
CBPF-NF-028/97

Developments of the theory of spin susceptibility in metals�

W. Baltensperger

Centro Brasileiro de Pesquisas F��sicas - CBPF

Rua Dr. Xavier Sigaud, 150

22290-180 - Rio de Janeiro-RJ, Brasil

abstract

The calculation of spin susceptibilities in metals, in particular the Ruderman-Kittel-

Kasuya-Yosida (RKKY) polarization due to a point coupling, is reviewed. In the one-

dimensional case, the low coupling limit of the non-linear theory clari�es traditional per-

turbation approaches. Multilayer structures require theories with bounded metals. An

explicit formula is derived for the indirect interaction between two ferromagnetic plates

in a half space. A case, where an oscillatory amplitude decays with the �rst power of the

distance to the boundary is discussed.
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I. BASIC THEORY

The seemingly simple subject of the theory of the spin susceptibility in metals is still

developing. This short review describes certain aspects of the subject. It may serve as

an introduction into the �eld. However, in no way does it intend to cite all important

contributions.

The subject was opened by Pauli [1] 70 years ago. He considered a homogeneous

magnetic �eld acting on the spins of a degenerate electron gas and calculated the resulting

magnetization. The electrons have a magnetic moment of one Bohr magneton �B, which

leads to an energy in the �eld B of ��BB, where the minus or plus sign applies when the

moment is aligned or opposed to the �eld. This shifts the two bands which are �lled to the

same Fermi energy �F . The resulting change in occupation produces a net magnetisation

2�(�F )�2BB, where �(�F ) is the number of states per unit volume for one type of spin.

Kittel raised the question whether a localized action on the spins in a metal would also

turn around some spins, which would �ll the whole volume with a magnetization. The

answer was given in the famous paper by Ruderman and Kittel [2]. Plane waves are

not diagonal in a inhomogeneous potential, which was assumed to have the form of a

three-dimensional Dirac �-function:

H 0 = ��(3)(x)�z
2
;

where fx; �z=2g are the position and spin variables of a conduction electron. Perturbed

states were formed using �rst order perturbation theory. With these states, and assuming

no change in their occupation, the spin density as a function of the distance r = jxj
becomes:

R(r) =
m

32�3�h2
sin(2kF r) � 2kF r cos(2kF r)

r4
(1)

where kF is the radius of the Fermi sphere. R(r) oscillates with increasing r with an

amplitude which decays as r�3.
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The spacial integral over R(r) gives �(�F )=2. This corresponds to the Pauli result

for the spin polarization due to a homogeneous coupling . For r ! 0, the function R(r)

diverges, indicating that a higher order approximation would not be meaningful. In fact,

an operator as in Eq. (I) does not have an exact scattering theory [3]. It is obvious that it

cannot be treated rigorously in a Schr�odinger equation: let the negative three dimensional

Dirac operator be represented by a cubic well of width a and debth a�3. A Schr�odinger

wave squeezed into this well has kinetic energy � a�2 and negative potential energy� a�3,

which dominates in�nitely for a ! +0. Therefore, whenever such operators are used in

solid state theory, it is understood that the treatment is limited to the lowest order Born

approximation.

The method was also studied by Kasuya [4]. Yosida [5] was intrigued by the fact, that

in the Ruderman-Kittel calculation no shift in the occupation of the states was applied,

and yet, a net magnetization did result. He showed that by integrating over all virtual

states and not excluding the same state, the normalization of the perturbed states was

violated in such a way that this compensated the �rst mistake. In this way the method

and result, often denoted by the initials RKKY, were consolidated.

It is straightforward to extend the theory to the Fermi-Dirac statistics at �nite tem-

peratures T [6]. At intermediate temperatures, when the width of the �lled part of the

band is comparable to kBT , where kB is the Boltzmann constant, the amplitudes of the

oscillation is diminished. At hight temperature, for the Boltzmann gas, the magnetization

has a Gaussian shape, where the reciprocal wavenumber of an electron with energy kBT ,

i.e. �h=
p
2mkBT , is the decay length.

