19). Firstly if one

increases the interaction g of the charged particle with the medium \atoms" the Rmedium

will be insensitive since it does not depends on g. However, in this strong coupling situ-

ation it certainly will be necessary to take into account non-linear terms of the medium

wave �eld eq. (1)-eq.(2) and consequently these new non-linear terms will leads to devi-

ations of the Linear Ohm's law eq. (17). For instance in the usual classical framework

one should expects a medium resistance proportional to square of the velocity instead of

the usual linear damping term. It is a straightforward calculation to see that the steady

solution of the charged particle velocity equation satis�es now �
�m
v2 = eE = eV

d
which

naturally leads to a square root Ohm's law V = d
e
�
m

�
I

Nes

�2
with a new \resistivity" pa-

rameter � which is exactly given by � = d
e
�
m

1
N2e2s2

. Here s the medium area and N the

number of carrier charges on the medium.

Finally, I point out that the analysis in the full 3D-medium (not factorizable in one-

dimensional mediums) leads to the super-Ohmic case (see ref. [1] for details).



{ 6 { CBPF-NF-028/99

Section 2 { Ohm's law in Brownian Quantum Me-

chanics { the 3D Case

Let me start this section by reviewing my proposed D-dimensional Brownian quantum

mechanics ([3]). Brownian quantum mechanics is an e�ective closed quantum system

description of the interaction of a quantum single particle with a thermal reservoir by a

Langevin-Euler equation for the quantum particle probability current

~j(~x; t) =  (~x; t)i�h~r �(~x; t)�  �(~x; t)i�h~r �(~x; t) (19)

The main point in my proposed Brownian quantum mechanics is to introduce dissipa-

tion by considering a W.K.B pure phase approximation for the one-dimensional particle

Schr�odinger wave equation, namelly  (x; t) = A exp
�
i
�hS(x; t)

�
with A constant, and,

thus, I replace the Schr�odinger wave equation by the Langevin-Euler equation for the

W.K.B quantum current ~j(x; t) = ~r � S(~x; t), i.e.:
@

@t
~j(x; t) +

1

2M
~j(x; t) � ~rj(~x; t) = ��~j(~x; t) + ~F (~x; t) (20)

Here F (x; t) is the usual Langevin-bath random force satisfying the white noise statis-

tics hFi(x; t)Fj(x0; t0)i = D�(x� x0)�(t� t0)�ij. ([3])

Let me deduce the Ohm's law from the complete stochastic Langevin equation (20)

solved exactly by a path integral procedure borrowed from similar procedure of that

implemented in section 1, eq. (16) and at the one loop level approximation in the theory's

coupling constant D (the noise bath strenght).

By proceeding as in ref. [5]-[6], we can write the characteristic funcional for eq. (20)

as the following Euclidean �eld path integral

Z[~k(x; t)] =
1

Z(0)

Z
DF [~j(x; t)]

exp

8<
:� 1

D

Z 1

0

dt

Z +1

�1

dx

 
@~j

@t
+ (~j � ~r)~j + �~j � e

M
~E

!2

(~x; t)

9=
;

exp

�
i

Z 1

0

dt~j(~x; t)~k(~x; t)

�
(21)
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Let me evaluate eq. (21) at one-loop level around the static Ohm's law classical

con�guration ~jclassical =
e

M�
~E

~j(~x; t) =
e

M�
~E +

r
D

2

�!̂
j (x; t) (22)

Note that the classical Ohm's law con�guration is given by the steady (space-time

independent) solution of the classical equation associated to the action weight in the path

integral eq. (21).