II. SIMPLE APPLICATIONS

In the original paper [2], Eq. [1] represented the contact interaction between a nuclear

spin and a conduction electron. The resulting indirect interaction between nuclear spins

explained the linewidth of nuclear spin resonance in metals. The same form, Eq. [1], can
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be used to describe the exchange coupling between the spin of a magnetic ion and the spins

of conduction electrons. The �-function approximates the situation where the diameter

of the magnetic shell of the ion is small compared to the wavelength of an electron at

the Fermi energy. The spin polarization due to one ion interacts with another ion and

thereby produces an indirect coupling between the two ions. Considering the ions in the

hexagonal lattice of the heavy rare earth metals, De Gennes [7] summed this coupling

energy over all pairs of ions and found that he could explain the Curie temperatures of

all the elements from Gd to Lu with just one coupling constant. This works also for

the light rare earth metals [8]. In the liquid state of Gd [9], the radial distribution of

the neighbours to an ion gives a theoretical Curie temperature which, while superior to

that of the solid phase, is below the melting point. The experimental discovery [10],

that thermally emitted electrons from ferromagnetic Fe have spin polarization zero, was

explaned [11] by the decay of the electron spin polarization in the electron gas outside

the metal.

III. EXTENSIONS OF THE THEORY

Kittel [12] applied the RKKY method to the one-dimensional metal and obtained a

polarization with a constant term, i.e. an in�nite range. Yafet [13] remarked that this

unlikely result could be avoided by integrating �rst over the occupied states and then over

the virtual states. The two-dimensional problem was only solved in 1986 by B�eal-Monot

[14]. The problem of the interaction per unit surface � of two parallel ferromagnetic plates

embedded in a metal, also depends on just one variable, the distance a between the plates.

� can be obtained by integrating over the couplings between a surface element of one plate

with all surface elements of the other plate. The result is [13,15]:

�(v) = �

"
��

4
+

Si(v)

2
+

sin(v)� v cos(v)

2v2

#
: (2)
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with v = 2kF a. Again, �(v) oscillates, but for large v the amplitudes decay as � v�2,

and for v ! 0 the �nite value �(0) = ���=4 is obtained. Here � = ��0I � I0k2Fm=(8�2�h2),

where I and I0 are the directions of the magnetizations in the two plates. � is the inter-

action strength per unit surface of a plate at position ax and a conduction electron with

variables f r; �g:

H 0

� = ���(rx� ax) I��
2
: (3)

IV. NON-LINEAR THEORY

The Hamiltonian, Eq. (3), contains a one-dimensional Dirac �-function. This produces

a change in the slope of the wavefunctions. When the potential is attractive, it has one

bound state or, rather, one bound band in view of the quantum numbers ky and kz. The

exact treatment of one plate in the electron gas was given by Bardasis et al. [16] and Yosida

et al. [17]. These papers received little attention, possibly since their explicit aim was to

disprove a theory which ascribed the indirect coupling between ferromagnetic plates to

quantum well states. An exact theory of the indirect interaction between two plates was

developed by Bruno [18] using the framework of multiple scattering theory. Actually, the

bound and propagating states in the presence of two plates with couplings as given by Eq.

(3) are analytic expressions, so that the direct solution of the quantummechanical problem

for two plates is also possible [19]. The bound bands give an important contribution,

which, however, is canceled by terms from the running waves. When the two plates have

equal coupling and parallel magnetization, there is a symmetric bound state, and, for large

enough distances between the plates, also an antisymmetric bound state. The distance

where this state ceases to exist is not visible in the plot of the energy versus separation

of the plates. The propagating states are orthogonal to the bound states. At the crucial

distance the bound state appears with zero energy and in�nite range. The part of the

Hilbert space which belongs to the bound state, is taken over from the propagating states
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in a smooth way which escapes detection.

The non-linear e�ects are surprisingly small: if the coupling strength is caracterized

by the binding energy �0 of the bound state of a plate, then for �0 = �F which is an

intermediate coupling, the nodes of the function �(v) are only slightly changed and the

amplitudes are reduced to about half the value of the perturbation result, Eq. (2). For

a strong coupling, say �0 = 8�F , which applies to the exchange coupling of an ion to the

degenerate electron gas of a semiconductor, the interaction has much shorter range in the

variable 2kF a. In the non-linear theory, a change in the density of a spin up state at a

point is not exactly compensated by the change in the density of the spin down state. A

net charge density appears, and the corresponding Coulomb energy becomes relevant in

the strong coupling range [20].