We arrive, thus, at the following Gaussian functional integral as my proposed one-loop

approximation

Z[ ~K(~x; t)] =
1

Z[0]

Z
DF [~j(x; t)]

exp

8><
>:�

1

2

Z 1

0

dt

Z +1

�1

dx

0
@@�!̂j

@t
+

e

M�
( ~E � ~r)

�!̂
j + �

�!̂
j

1
A

2

(~x; t)

9>=
>;

exp

 
i

Z 1

0

dt

Z 1

�1

dx ~K(~x; t)

 
e ~E

M�
+

r
D

2

�!̂
j (~x; t)

!!
(23)

It is a simple evaluation to write the causal Green function of the kinetic operator

associated to eq. (23) in order to have the exactly expression for the current-current two

point correlation

hĵi(x; t)ĵp(x0; t0)i = D�ip
4

"
�

 
(~x� ~x 0)� e ~E

M�
(t� t0)

!
e��(t�t

0)

�
�(t� t0)

#
+
e2EiEp

M2�2
(24)

I conclude, thus, that the current charge transient 
ow is propagating by a damped

wave process at a speed e~E
�M

towards to its steady Ohm's law value h~j(1)i = e
m�
~E.

At this point, I consider for mathematical completeness of my path integral study in

this section 2, the usual hydrodynamical shear stress damping term ��~j(~r; t) in eq. (20)

instead of the usual Brownian term proportional to velocity��~j(~r; t) previously analyzed
on that master equation.

I get, thus, the following quantummechanical current equation in the range 0 � t �1
in place of eq. (21)

@~j(~r; t)

@t
+

1

2M
(~j � ~r)~j(~r; t)� ��~j(~r; t) = �e ~E + ~F (~r; t) (25)
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By proceeding as in the text, I obtain the stochastic process characteristic functional

associated to the random stirred Burger equation (25) in the form of a quantum �eld path

integral similar in its structure to eq. (21), namelly:

Z[ ~K(~r; t)] =
1

Z(0)

Z
DF [~j(~r; t)]

exp

(
� 1

2D

Z 1

0

dt

Z +1

�1

dx

�
@

@t
~j(~r; t) +

1

2M
(~j ~r)~j(~r; t)� ��~j(~r; t) + e ~E

�2
)

exp

�
i

Z 1

0

dt ~j(~r; t) ~K(~r; t)

�
(26)

In the one-loop approximation to eq. (26) around the classical Ohm's law con�guration

~j(~r; t) = � ~E +
1p
D

�!̂
j fl(~r; t) (27)

the \transient" two-point correlation function is easily obtained

h
�!̂
j i(~r; t)

�!̂
j `(~r

0; t0)i =
�
�i`�(t� t0)

�

Z +1

�1

d3~p exp
n
~p � [(~r� r0)� � ~E(t� t0)]

o 1

j~pj

exp
���(~p)2(t� t0)

		
=

�(t� t0)

�2(t� t0)

"
exp�

 
[(~r � ~r 0)� � ~E(t� t0)]2

4�(t� t0)

!#
(

1F1

 
1

2
;
3

2
;
[(~r � ~r 0)� � ~E(t� t0)]2

4�(t� t0)

!)
�i` (28)

By analyzing eq. (28), one is lead to conclude that the only di�erence between the

usual and the hydrodynamical damping terms are related to the di�erent transient be-

haviours eq. (24) and eq. (28) to arrive at Ohm's law. However, next loop corrections

will be entirely di�erent since the associated theory's \propagators" (eq. (24) and eq.

(28) are di�erent in its mathematical form).

Finally, let me put in the usual path integral formalism the usual wisdom of quantum

damping by means of a second-quantized Schr�odinger �eld theory interacting with phonos

(the quantized medium vibrations) ([1]). In this framework, the �rst basic object to be

studied is the generating functional of the phonons Green's functions at a temperature T .

([1]).

Zphonos[ji(~x; t)] =
1

Z(0)

Z
DF [ri(~x; t)] exp

(
� 1

kT

Z 1
kT

0

dt

Z +1

�1

d3~x cijk`Uij(~x) � Uk`(x)

�
exp

(
i

Z 1
kT

0

dt

Z +1

�1

d3x ji(~x; t)ri(x; t)

)
(29)
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Here fri(~x; t)g denotes the medium displacement second quantized phonon �eld, the

symmetric matrix Uij(~x) =
1
2

�
@
@xi
rj +

@
@xj
ri

�
(~x; t) is the medium strain tensor, cijk` de-

notes the elastic medium tensor and the path integral weight in eq. (29) is the second

order Hook's law.