Since with the planar interaction, Eq. (3), a bound state appears at arbitrarily small

coupling �, a perturbation expansion around the point � = 0 is not valid. The puzzling

one-dimensional RKKY results [12,13] are clari�ed by the low coupling limit of the non-

linear theory [21].

V. INHOMOGENEOUS SYSTEMS

When two ferromagnetic metals are separated by a spacer metal of variing thickness

a, the interaction between the magnetisations oscillates as a function of a. Often more

than one period of oscillation can be extracted from the measurement. In real metals the

interaction between the plates can be a superposition of functions � with several values of

kF , which correspond to extremal distances of the Fermi surface of the spacer metal, say

the thickness of an 'arm' between 'Fermi sheres'. In the spacer metal the electrons are

often in a lower potential, so that bound states appear periodically as a function of the

width of the well. Repeatedly it has been suggested that this produces the oscillations of

the interaction. However, it has been shown [16,17,22,23] that the formation of quantum

well states does not lead to any periodicity in the coupling between the ferromagnets.
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Experiments with multilayer structures call for a theory of the spin susceptibility in

con�ned media. A simple model uses an electron gas in a semi-space [24]. The wavefunc-

tions then must have a node at x = 0, where x is the coordinate perpendicular to the

boundary. Thus the RKKY procedure is repeated using instead of plane waves the set

p
2 sin(kxx) e

ikyy+kzz; kx > 0: (4)

A spin-polarization Ph results which can be expressed in terms of the RKKY result R(r)

in homogeneous space, Eq. (1), as follows:

Ph = R(2kF ��) +R(2kF �+)� (�� + �+)2

2���+
R[kF (�� + �+)] (5)

with �� =
q
(x� a)2 + y2 + z2 where fa; 0; 0g is the position of the point coupling. Thus

�� is the distance to this point, and �+ the distance to the mirror position of the point

outside the boundary. The �rst two terms in Eq. (5) give equal contributions on the

boundary where �� = �+. However, there the electron density vanishes, and indeed at

the boundary the �rst two terms are cancelled by the third expression.

An interesting problem is the indirect interaction between two ferromagnetic plates

at distances ax and bx from the boundary. This can be obtained by integrating the

polarization due to a point copling at fax; 0; 0g over the plane at bx. For the �rst two

terms in Eq. (5) this integration is identical to that which leads from Eq. (1) to Eq. (2).

This is also the case for the third term, since the integration can be done with the variable

t = y2 + z2, and @(�� + �+)=@t = (�� + �+)=(2���+). Thus the two plates couple as

�h = �(2kF jax � bxj) + �[2kF (ax + bx)]� 2�[kF (jax � bxj+ ax + bx)]: (6)

The �rst term is the coupling of two plates in an in�nite medium, Eq. (2). The second

term is such a coupling, however, with the second plate in the mirror position. The third

term subtracts two couplings to a plate at the boundary.

The con�nement of a semi-space produces a remarkable e�ect with just one plate at

a distance ax from the boundary. The ferromagnetism in the plate can have a preferred
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direction. The anisotropy energy is measured with a homogeneous outside �eld, which

couples to the integrated magnetization. Part of this is the integrated magnetization P(a)
of the conduction electrons. This is obtained by integrating the density of the states at

the position ax over the Fermi surface, Eq. (A8) of [24]. For the waves of Eq. (4) the spin

polarization becomes (Eq. (18) of Ref. [24])

P(ax) = kF
8�2

2m

�h2

"
1 � sin(2kF ax)

2kF ax

#
(7)

The experiment has been performed [25] with an atomically thin Co �lm at a variable

distance ax from the surface of a Cu single crystal. The result shows oscillations which

belong to two well known extremal vectors kF of the Cu Fermi surface. The amplitudes

decay slowly with the �rst reciprocal power of the distance ax. This is the slowest decay

of an oscillating polarization ever observed.

VI. DEDICATION TO ROBERTO LUZZI

Jorge Helman and I had planned to dedicate an original work to Roberto Luzzi. With

the premature death of Jorge on January 7, 1997, at the age of 56 years, that project

remains still in its initial steps. I therefore decided to dedicate this historic account of a

subject, in which the activity of Jorge left its mark. In this way Jorge Helman is present

in this volume. It was his wish to express his simpathy and admiration to his friend

Roberto Luzzi.
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