The usual interaction of the (scalar) Schr�odinger �eld f (~r; t); �(~r; t)g with the

medium phonons is given, thus, by the usual medium-electron potential interaction where

V (~x) denotes the potential felt by the electron by the medium \atoms". In the path

integral scheme I have the following path-integral for the interacting electronic �eld

Z[K(~x; t);K�(~x; t)] =
1

Z(0; 0)

Z
DF [ �(~x; t)]

exp

(
� 1

kT

Z 1
kT

0

dt

Z +1

�1

d3x �(~x; t)

�
i�h
@

@t
� �h2

2M
�~x

�
 (~x; t)

)

exp

(
� 1

KT

Z 1
KT

0

dt

Z +1

�1

d3x( i�hr � �  �i�hr )i(~x; t)V (~x� ~y)ri(~y; t)

)

exp

(
i

Z 1
KT

0

dt

Z +1

�1

d3x[ (~x; t)K�(~x; t) +  �(~x; t)K(~x; t)]

)
(30)

The complete microscopic system electron-phonon generating functional is thus, given

by the combination of eq. (29) and eq. (30). Feynman diagrams may be easily imple-

mented by following my previous studies ([1]).

In order to deduce the Ohm's law from eq. (27) - eq. (28), one should introduce an

external homogeneous electric �eld fEjg in the system and try to evaluate the quantum

current ~j(~r; t) given by eq. (19) by means of Feynmans diagrams. Unfortunatelly, one will

never get the usual macroscopic Ohm's law

Z 1

0

dt

Z
d3r ji(~r; t) = �ijEj without putting

by hand in the calculations the phenomenological \collision time" ([7]).

A possible microscopic mechanism leading to the Langevin eq. (20) is to consider a

interaction of the Quantum Mechanical current ~j(~y; t) given by eq. (19) directly with (the

quantized phonon) �eld ~r(~y; t), which by its turn, has a quartic self-interacting potential

possessing a non-zero (positive) vacuum expectation value, namelly, at the leading order

the above cited microscopic interaction will takes the macroscopic damping form ~j(~y; t) �
~r(~y; t) � ~j(~y; t) � h~r(~y; t)i ' �~j(~y; t) plus 
uctuations. At this point we remark that in

this friction mechanism framework the e�ective damping term comes from the phonon
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self-interaction broken-phase instead of the usual process of the direct scattering of the

electron probability �eld density (  �)(~y; t) by the phonon �eld ~r(~y; t) ([8]).

An alternative one-body phenomenological study to deduce the Ohm's law from quan-

tum mechanics is to start from the begining directly of the (formal) Caldirola-Kanai la-

grangean associated to a damped charged particle in the presence of an electric �eld ([4]),

i.e.

L[x(�)] =
Z T

0

d�

 
e��

"
1

2
me

�
dx

d�

�2

� eEx(�)

#!
(31)

According to my previous studies ([3]), an \e�ective" wave function can be associated

to the dissipative system with a mass time-dependent term involving the damping reaction

of a reservoir on the quantum electron

i�h
@ ins(x; t)

@t
=

�
� 1

2e�tme

d2

dx2
� ee� Ex

�
 ins(x; t); (32)

Here the initial condition

 ins(x; 0) = �(x) (33)

is related to the fact that the electron is in a rest-origin situation at t = 0.

In order to analyze the electrical condutance in this single particle closed quantum

system approach, we should evaluate the electron velocity quantum operator, the electronic

current, in our proposed quantum damped state Eq. (32) i.e.,

j(t) =

Z +1

�1

dx ins i�h
@

@x
( ins(x; t))� : (34)

Let us now solve exactly the Eq. (32)-eq. (33), by considering the new \time"variable

change on those equations

� =
1

me�
(1� e��t)

 
~ins(x; �) =  ins(x; t) (35)

The new Schr�odinger equation takes, thus, the form of exactly soluble problem in the

new coordinate system (x; �) (now with me = 1)

i�h
@ 

~ins(x; �)

@�
=

�
�1

2

d2

dx2
+ eE � x

�
1

(1� ��)2

��
 
~ins(x; �) (36)
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with

~ (x; �)�!0+ = �(x): (37)

The solution of Eq. (36) is well-known ([6]) for the initial condition Eq. (37), i.e.,

 
~ins(x; �) =

r
1

2�i�h�

exp
i

2�h�

�
x2 � 2x

Z �

0

j(s)sds � 2

Z �

0

j(s)

Z s

0

ds0j(s0)(� � s)s0
�

(38)

where we have introduced the simpli�ed notation:

j(s) = eE
1

(1� �s)2
: (39)

It is a straightforward calculation to obtain the form of the electronic current per

volume in our theoretical model for quantum dissipative system after disregarding the

current associated to the free case of my analysis. It yields the following result:

j(t) = 2eE�
t

(1 � e��t)2
� 4eE

(arctan(1� e��t))

(1� e�nut)2
: (40)

The Ohm's law will, thus, be given by the following integral ([8])

�j =

Z 1

0

dt j(t)e��t =
2eE

�

�Z 1

0

ds
e�ss

(1� e�s)2

�

�4eE

�

�Z 1

0

ds
[arctan(1� e�s)e�s]

(1� e�s)2

�
=
E

�
�c (41)

I get, thus, the Ohm's law if I identify the macroscopic (medium) resistence R as

proportional to the damping constant �. Note that in the calculation above we have

introduced the dissipative anomaly factor e��t (see [3] and [4]).

It is worth remark the one can say that the macroscopic medium resistence increases

with the temperature if the electronic 
ux has a macroscopic behaviour like a classic gas

and decreases with the temperature if it has a behavior like a liquid (see ref. [7] - chapter

4).

The case of the magneto resistance will be our next study.

Let us consider eq. (20) in the presence of a constant electric �eld E = (Ex; Ey)

in the plane (x; y) and a constant magnetic �eld H in the z-direction as in the usual

plasma-magnetohydrodynamics framework ([9])

@~j(~r; t)

@t
+

1

2M
(~j � ~r)~j(~r; t) = ��~j(~r; t) + ~F (~r; t) + e ~E +

1

c
(~j(~r; t)� ~H) (42)
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In a one-loop approximation around the magneto-resistance Ohm's law, we have the

�eld decomposition

~j(~r; t) = ~�+
p
D~j(

�!̂
r ; t) (43)

where the background steady current con�guration satisfy the magneto-resistance Ohm's

law

�~'� e ~E � 1

c
~�� ~H = 0 (44)

After simple algebraic calculations as showed in the text, we arrive at the one-loop

Gaussian action functional (see re. [9] for details)

Sone�loop[
�!̂
j (~r; t)] = (

�!̂
j 1(~r; t); (

�!̂
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A simple reading of eq. (45) give us the non-vanishing two-point correlation functions

(the transient law)

hj1(~r; t); j1(~r 0; t0)i = hj2(~r; t); j2(~r 0; t0)i
= �(3)((~r � ~r 0)� ~�(t� t0))� F [(t� t0); �;H] (46)

Where the time-dependent form factor is given exactly by the following integral eval-

uated with the causality prescription of ref. [9]

F (t� t0; �;H) =

Z +1

�1

ei �w(t�t
0) d �w

�w2 +
�
�2 + H2

c2
� 2i�H

c

�� 2H
c
�w

�e
��(t� t0)

�
�(t� t0)e�i

H
c
t (47)
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Note that the magneto-conductivity Ohm's is given by the usual result ([8])
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Random mediums as proposed in ref. [9] and [10] will be the subject of paper to

appear elsewhere.
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